Алгебра долей, полные двудольные графы и $\mathfrak{sl}_2$-весовая система

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В теории Васильева инварианты узлов конечного порядка описываются в терминах весовых систем – функций на хордовых диаграммах, удовлетворяющих четырехчленным соотношениям. В частности, крашеному многочлену Джонса соответствует весовая система, описываемая в терминах алгебры Ли $\mathfrak{sl}_2$. Согласно теореме Чмутова–Ландо значение этой весовой системы зависит лишь от графа пересечений хордовой диаграммы, что позволяет говорить о ее значениях на графах пересечений.В настоящей статье мы выводим явные формулы для производящих функций для значений $\mathfrak{sl}_2$-весовой системы на полных двудольных графах и показываем с их помощью, что для полных двудольных графов и некоторого более широкого класса графов выполняется гипотеза Ландо о степени многочлена – значения $\mathfrak{sl}_2$-весовой системы на проекции на примитивные в алгебре Хопфа графов.В основе доказательства лежат введенная нами алгебра долей и $\mathfrak{sl}_2$-весовая система на долях, тесно связанная с $\mathfrak{sl}_2$-весовой системой на хордовых диаграммах.Библиография: 14 названий.

Об авторах

Полина Александровна Зинова

Национальный исследовательский университет "Высшая школа экономики"

Автор, ответственный за переписку.
Email: kazarian@mccme.ru

без ученой степени, без звания

Максим Эдуардович Казарян

Национальный исследовательский университет "Высшая школа экономики"; Центр перспективных исследований, Сколковский институт науки и технологий

Email: kazarian@mccme.ru
доктор физико-математических наук, без звания

Список литературы

  1. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
  2. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  3. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  4. S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
  5. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  6. П. Е. Закорко, “Значения $mathfrak{sl}_2$-весовой системы на хордовых диаграммах с полным графом пересечения”, Матем. сб., 214:7 (2023) (в печати)
  7. П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
  8. П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
  9. S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
  10. S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
  11. J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
  12. W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
  13. А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
  14. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Зинова П.А., Казарян М.Э., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).