Time-dependent photoconductivity in iron doped ZnSe crystals

Capa

Citar

Texto integral

Resumo

We investigated photoconductivity in ZnSe crystals doped with iron by thermal diffusion in wavelength range 470–5000 nm at the temperature of 77 and 300 K. The samples show high photoconductivity in the visible region. The effects of long-term growth and relaxation of the photocurrent were discovered as well as the dependence of time of the photocurrent growth and relaxation on the wavelength of exciting radiation, its power and the voltage applied to a sample. The effect of quenching of residual photoconductivity under the irradiation in the range 850–940 nm was observed.

Sobre autores

M. Storozhevykh

Prokhorov General Physics Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: storozhevykh@kapella.gpi.ru
Russia, 119991, Moscow

V. Kalinushkin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: storozhevykh@kapella.gpi.ru
Russia, 119991, Moscow

O. Uvarov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: storozhevykh@kapella.gpi.ru
Russia, 119991, Moscow

V. Chegnov

Research Institute of Materials Science and Technology LLC

Email: storozhevykh@kapella.gpi.ru
Russia, 124460, Moscow

O. Chegnova

Research Institute of Materials Science and Technology LLC

Email: storozhevykh@kapella.gpi.ru
Russia, 124460, Moscow

V. Yuryev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: storozhevykh@kapella.gpi.ru
Russia, 119991, Moscow

Bibliografia

  1. Avdonin A.N., Ivanova G.N., Nedeoglo D.D. et al. // Physica B. 2005. V. 365. P. 217.
  2. Mahawela P., Sivaraman G., Jeedigunta S. et al. // Mater. Sci. Engin. B. 2005. V. 116. P. 283.
  3. Schulz O., Strassburg M., Rissom T. et al. // Appl. Phys. Lett. 2002. V. 81. Art. No. 4916.
  4. Dormidonov A.E., Firsov K.N., Gavrishchuk E.M. et al. // Appl. Phys. B. 2016. V. 122. No. 8. P. 211.
  5. Frolov M.P., Korostelin Y.V., Kozlovsky V.I. et al. // Laser Phys. 2019. V. 29. No. 8. Art. No. 085004.
  6. Fedorov V., Martyshkin D., Karki K. et al. // Opt. Express. 2019. V. 27. No. 10. P. 13934.
  7. Migal E., Pushkin A., Bravy B. et al. // Opt. Letters. 2019. V. 44. No. 10. P. 2550.
  8. Peppers J., Fedorov V.V., Mirov S.B. // Opt. Express. 2015. V. 23. No. 4. P. 4406.
  9. Evans J.W., Harris T.R., Reddy B.R. et al. // J. Luminescence. 2017. V. 188. P. 541.
  10. Kulyuk L.L., Laiho R., Lashkul A.V. et al. // Physica B. 2010. V. 405. P. 4330.
  11. Aminev D.F., Pruchkina A.A., Krivobok V.S. et al. // Opt. Mater. Exp. 2021. V. 11. No. 2. P. 210.
  12. Kalinushkin V., Uvarov O., Il’ichev N. et al. // Opt. Inf. Conf. 2020. Art. No. JTh2A.
  13. Ильичев Н.Н., Буфетова Г.А., Гулямова Е.С. и др. // Квант. электрон. 2019. Т. 49. № 12. С. 1175; Il’ichev N.N., Bufetova G.A., Gulyamova E.S. et al. // Quant. Electron. 2019. V. 49. No. 12. P. 1175.
  14. Ильичев Н.Н., Гладилин А.А., Гулямова Е.С. и др. // Квант. электрон. 2020. Т. 50. № 8. С. 730; Il’ichev N.N., Gladilin A.A., Gulyamova E.S. et al. // Quant. Electron. 2020. V. 50. No. 8. P. 730.
  15. Il’ichev N., Sidorin A., Gulyamova E. et al. // J. Luminescence. 2021. V. 239. Art. No. 118363.
  16. Ваксман Ю.Ф., Ницук Ю.А., Яцун В.В. и др. // ФТП. 2011. Т. 45. № 9. С. 1171; Vaksman Y.F., Nitsuk Y.A., Yatsun V.V. et al. // Semiconductors. 2011. V. 45. No. 9. P. 1129.
  17. Ницук Ю.А., Ваксман Ю.Ф., Яцун В.В. и др. // ФТП. 2012. Т. 46. № 10. С. 1288; Nitsuk Y.A., Vaksman Y.F., Yatsun V.V. // Semiconductors. 2012. V. 46. No. 10. P. 1265.
  18. Iida S. // J. Phys. Soc. Japan. 1969. V. 26. No. 5. P. 1140.
  19. Makhni V.P., Sletov M.M., Tkachenko I.V. // J. Opt. Technol. 2007. V. 74. No. 6. P. 394.
  20. Rong F.C., Barry W.A., Donegan J.F., Watkins G.D. // Phys. Rev. B. 1996. V. 54. No. 11. P. 7779.
  21. Dunstant D.J., Nicholls J.E., Cavenett B.C., Davies J.J. // J. Physics C. 1980. V. 13. P. 6409.
  22. Ivanova G.N., Nedeoglo D.D., Negeoglo N.D. et al. // J. Appl. Phys. 2007. V. 101. Art. No. 063543.
  23. Шейнкман М.К., Шик А.Я. // ФТП. 1976. Т. 10. № 2. С. 209.
  24. Niftiev G.M., Tagiev B.G., Khalilov A.O., Abushov S.A. // Phys. Stat. Sol. 1984. V. 81. P. 175.
  25. Akhmedov A.A., Khalilov S.K., Kyazymzade A.G., Bairamov Y.A. // Phys. Stat. Sol. 1986. V. 93. P. 79.
  26. Mayorova T.L., Klyuev V.G., Fam Thi Hay M. // Nanotechnol. Russ. 2012. V. 7. No. 5–6. P. 298.
  27. Yeritsyan H., Grigoryan N., Harutyunyan V. et al. // J. Mod. Phys. 2014. V. 5. No. 1. P. 51.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (54KB)
3.

Baixar (54KB)
4.

Baixar (302KB)
5.

Baixar (104KB)

Declaração de direitos autorais © М.С. Сторожевых, В.П. Калинушкин, О.В. Уваров, В.П. Чегнов, О.И. Чегнова, В.А. Юрьев, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).