Неустойчивость по Ляпунову стационарных течений полимерной жидкости в канале с перфорированными стенками

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуется реологическая модель Покровского–Виноградова для течений растворов и расплавов несжимаемой вязкоупругой полимерной среды в случае течения в бесконечном плоском канале с перфорированными стенками. Доказана линейная неустойчивость по Ляпунову основного решения с постоянным расходом в классе возмущений, периодических по переменной, меняющейся вдоль стенки канала.Библиография: 14 названий.

Об авторах

Александр Михайлович Блохин

Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук

Email: blokhin@math.nsc.ru
доктор физико-математических наук, профессор

Дмитрий Леонидович Ткачёв

Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук

Email: tkachev@math.nsc.ru
доктор физико-математических наук, доцент

Список литературы

  1. Г. В. Пышнограй, В. Н. Покровский, Ю. Г. Яновский, Ю. Н. Карнет, И. Ф. Образцов, “Определяющее уравнение нелинейных вязкоупругих (полимерных) сред в нулевом приближении по параметрам молекулярной теории и следствия для сдвига и растяжения”, Докл. РАН, 339:5 (1994), 612–615
  2. V. N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010, xviii+256 pp.
  3. J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. Roy. Soc. London Ser. A, 200:1063 (1950), 523–541
  4. А. М. Блохин, А. В. Егитов, Д. Л. Ткачeв, “Линейная неустойчивость решений математической модели, описывающей течения полимеров в бесконечном канале”, Ж. вычисл. матем. и матем. физ., 55:5 (2015), 850–875
  5. W. Heisenberg, “Über Stabilität und Turbulenz von Flüssigkeitsströmen”, Ann. Phys. (4), 74:15 (1924), 577–627
  6. А. Л. Крылов, “Об устойчивости течения Пуазейля в плоском канале”, Докл. АН СССР, 159:5 (1964), 978–981
  7. А. М. Блохин, Д. Л. Ткачев, А. В. Егитов, “Асимптотическая формула для спектра линейной задачи, описывающей периодические течения полимеров в бесконечном канале”, Прикл. мех. и тех. физ., 59:6 (2018), 39–51
  8. А. М. Блохин, Д. Л. Ткачeв, “Устойчивость аналога течения Пуазейля в МГД модели несжимаемой полимерной жидкости”, Матем. сб., 211:7 (2020), 3–23
  9. А. Б. Ватажин, Г. А. Любимов, С. А. Регирер, Магнитогидродинамические течения в каналах, Наука, М., 1970, 672 с.
  10. Дж. Шерклиф, Курс магнитной гидродинамики, Мир, М., 1967, 320 с.
  11. C. Мизохата, Теория уравнений с частными прооизводными, Мир, М., 1977, 504 с.
  12. Н. В. Бамбаева, А. М. Блохин, “Стационарные решения уравнений несжимаемой вязкоупругой полимерной жидкости”, Ж. вычисл. матем. и матем. физ., 54:5 (2014), 845–870
  13. Ю. А. Алтухов, А. С. Гусев, Г. В. Пышнограй, Введение в мезоскопическую теорию текучих полимерных систем, АлтГПА, Барнаул, 2012, 121 с.
  14. G. D. Birkhoff, Collected mathematical papers, v. I, II, III, Amer. Math. Soc., New York, 1950, lvii+754 pp., vi+983 pp., vii+987 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Блохин А.М., Ткачёв Д.Л., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).