Экстремальная функциональная интерполяция в пространстве $L_p$ на произвольной сетке числовой оси

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследуется задача Голомба–де Бора экстремальной интерполяции бесконечных числовых последовательностей с наименьшим значением нормы в пространстве $L_p$, $1\le p\le \infty$, $n$-й производной интерполирующей функции на произвольной сетке числовой оси при условии ограничений на нормы соответствующих разделенных разностей. Для этой наименьшей нормы при любом $n\in \mathbb N$ в терминах $B$-сплайнов получены оценки снизу. В случае второй производной указанная величина оценена снизу и сверху константами, зависящими от параметра $p$.Библиография: 13 названий.

Об авторах

Юрий Николаевич Субботин

Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН

Email: Yurii.Subbotin@imm.uran.ru
доктор физико-математических наук, профессор

Валерий Трифонович Шевалдин

Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН

Email: Valerii.Shevaldin@imm.uran.ru
доктор физико-математических наук, старший научный сотрудник

Список литературы

  1. M. Golomb, “$H^{m,p}$-extensions by $H^{m,p}$-splines”, J. Approximation Theory, 5:3 (1972), 238–275
  2. C. de Boor, “How small can one make the derivatives of an interpolating function?”, J. Approximation Theory, 13:2 (1975), 105–116
  3. J. Favard, “Sur I'interpolation”, J. Math. Pures Appl. (9), 19 (1940), 281–306
  4. Ю. Н. Субботин, “О связи между конечными разностями и соответствующими производными”, Экстремальные свойства полиномов, Сборник работ, Тр. МИАН СССР, 78, Наука, М., 1965, 24–42
  5. Ю. Н. Субботин, “Функциональная интерполяция в среднем с наименьшей $n$-й производной”, Приближение функций в среднем, Сборник работ, Тр. МИАН СССР, 88, Наука, М., 1967, 30–60
  6. Ю. Н. Субботин, “Экстремальные задачи функциональной интерполяции и интерполяционные в среднем сплайны”, Приближение функций и операторов, Сборник статей, Тр. МИАН СССР, 138, Наука, М., 1975, 118–173
  7. Ю. Н. Субботин, С. И. Новиков, В. Т. Шевалдин, “Экстремальная функциональная интерполяция и сплайны”, Тр. ИММ УрО РАН, 24, № 3, 2018, 200–225
  8. C. de Boor, “A smooth and local interpolant with “small” $k$-th derivative”, Numerical solutions of boundary value problems for ordinary differential equations (Univ. Maryland, Baltimore, MD, 1974), Academic Press, New York, 1975, 177–197
  9. Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478
  10. С. И. Новиков, В. Т. Шевалдин, “О связи между второй разделенной разностью и второй производной”, Тр. ИММ УрО РАН, 26, № 2, 2020, 216–224
  11. С. Б. Стечкин, Ю. Н. Субботин, Сплайны в вычислительной математике, Наука, М., 1976, 248 с.
  12. С. И. Новиков, В. Т. Шевалдин, “Экстремальная интерполяция на полуоси с наименьшим значением нормы третьей производной”, Тр. ИММ УрО РАН, 26, № 4, 2020, 210–223
  13. Ю. С. Завьялов, Б. И. Квасов, В. Л. Мирошниченко, Методы сплайн-функций, Наука, М., 1980, 352 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Субботин Ю.Н., Шевалдин В.Т., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).