Полиномиальная $m$-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для произвольного набора из $m+1$ ростков аналитических функций в одной фиксированной точке вводится в рассмотрение полиномиальная $m$-система Эрмита–Паде, включающая в себя полиномы Эрмита–Паде 1-го и 2-го типов. В случае общего положения в работе найдена слабая асимптотика полиномов $m$-системы Эрмита–Паде, построенной по набору ростков функций $1, f_1,…,f_m$, мероморфных на $(m+1)$-листной компактной римановой поверхности $\mathfrak R$. Показано, что если $f_j = f^j$ для некоторой мероморфной на $\mathfrak R$ функции $f$, то с помощью отношений полиномов $m$-системы Эрмита–Паде восстанавливаются значения функции $f$ на всех листах разбиения Наттолла поверхности $\mathfrak R$, кроме последнего. Библиография: 18 названий.

Об авторах

Александр Владимирович Комлов

Математический институт им. В.А. Стеклова Российской академии наук

Email: komlov@mi-ras.ru
кандидат физико-математических наук, без звания

Список литературы

  1. А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122
  2. А. И. Аптекарев, Д. Н. Туляков, “Абелев интеграл Наттолла на римановой поверхности кубического корня многочлена третьей степени”, Изв. РАН. Сер. матем., 80:6 (2016), 5–42
  3. Е. М. Чирка, “Римановы поверхности”, Лекц. курсы НОЦ, 1, МИАН, М., 2006, 3–105
  4. Е. М. Чирка, “О $barpartial$-проблеме с $L^2$-оценками на римановой поверхности”, Современные проблемы математики, механики и математической физики, Сборник статей, Труды МИАН, 290, МАИК «Наука/Интерпериодика», М., 2015, 280–292
  5. Е. М. Чирка, “Потенциалы на компактной римановой поверхности”, Комплексный анализ, математическая физика и приложения, Сборник статей, Труды МИАН, 301, МАИК «Наука/Интерпериодика», М., 2018, 287–319
  6. P. Henrici, “An algorithm for analytic continuation”, SIAM J. Numer. Anal., 3:1 (1966), 67–78
  7. A. Komlov, “Polynomial Hermite–Pade $m$-system and reconstruction of the values of algebraic functions”, Extended abstracts Fall 2019, Trends Math., 12, Birkhäuser, Cham, 2021, 113–121
  8. А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, “Аппроксимации Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, УМН, 72:4(436) (2017), 95–130
  9. G. Lopez Lagomasino, S. Medina Peralta, J. Szmigielski, “Mixed type Hermite–Pade approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838
  10. В. Г. Лысов, “Аппроксимации Эрмита–Паде смешанного типа для системы Никишина”, Труды МИАН, 311, Анализ и математическая физика (2020), 213–227
  11. J. Nuttall, “Hermite–Pade approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240
  12. J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
  13. В. В. Прасолов, Задачи и теоремы линейной алгебры, 2-е изд., Наука, М., 2008, 536 с.
  14. Е. А. Рахманов, “Распределение нулей полиномов Эрмита–Паде в случае Анжелеско”, УМН, 73:3(441) (2018), 89–156
  15. T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp.
  16. Ж. де Рам, Дифференцируемые многообразия, ИЛ, М., 1956, 250 с.
  17. H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
  18. S. P. Suetin, Hermite–Pade polynomials and analytic continuation: new approach and some results

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Комлов А.В., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).