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ВВЕДЕНИЕ

После того, как в неэрмитовых квантово-
механических системах с симметрией четность-
время (parity-time, РТ-симметрией) были обнару-
жены состояния с действительными собственными
значениями энергии [1, 2], эта идея была обобщена
на различные физические волновые процессы —
оптические [3–6], акустические [7], в связанных
механических осцилляторах [8], в электрических
цепях [9] и др. В оптике в неэрмитовых средах
с РТ-симметричной комплексной функцией ди-
электрической проницаемости ε(𝑟) = ε∗(−𝑟), т. е.
в средах с усилением и поглощением (рис. 1а),

ε(z)

θ θ

0

0 d

z

x

z

a б

ФК

/2 /2 �d �d d

1

2

3

k0k0

Рис. 1. Четная (кривая 1) и нечетная (кривая 2)
функции распределения реальной и мнимой частей
резонансной диэлектрической проницаемости в PT-
симметричном фотонном кристалле (а), штриховая
линия 3 — ε0; схемы падения импульсов (б) слева
(𝑘0z > 0) и справа (𝑘0z < 0) на ФК.

могут распространяться РТ-симметричные моды
поля с действительными значениями волновых
чисел [3, 4]. Примеры периодических сред такого
типа детально описаны, например, в работах
[10–13]. Важной особенностью РТ-симметричных
сред является наличие особой точки (ОТ) спонтан-
ного распада РТ-симметричных состояний [14, 15],
в которой происходит вырождение собственных
волн и при изменении баланса усиления и погло-
щения появляются РТ-несимметричные моды,
распространяющиеся с усилением и поглощени-
ем. Вблизи ОТ наблюдаются новые оптические
явления, такие как: однонаправленное отраже-
ние Брэгга, или однонаправленная невидимость
[16–18]; повышение прозрачности пассивных
РТ-симметричных сред при росте их поглощаю-
щей способности [14, 19]; асимметричное деление
коротких лазерных импульсов в особой точке
в диспергирующей РТ-симметричной среде [20];
изменение структуры излучения мощных диодных
лазеров при возникновении РТ-симметричных
мод в лазерном резонаторе [21]; частотная сингу-
лярность [22, 23]. Однако до настоящего времени
рассматривалось главным образом взаимодей-
ствие монохроматических волн или протяженных
наносекундных импульсов с РТ-симметричными
средами. Распространение же коротких пикосе-
кундных и субпикосекундных импульсов, особен-
но вблизи частотной сингулярности, оставалось
мало изученным.
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В настоящей статье исследуется взаимодей-
ствие коротких оптических импульсов с РТ-
симметричными периодическими структурами,
или фотонными кристаллами (ФК), в случае
частотной сингулярности спектральных коэффи-
циентов отражения 𝑅(ω) и прохождения 𝑇(ω),
в том числе с учетом материальной дисперсии.
Задача линейной динамической брэгговской ди-
фракции импульсов в ФК решена спектральным
методом в двухволновом приближении. Для вос-
становления РТ-симметричных свойств среды
использован метод широкополосной квази-РТ-
симметрии [24]. Показано, что в особой точке рас-
пада РТ-симметричных мод поля коэффициенты
отражения и прохождения фотонных кристаллов
конечной толщины не имеют сингулярностей,
и длительности отраженных и проходящих им-
пульсов изменяются незначительно. Однако, даже
при малом отклонении от ОТ при определенной
толщине ФК возникают частотные сингулярно-
сти коэффициентов 𝑅(ω) и 𝑇(ω). В результате
возникает значительное сужение спектров импуль-
сов и увеличение их длительности. Имеет место
также однонаправленное брэгговское отражение
и усиление импульсов в случае широкополос-
ной квази-РТ-симметрии в ФК с материальной
дисперсией.

ТЕОРИЯ
Пусть на поверхность 𝑧 = 0 ограниченного од-

номерного резонансного РТ-симметричного ФК
(рис. 1) падает короткий оптический импульс (вол-
новой пакет)𝐸in(𝑟, 𝑡) = 𝐴in(𝑥, 𝑡) exp (𝑖𝑘0 ⋅ 𝑟 − 𝑖ω0𝑡) , (1)
где 𝐴in(𝑥, 𝑡)— комплексная медленно меняющаяся
амплитуда, 𝑘0 = (𝑘0 sin θ, 𝑠𝑘0 cos θ), θ — угол паде-
ния, 𝑘0 = ω0/𝑐, ω0 — центральная частота, 𝑐— ско-
рость света, 𝑠 = +1 при падении слева, 𝑠 = −1 при
падении справа (рис. 1б).

Диэлектрическая проницаемость РТ-симмет-
ричного ФК описывается функцией видаε(𝑧, ω) = ε0 + ε′ cos(ℎ𝑧) + ̃ε′(ω) sin(ℎ𝑧) +

+ 𝑖 ̃ε >> (ω) sin(ℎ𝑧), (2)

где ε0 + ε′ cos(ℎ𝑧) — действительная четная функ-
ция, ̃ε′(ω) sin(ℎ𝑧) и ̃ε″(ω) sin(ℎ𝑧)—нечетные функ-
ции действительной и мнимой частей диэлектри-
ческой проницаемости, обусловленные резонанс-
ными атомами, ℎ = 2π/𝑑 — модуль вектора обрат-
ной решетки ФК, 𝑑— период решетки. Появление
нечетного действительного слагаемого в (2) свя-
зано с соотношением Крамерса–Кронига, кото-
рое следует из принципа причинности и неминуе-
мо приводит к нарушению условия РТ-симметрии
резонансной среды для части спектра оптическо-
го импульса [25]. Однако использование условия
широкополосной квази-РТ-симметрии, когда ши-

рина спектра импульса гораздо меньше, чем ши-
рина спектральной линии неоднородного ушире-
ния среды, позволяет минимизировать слагаемое̃ε′(ω) ≪ ̃ε″(ω) в (2) и в значительной степени вос-
становить РТ-симметричные свойства среды для
квазимонохроматического импульса [17, 20, 24].

Граничная задача динамической брэгговской
дифракции решается спектральным методом вбли-
зи условия Брэгга в двухволновом приближении
[20, 24]. Падающий на ФК импульс поля (1) пред-
ставляется в виде интеграла Фурье

𝐸in(𝑥, 𝑡) = ∞
∫
−∞ 𝐴in(Ω) exp(𝑖𝑘x𝑥 − 𝑖ω𝑡)𝑑ω, (3)

где 𝐴in(Ω) = 12π
∞
∫
−∞ 𝐴in(𝑡′) exp (𝑖Ω𝑡′) 𝑑𝑡′ — спек-

тральная амплитуда падающего импульса, 𝑡′ = 𝑡−−𝑥 sin θ/𝑐,Ω = ω − ω0. Из уравнения ГельмгольцаΔ𝐸(𝑟, ω) + ε(𝑧, ω)𝑘2𝐸(𝑟, ω) = 0, (4)

где 𝑘 = ω/𝑐, и граничных условий на границах ФК𝑧 = 0, 𝐿 для каждой спектральной компоненты по-
ля 𝐸(𝑥, 𝑧, ω) в ФК в двухволновом приближении
(вблизи условия Брэгга) аналитически находятся
спектральные амплитуды прямых 𝐴0(Ω) и дифра-
гированных 𝐴h(Ω) волн и соответствующие дис-
персионные соотношения для z-проекций волно-
вых векторов 𝑞0z(Ω) и 𝑞hz(Ω) = 𝑞0z(Ω) − 𝑠ℎ внут-
ри ФК:

𝑞(1,2)0z = 𝑠ℎ2 ± (𝑘2ℎ )√α2 − ε1ε−1, (5)

где величина α = ℎ𝑘2 ((ε0𝑘2 − 𝑞2
0x)1/2 − ℎ2) определя-

ет отклонение от точного брэгговского условияα = 0;
ε1 = ε′ + 𝑖 ̃ε(ω)2 = ε′ − ̃ε″(ω) + 𝑖 ̃ε′(ω)2 ,
ε
−1 = ε′ − 𝑖 ̃ε(ω)2 = ε′ + ̃ε″(ω) − 𝑖 ̃ε′(ω)2

(6)

— коэффициенты в разложении функции (2) в ряд
Фурье.

Как видно из выражений (5) и (6), РТ-сим-
метричные моды поля, соответствующие действи-
тельным величинам 𝑞(1,2)0z , могут распространять-
ся в ФК вблизи брэгговского условия α ≪ 1 толь-
ко в том случае, если величина −ε1ε−1 > 0, т. е.
при достаточно большом усилении в среде, когда̃ε″(ω) > ε′. Равенство ̃ε″(ω) = ε′ соответствует осо-
бой точке спонтанного распада РТ-симметричных
решений при определенной частоте ω0, когда дей-
ствительная часть резонансной диэлектрической
проницаемости ̃ε′(ω) = ̃ε′(ω0) = 0.

Поля прямой 𝐸0(𝑥, 𝑧, 𝑡) и дифрагированной𝐸h(𝑥, 𝑧, 𝑡) волн в любой точке среды в каждый
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момент времени вычисляются с помощью фурье-
синтеза:

𝐸g(𝑥, 𝑧, 𝑡) = ∞
∫
−∞ {𝐴g1(Ω) exp [𝑖 (𝑞(1)0z − 𝑠𝑓) 𝑧] +

+ 𝐴g2(Ω) exp [𝑖 (𝑞(2)0z − 𝑠𝑓) 𝑧]}×× exp (𝑖𝑞0x𝑥 − 𝑖ω𝑡) 𝑑Ω,
(7)

где 𝑔 = 0, ℎ— индексы, относящиеся к проходящей
и дифрагированной волнам, соответственно; 𝑓 = 0,
если 𝑔 = 0, и 𝑓 = ℎ, если 𝑔 = ℎ.

Амплитуды волн в ФК 𝐴01,02 находятся из гра-
ничных условий. При падении импульса на левую
поверхность 𝑧 = 0, т. е. при 𝑘0z > 0: 𝐸0(𝑧 = 0) = 𝐴01++𝐴02 = 𝐴in(Ω) и 𝐸h(𝑧 = 𝐿) = 𝑅1𝐴01 exp (𝑖𝑞(1)0z 𝐿) ++𝑅2𝐴02 exp (𝑖𝑞(2)0z 𝐿) = 0. Отсюда легко получить
следующие выражения для амплитуд 𝐴01,02:

𝐴01 = 𝐴in(Ω)1 − 𝑃 , 𝐴02 = −𝑃𝐴in(Ω)1 − 𝑃 , (8)

где 𝑃 = (𝑅1/𝑅2) exp(𝑖2φ), 2φ = (𝑞(1)0z − 𝑞(2)0z ) 𝐿, 𝑅1,2 == − (α ∓ 𝑠√α2 − ε1ε−1) /ε−s.
В случае падения импульса на правую поверх-

ностьФК 𝑧 = 𝐿, т. е. при 𝑘0z < 0 и 𝑞0z < 0, граничные
условия имеют вид 𝐸0(𝑧 = 𝐿) = 𝐴01 exp (𝑖𝑞(1)0z 𝐿) ++𝐴02 exp (𝑖𝑞(2)0z 𝐿) = 𝐴in(Ω), 𝐸h(𝑧 = 0) = 𝑅1𝐴01++𝑅2𝐴02 = 0, откуда

𝐴01 = 𝐴in(Ω)1 − 𝑃 exp (−𝑖𝑞(1)0z 𝐿) ,
𝐴02 = 𝑃𝐴in(Ω)1 − 𝑃 exp (−𝑖𝑞(2)0z 𝐿) . (9)

Так как в случае падения волнового паке-
та 𝑘 = = 𝑘0 +Ω/𝑐 и 𝑘0x = 𝑘 sin θ, то параметр от-
стройки α имеет следующий явный вид α = α(Ω) == (ℎ/𝑘2) [(𝑘0 +Ω/𝑐)√ε0 − sin2 θ − ℎ/2].

Спектральные амплитудные коэффици-
енты прохождения 𝑇(Ω) = 𝐴0(𝐿,Ω)/𝐴in(Ω) == [𝐴01(Ω)𝑒𝑖𝑞(1)0z 𝐿 + 𝐴02(Ω)𝑒𝑖𝑞(2)0z 𝐿] /𝐴in(Ω)
и отражения 𝑅l(Ω) = 𝐴h(0, Ω)/𝐴in(Ω) == [𝐴h1(Ω) + 𝐴h2(Ω)] /𝐴in(Ω) полей при паде-
нии излучения на левую (𝑘0z > 0) поверхность 𝑧 = 0
ФК имеют вид (здесь 𝐴hj = 𝑅j𝐴0j, 𝑠 = 1):

𝑇(Ω) = 11 − 𝑃 (1 − 𝑅1𝑅2) exp (𝑖𝑠𝑞(1)0z 𝐿) ,
𝑅l,r(Ω) = 𝑅11 − 𝑃 [1 − exp {𝑖𝑠 (𝑞(1)0z − 𝑞(2)0z ) 𝐿}] . (10)

Случаю падения излучения справа (𝑘0z < 0) со-
ответствует значение 𝑠 = −1 в (10).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Для удобства дальнейшего анализа запишем

спектральные амплитудные коэффициенты отра-
жения 𝑅(Ω) и прохождения ФК в иной форме:𝑇(Ω) = 𝑊𝑊 cosφ − 𝑖α sinφ, (11)

𝑅l,r(Ω) = 𝑖 ε′(1 ∓ σ) sinφ2 [𝑊 cosφ − 𝑖α sinφ] =
= 𝑖 ε′(1 ∓ σ) sinφ2𝑊 𝑇(Ω), (12)

где 𝑊 =√α2 − ε1ε−1, (13)

φ = 𝑘2𝑊𝐿/ℎ, (14)
индексы «𝑙, 𝑟» и знаки «−» и «+» в (12) соответствуют
коэффициентам отражения при падении излуче-
ния на левую 𝑧 = 0 и правую 𝑧 = 𝐿 границу ФК. Ве-
личина α = αΩ − αθ определяет отклонение от точ-
ного брэгговского условия по углу Δθ = θ − θB = 0
и частоте Ω = 0, где αΩ = 2 (Ω/ω0) ε0 cos2 θB,αθ = ΔθεV sin 2θBV, cos θB = λ0/2𝑑√ε0, sin θBV == √ε0 − /εV sin θB, εV — диэлектрическая проницае-
мость среды, окружающей ФК.

Отметим, что коэффициент прохождения𝑇(Ω) (11) не зависит от направления падения
излучения на ФК, тогда как коэффициент отра-
жения 𝑅(Ω) (12) изменяется значительно вплоть
до 𝑅l(Ω = 0) = 0, 𝑅l(Ω = 0) ≫ 1 — однонаправлен-
ное отражение.

В случае широкополосной квази-РТ-симмет-
рии, когда материальная дисперсия мала, т. е.̃ε′(ω) ≈ ̃ε′(ω0) = 0, из (6) следует, что

−ε1ε−1 = ( ̃ε″2 − ε′2) /4 = ε′2 (σ2 − 1) /4, (15)

где величина σ = ̃ε″/ε′ характеризует близость к ОТσ = 1.
Из выражений (7), (11) и (12) видно, что для

нахождения временной зависимости полей про-
шедшего 𝐸Tl(𝐿, 𝑡) = 𝐸Tr(0, 𝑡) и отраженного 𝐸Rl(0.𝑡),𝐸Rl(𝐿, 𝑡) импульсов необходимо вычислить следую-
щие интегралы преобразования Фурье для прохо-
дящего и отраженного импульсов (𝑥 = 0):

𝐸T(𝑡) = ∞
∫
−∞

𝑊𝑊 cosφ − 𝑖α sinφ ××𝐴in(Ω) exp(−𝑖ω𝑡)𝑑Ω,
𝐸Rl,r(𝑡) = ∞

∫
−∞ 𝑖 ε′(1 ∓ σ) sinφ2 [𝑊 cosφ − 𝑖α sinφ] ××𝐴in(Ω) exp(−𝑖ω𝑡)𝑑Ω.

(16)

Фаза (14)

φ = 𝑘2𝑊𝐿ℎ = 𝑘2𝑁𝑑ℎ
√α2 + ε′2 (σ2 − 1)4 (17)
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варьируется при изменении толщины 𝐿 = 𝑁𝑑 фо-
тонного кристалла и параметра близости к ОТ σ,
здесь 𝑁— число периодов.

Как видно из выражений (11), (13)–(15), точно
вОТ, т. е. при σ = 1, коэффициент прохождения (11)
равен

𝑇(Ω)= 1
cosφ − 𝑖 (α/√α2) sinφ = 1

cosφ ± 𝑖 sinφ, (18)

т. е. ∣𝑇(Ω)∣ = 1 при любых действительных α.
При отклонении от ОТ, σ ≠ 1, вблизи условия
Брэгга ∣α∣ ≪ 1 у функций 𝑇(Ω) и 𝑅(Ω) появля-
ются спектральные сингулярности, или полюсы
функций (нули в знаменателях). Действительно,
в простейшем случае α = 0, 𝑊 ≠ 0 в (11) получаем𝑇(Ω) = 1/ cosφ. Таким образом, возникают частот-
ные сингулярности𝑇(Ωj), 𝑅(Ωj) → ∞на частотахΩj
при значениях фаз

φ = π2 (2𝑗 + 1), (19)

где 𝑗 = 0, 1, 2, …
В случае наличия сингулярности, для коррект-

ного вычисления интегралов в (16) необходимо пе-
рейти к интегрированию в комплексной плоскости
комплексной переменной, т. е. к комплексным ча-
стотамΩ = Ω′ + 𝑖Ω″. Как известно [20, 26], из прин-
ципа причинности следует, что в интеграле

χ(𝑧, ω) = ∞
∫0

̃χ (𝑧, 𝑡′) exp (𝑖ωτ′) 𝑑τ′, (20)

связывающем комплексную диэлектрическую вос-
приимчивость χ(𝑧, ω) и действительную функцию
Грина ̃χ (𝑧, τ′), время задержки отклика систе-
мы τ′ есть положительная величина, τ′ > 0. Следо-
вательно, в случае аналитической функции Гри-
на и комплексной частоты ω = ω′ + 𝑖ω″ функцияχ(𝑧, ω) в (20) также будет аналитической, если
Imω > 0, т. е. в верхней комплексной полуплос-
кости комплексной переменной. Таким образом,
принцип причинности может соблюдаться только
при Ω″ > 0, однако это необходимое, но не доста-
точное условие для соблюдения принципа причин-
ности. Полюсы функций в области Ω″ > 0 при вы-
числении интегралов (16) следует учитывать таким
образом, чтобы контур интегрирования не вклю-
чал эти полюсы. В этом случае поля 𝐸T(𝑡), 𝐸𝑅(𝑡)
не будут возрастать в области 𝑡 < 0. Иными слова-
ми, контур интегрирования в (16) следует выбирать
выше полюсов Ω″

j функций 𝑇(Ω), 𝑅(Ω), рис. 2, ли-
бо, помимо интегрирования вдоль действительной
оси Ω = Ω′, необходимо осуществить обход полю-
сов и вычислить суммы вычетов [27–29]:

Re(Ω)

Im(Ω)

Ωj

Ω" > Ω"j

Полюс

Рис. 2. Иллюстрация двух возможных путей при ин-
тегрировании функций со спектральной сингулярно-
стью: интегрирование вдоль действительной оси ча-
стот приΩ″

> Ωj и вдоль траектории с обходомполюса
в точкеΩj.

𝐸T(𝑡) = ∞+𝑖γ
∫

−∞+𝑖γ 𝑇(Ω)𝐴in(Ω) exp(−ω𝑡)𝑑Ω,
𝐸Rl,r(𝑡) = ∞+𝑖γ

∫
−∞+𝑖γ 𝑅l,r(Ω)𝐴in(Ω) exp(−ω𝑡)𝑑Ω,

(21)

где Ω = Ω′ + 𝑖γ, γ > Ω″
j , −∞ < Ω′ < +∞. Несоблю-

дение этого требования приводит к нарушению
принципа причинности — отраженное излучение
появляется раньше, чем на среду приходит падаю-
щий импульс. Если же полюсы находятся в нижней
полуплоскости, Ω″

j < 0, то достаточно интегриро-
вания вдоль вещественной осиΩ = Ω′.

Из (17) и (19) следует, что первой точке син-
гулярности при φ = π/2 соответствует критиче-
ское значение толщины ФК на центральной ча-
стоте 𝐿cr = πℎ/𝑘20

√4α2 + ε′2 (σ2 − 1). Аналитические
и численные расчеты показали, что при 𝐿 > 𝐿cr по-
люсыΩ″

j функций 𝑇(Ω) и 𝑅(Ω) лежат в верхней по-
луплоскости, т. е. Ω″

j > 0, а при 𝐿 < 𝐿cr — в нижней
полуплоскости,Ω″

j < 0. Случай 𝐿 > 𝐿cr соответству-
ет процессу лазерной генерации, когда интенсив-
ность поля вФКбыстро возрастает во времени.Это
приводит к нелинейному взаимодействию излуче-
ния с веществом, которое не описывается в нашей
линейной модели.

На рис. 3 представлены графики модулей спек-
тров отражения импульсов 𝑅r(Ω′) (12) при раз-
личных параметрах близости к ОТ σ , причем
все значения σ > 1, т. е. в ФК распространяют-
ся РТ-симметричные моды. Из сравнения графи-
ков видно, что при σ = 1.1 спектр отраженного
импульса значительно уже не только по сравне-
нию со спектром падающего импульса, кривая 4,
но и по отношению к спектрам при других близ-
ких значениях σ = 1.11; 1.09. Величина коэффици-
ента отражения при σ = 1.1 многократно увеличи-
вается. Это связано с появлением в ФК частот-
ной сингулярности, поскольку при данном значе-
нии σ и выбранном числе периодов 𝑁 = 109 ве-
личина фазы в (11), (12) близка к критическому
значению φ ≈ π/2.
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Рис. 3. Спектры отражения𝑅r(Ω′) при различных зна-
чениях параметра σ: 1 — 1.09, 2 — 1.10, 3 — 1.11; 4 —
спектр падающего импульса 𝐴in(Ω′), импульс пада-
ет справа (𝑘0z < 0). Параметры:𝑁 = 109, λ0 = 0.8 мкм,𝑑 = 0.5 мкм, ε0 = 1.3, ε′ = 0.0254, длительность гауссо-
ва импульса τ = 0.1 пс.

Сужение спектров отраженных и прошедших
импульсов в условиях частотной сингулярности
неминуемо должно приводить к соответствующе-
му затягиванию импульсов во времени. Парамет-
ры задачи выбраны таким образом, чтобы для ФК
выполнялось условие 𝐿 < 𝐿cr(σ), т. е. полюсыфунк-
ций 𝑅r,l(Ω) и 𝑇(Ω) лежали в нижней полуплоско-
сти. Поэтому для определения временной зависи-
мости интенсивностей отраженного и прошедшего
импульсов можно проводить интегрирование в (16)
только по действительной оси частот. На рис. 4
представлены графики интенсивностей отражен-
ных 𝐼𝑅l,r(𝑡) = ∣𝐸𝑅l,r(𝑡)∣2 и прошедших 𝐼T(𝑡) = ∣𝐸T(𝑡)∣2
импульсов при различных значениях σ. Из сравне-
ния графиков видно, что малое изменение σ на 1%
приводит кмногократному увеличениюдлительно-

сти и усилению импульсов. По сравнению с пада-
ющим импульсом длительность отраженного сиг-
нала возрастает более чем в 20 раз. Аналогичные
значительные изменения интенсивности и дли-
тельности импульсов наблюдаются и при вариации
толщины кристалла 𝐿 вблизи критического значе-
ния𝐿cr(σ)припостояннойвеличинеσ. Дальнейшее
увеличение𝐿 > 𝐿cr(σ)приводит кпоявлениюполю-
сов функций в верхней полуплоскости комплекс-
ных частот, происходит переход к режиму лазерной
генерации излучения в ФК.

Важно отметить, что, подобно случаю моно-
хроматического излучения, для рассматриваемых
коротких импульсов наблюдается типичный РТ-
симметричный эффект — однонаправленное брэг-
говское отражение. Так, из сравнения графиков
на рис. 4а и рис. 4б видно, что при смене знака уг-
ла падения импульса на структуру интенсивность
отраженного импульса радикально уменьшается:𝐼𝑅l
(𝑡) = 𝐼𝑅r

(𝑡)/440. При этом интенсивность прохо-
дящего импульса 𝐼T(𝑡) не изменяется.

Сравним полученные результаты со случаем
взаимодействия излучения с консервативным ФК
(без усиления и поглощения) конечной толщины.
Известно, что на краю фотонной запрещенной зо-
ны в таком ФК наблюдается резонанс пропуска-
ния [30] (или толщинные осцилляции), когда из-
лучение в узком частотном диапазоне не отража-
ется от ФК, 𝑅 = 0, а коэффициент прохождения𝑇 = 1. Этот эффект связан с интерференцией об-
ратных (прямых) блоховских волн вкристаллеина-
блюдается при разности фаз двух блоховских волн(𝑞(1)0z − 𝑞(2)0z ) 𝐿 = π. В РТ-симметричном ФК при та-
кой разности фаз РТ-симметричных мод возникает
спектральная сингулярность и значительный рост𝑅, 𝑇 → ∞.
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Рис. 4. Интенсивности отраженных 𝐼𝑅r,l(𝑡) (красные кривые 1 и 2), прошедших 𝐼T(𝑡) (синие кривые 3 и 4) и падающих
импульсов 𝐼in(𝑡) (кривые 5, правая шкала) для ФК с 𝑁 = 109 при значениях параметра близости к ОТ σ = 1.10 (кри-
вые 1 и 3) и σ = 1.09 (кривые 2 и 4): импульс падает справа (а) (𝑘0z < 0) и слева (б) (𝑘0z > 0). Остальные параметры как
в подписи к рис. 3.
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ЗАКЛЮЧЕНИЕ
Описанные выше сверхмонохроматизация

и усиление коротких импульсов в РТ-симмет-
ричных ФК за счет частотной сингулярности
при определенных значениях параметра близости
к особой точке σ сохраняются и в случае учета
дисперсии при широкополосной РТ-симметрии
среды. Для коротких импульсов в диспергирующей
среде имеет место также асимметрия отражения
импульсов при смене знака брэгговского угла
падения излучения на ФК. Поскольку величи-
на определяется реальной и мнимой частями
диэлектрической проницаемости, то обнару-
женная вблизи частотной сингулярности резкая
зависимость спектров отражения и прохождения
коротких импульсов от σ может быть использована
при разработке новых физических принципов
создания устройств для управления параметрами
коротких оптических импульсов, ограничителей
мощности, оптических сенсоров и т. п.

Исследование выполнено в рамках государ-
ственного задания МГУ имени М.В. Ломоносова.
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Optical pulses in a non-Hermitian medium near a singularity
V. A. Bushuev, B. I. Mantsyzov∗
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The spectral method was used to solve the problem of interaction of short optical pulses with RT-symmetric
photonic crystals under conditions of frequency singularity. It is shown that with a small deviation
from the exceptional point of spontaneous decay of PT-symmetric field modes, a frequency singularity
of the transmission and reflection coefÏcients of the structure arises. This leads to a significant narrowing
of the pulse spectra and an increase in their amplitude and duration with unidirectional Bragg reflection.
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ВВЕДЕНИЕ
Возможность оптического вычисления опера-

тораЛапласа представляет большойинтерес для за-
дач оптической обработки информации, в особен-
ности, задач аналоговых оптических вычислений
и обработки изображений [1–7]. Оператор Лапла-
са может быть применен для выявления изменений
яркости или контраста на изображениях, посколь-
ку он позволяет выделить контуры объектов, точ-
ки пересечения линийи другие важные детали, что,
в частности, может повысить точность классифи-
кации изображений [8].

Для оптической реализации оператора Лапла-
са требуются дифракционные структуры, облада-
ющие нулем второго порядка по пространствен-
ным частотам в спектре отражения или пропуска-
ния. Это условие легче всего выполнить в геомет-
рии нормального падения, поскольку в этом слу-
чае вследствие симметрии задачи дифракции ну-
ли отражения (пропускания) будут являться ну-
лями второго порядка [1]. В работах [1, 3, 9, 10]
для оптической реализации операторов дифферен-
цирования второго порядка успешно использова-
лись слоистые дифракционные структуры (в от-
ражении) [1, 9] и дифракционные решетки с дву-
мерной периодичностью (в пропускании) [3, 5, 10].

Отметим, что рассмотренные ранее слоистые ди-
электрические структуры (брэгговские решетки
с дефектом периода) для оптического вычисле-
ния оператора Лапласа [1] являются более про-
стыми с точки зрения их изготовления по срав-
нению с дифракционными решетками. В то же
время, они обладают горизонтальной плоскостью
симметрии, что создает затруднения при их прак-
тической реализации (поскольку, в частности, рас-
положение этих структур на подложке наруша-
ет симметрию и приводит к исчезновению нуля
отражения).

По мнению авторов настоящей работы, метал-
лодиэлектрические слоистые структуры, по срав-
нению с чисто диэлектрическими брэгговскими
структурами, обладают преимуществом при вы-
числении оператора Лапласа при нормальном па-
дении, посколькуне требуютналичия горизонталь-
ной плоскости симметрии.

В настоящей работе исследуется слоистая ме-
таллодиэлектрическая структура «металл-диэлек-
трик-металл-диэлектрик», расположенная на ме-
таллической подложке. Показано, что такая струк-
тура позволяет выполнить оптическое вычисле-
ние оператора Лапласа от профиля падающе-
го оптического пучка с высокой точностью. При
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этом приведенные результаты численного модели-
рования полностью согласуются с теоретическим
описанием.

ПРЕОБРАЗОВАНИЕ ОПТИЧЕСКОГО ПУЧКА
ПРИ ОТРАЖЕНИИ ОТ СТРУКТУРЫ

Рассмотрим сначала преобразование 𝑥-компо-
ненты электрического поля трехмерного линей-
но поляризованного оптического пучка, происхо-
дящее при его отражении от некоторой слоистой
структуры при нормальном падении. Следуя рабо-
те [1], можно показать, что 𝑥-компонента электри-
ческого поля отраженного пучка, представленная
в виде разложения по плоским волнам, будет иметь
вид

𝐸refl,x(𝑥, 𝑦) =∬𝐺x (𝑘x, 𝑘y)𝐻 (𝑘x, 𝑘y)×× exp (i𝑘x𝑥 + i𝑘y𝑦) d𝑘xd𝑘y, (1)

где 𝐺x (𝑘x, 𝑘y) — спектр 𝑥-компоненты электри-
ческого поля падающего пучка, представляющий
амплитуды плоских волн с тангенциальными
компонентами волновых векторов (простран-
ственными частотами) 𝑘x, 𝑘y, образующих падаю-
щий пучок, а 𝐻 (𝑘x, 𝑘y) — передаточная функция
(ПФ), которая описывает преобразование спектра
падающего пучка (изменение амплитуд плос-
ких волн, происходящее при отражении). Как
показано в работе [1], данная ПФ выражается
через коэффициенты отражения структуры для
ТЕ- и ТМ-поляризованных плоских волн и для
слоистой структуры с нулем отражения при нор-
мальном падении имеет следующее разложение
в ряд Тейлора до квадратичных членов в окрестно-
сти нуля: 𝐻 (𝑘x, 𝑘y) ≈ 𝑐x,2𝑘22 + 𝑐y,2𝑘2

y . (2)

Таким образом, в окрестности нуля ПФ содер-
жит только квадратичные члены. В этом случае,
как следует из формул (1), (2), структура реализу-
ет следующую операцию дифференцирования вто-
рого порядка поперечного профиля 𝑥-компоненты
электрического поля падающего пучка:

𝐸refl,x(𝑥, 𝑦)=−𝑐x,2 𝜕2𝐸inc,x(𝑥, 𝑦)𝜕𝑥2 −𝑐y,2 𝜕2𝐸inc,𝑥(𝑥, 𝑦)𝜕𝑦2 . (3)

Очевидно, что при равенстве коэффициентов𝑐x,2 и 𝑐y,2 в (2) профиль отраженного пучка (3) бу-
дет пропорционален оператору Лапласа от профи-
ля падающего пучка. Как было отмечено выше,
данный случай представляет наибольший прак-
тический интерес и поэтому будет рассмотрен
ниже.

ГЕОМЕТРИЯ ИССЛЕДУЕМОЙ
МЕТАЛЛОДИЭЛЕКТРИЧЕСКОЙ СЛОИСТОЙ

СТРУКТУРЫ И ПОЛУЧЕНИЕ НУЛЯ
ОТРАЖЕНИЯ

Для вычисления дифференциального операто-
ра второго порядка (3) при нормальном падении
предлагается использовать четырехслойную струк-
туру «металл-диэлектрик-металл-диэлектрик»
(МДМД), расположенную на подложке (оптически
толстом слое) из металла. Будем считать, что
над структурой находится среда с показателем
преломления 𝑛sup = 1 (рис. 1).

В работах [11, 12] был рассмотрен метод расче-
та трехслойных металлодиэлектрических структур,
состоящих из двух металлических слоев, разделен-
ных слоем диэлектрика, и имеющих нуль отраже-
ния. Используем аналогичный этим работам под-
ход для расчета параметров исследуемой четырех-
слойной МДМД-структуры, имеющей нуль отра-
жения.Формула для расчета толщины верхнего ме-
таллического слоя при заданных толщинах «ниж-
ней» пары слоев металла и диэлектрика для дости-
жения нулевого отражения [11] имеет вид:

∣ 𝑟𝑟2 − 𝑡2 ∣ = ∣ρ∣, (4)

где 𝑟, 𝑡 — комплексные коэффициенты отражения
и пропускания верхнего металлического слоя, рас-
сматриваемые как функции его толщины ℎ1; ρ —
комплексный коэффициент отражения «нижней»
парыслоев, состоящейизметаллического слоя тол-
щиной ℎ3 и диэлектрического слоя толщиной ℎ4
(рис. 1). Отметим, что в формуле (4) коэффициен-
ты 𝑟и 𝑡предполагаются рассчитаннымипрификси-
рованных длине волны λ и поляризации падающей
волны. После нахождения толщины первого (верх-
него) металлического слоя ℎ1 толщина диэлектри-
ческого слоя ℎ2 «верхней» пары, обеспечивающая
нулевое отражение, может быть найдена из форму-
лы [11]

ℎ2 = 12𝑘0𝑛 [arg 𝑟𝑟2 − 𝑡2 − arg ρ + 2π𝑗] , (5)

Рис. 1. Геометрия и параметры исследуемой металло-
диэлектрической слоистой структуры.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



ОПТИЧЕСКОЕ ВЫЧИСЛЕНИЕ ОПЕРАТОРА ЛАПЛАСА 15

где 𝑘0 —волновое число, 𝑛—показатель преломле-
ния диэлектрического слоя, 𝑗— целое число, обес-
печивающее положительное значение толщины ℎ2.

Стоит отметить, что структура, параметры ко-
торой рассчитаны по формулам (4) и (5) в случае
нормального падения, будет обладать нулем отра-
жения второго порядка по пространственным ча-
стотам в силу симметрии задачи дифракции.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

Рассмотрим теперь возможность использо-
вания исследуемой четырехслойной МДМД-
структуры для вычисления оператора Лапласа
от профиля 𝑥-компоненты электрического поля
падающего пучка. Согласно (2), (3), для этого
необходимо выполнение условия 𝑐x,2 = 𝑐y,2. Воз-
можность достижимости указанного условия
исследовалась для МДМД-структур в конфигу-
рации «Cu–TiO2–Cu–TiO2» (материалы слоев –
медь и диоксид титана) на подложке из хрома
(Cr) при фиксированной длине волны λ = 633 нм
и ТМ-поляризации. Параметрами оптимизации
были толщины нижней «металлодиэлектрической
пары» слоевℎ3 иℎ4 (рис. 1), а толщиныверхних двух
слоев ℎ1 и ℎ2 рассчитывались по формулам (4) и (5)
из условия получения нуля отражения. Для вы-
бранной длины волны использовались следующие
значения показателей преломления для указанных
выше материалов [13, 14]: 𝑛Cu = 0.23 + 3.43𝑖 (Cu),𝑛TiO2

= 2.58 (TiO2), 𝑛Cr = 3.14 + 3.31𝑖 (Cr).
В результате расчетов была найдена структура

со следующими толщинами слоев: ℎ1 = 7.2 нм,ℎ2 = 51 нм, ℎ3 = 34.0 нм, ℎ4 = 79.1 нм. Для дан-
ной структуры условие 𝑐x,2 = 𝑐y,2 выполняется
с высокой точностью: 𝑐x,2 = 0.033 ⋅ 𝑒−2.92𝑖 мкм2,𝑐y,2 = 0.034 ⋅ 𝑒−2.92𝑖 мкм2.

На рис. 2а показан модуль ПФ исследуемой
структуры, рассчитанный численно в рамках стро-
гого решения уравнений Максвелла методом [15].
Модуль ПФ на рис. 2а оказался визуально неотли-

Рис. 2. Модуль строго рассчитанной ПФ металло-
диэлектрической слоистой структуры, выполняющей
вычисление оператора Лапласа (а) и нормирован-
ная на максимальное значение абсолютная величина𝑥-компоненты электрического поля численно рассчи-
танного отраженного пучка (б).

чимым от модуля «модельной» передаточнойфунк-
ции (2) при значениях коэффициентов, приве-
денных выше, поэтому последний не показан для
краткости. Отклонение модулей модельной функ-
ции и численно рассчитанной ПФ является ма-
лым: СКО, нормированное на максимум моду-
ля ПФ составляет всего 0.73%, а максимальное от-
клонение — 1.94%. Отметим, что строго рассчи-
танная ПФ имеет требуемый квадратичный вид
при

√𝑘2
x + 𝑘2

y/𝑘0 ⩽ 0.135 , что соответствует про-
странственному разрешению ≈ 3.7λ. Достигнутое
пространственное разрешение практически совпа-
дает с пространственным разрешением, получен-
ным в работе [10], где для вычисления оператора
Лапласа использовалась существенно более слож-
ная структура в виде метаповерхности с существен-
но субволновыми размерами деталей элементар-
ной ячейки.

Далее, рассмотрим преобразование 𝑥-компо-
ненты электрического поля, происходящее при
отражении от исследуемой структуры падающего
гауссова пучка:

𝐸inc,𝑥(𝑥, 𝑦) = exp [−𝑥2 + 𝑦2σ2 ] . (6)

Для рассматриваемого случая «модельная»
функция, описывающая профиль отраженного
пучка и рассчитанная по формуле (3), будет иметь
вид:

𝐸refl,𝑥(𝑥, 𝑦) = −4𝑐x,2σ4 (𝑥2+𝑦2−σ2) exp [−𝑥2 + 𝑦2σ2 ] . (7)

На рис. 2б показан модуль строго рассчитанно-
го профиля отраженного пучка при σ = 6 мкм.
Как и в случае передаточной функции, модель-
ный (7) и строго рассчитанный профили отражен-
ного пучка хорошо совпадают, при этом нормиро-
ванная среднеквадратическая ошибка составляет
всего 0.45%, а максимальное отклонение — 1.07%.

Как было отмечено во введении, оператор
Лапласа широко используется для выделения
контуров (перепадов яркости) на изображении.
В качестве примера, иллюстрирующего эту опе-
рацию, рассмотрим падающий пучок с профилем𝑥-компоненты электрического поля в виде т. н.
супергауссовой функции

𝐸inc,𝑥(𝑥, 𝑦) = exp [−𝑥6 + 𝑦6σ6 ] . (8)

На рис. 3а показан результат преобразования
МДМД-структурой падающего пучка с профи-
лем (8) при σ = 3 мкм, а на рис. 3б — нормиро-
ванные сечения профилей падающего и отражен-
ного пучков при 𝑦 = 0. Рис. 3 показывает появление
характерных для оператора Лапласа двойных кон-
туров на границах входного пучка с квазипрямо-
угольной формой и шириной по уровню спада 0.5
в 6 мкм.
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Рис. 3. Нормированный на максимальное значение модуль профиля 𝑥-компоненты отраженного электрического по-
ля, формируемый при падающем пучке с профилем в виде супергауссовой функции (а); Сечения нормированных
на максимальные значения профилей отраженного пучка 𝐸refl,x(𝑥, 𝑦) (черная линия) и падающего пучка 𝐸inc,x(𝑥, 𝑦)
вдоль оси 𝑥 при 𝑦 = 0 (красная пунктирная линия) (б). Синей стрелкой показана ширина падающего пучка по уров-
ню 0.5.

ЗАКЛЮЧЕНИЕ
Таким образом, нами исследована оптическая

реализация операции пространственного диффе-
ренцирования второго порядка при нормальном
падении оптического пучка с помощью слоистой
металлодиэлектрической структуры. Найдены па-
раметры четырехслойной МДМД-структуры, при
которых выполняется условие, требуемое для оп-
тического вычисления оператора Лапласа от про-
филя падающего пучка. Результаты численного мо-
делирования подтверждают теоретические резуль-
таты и показывают возможность оптического вы-
числения оператора Лапласа с высоким качеством
(при среднеквадратической ошибкеменее 1%).По-
лученные результаты могут найти применение при
создании систем аналоговых оптических вычисле-
ний и оптической обработки информации.

Работа выполнена при поддержке Российского
научного фонда (проект № 24-12-00028).
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Optical computation of the Laplace operator at normal incidence using a multilayer
metal-dielectric structure
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We theoretically and numerically investigate the optical implementation of the second-order spatial
differentiation operation using a layered metal-dielectric structure at normal light beam incidence.
Numerical simulation results confirm the theoretical results and show the possibility of ‘optical calculation
of the Laplace operator with high quality.
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ВВЕДЕНИЕ
В настоящее время активно изучаются элек-

тронные свойства трехмерных (3D) структур на ос-
нове дираковских или графеноподобных кристал-
лов [1, 2], имеющих широкий диапазон примене-
ния [2–5]. С одной стороны, для носителей заря-
да 3D дираковских материалов характерно наличие
трех степеней свободы движения, а с другой — ре-
лятивисткой формы закона дисперсии [6, 7]. Су-
ществуют различные способы изготовления таких
структур [8, 9]. В [10] предложена 3D структура,
представляющая собой сверхрешетку (СР), вдоль
оси роста которой располагаются графеновые ли-
сты, разделенные полупроводниковыми проклад-
ками. В [11] рассмотрена гетероструктура, состо-
ящая из периодически чередующихся слоев топо-
логического изолятора и диэлектрика, играющего
роль квантового барьера. Внимание к СР на осно-
ве дираковских кристаллов обусловлено, в частно-
сти, возможностью использования последних в ка-
честве рабочей среды для генерации уединенных
электромагнитных (ЭМ) волн нового типа, пред-
сказанных в [12] и привлекающих в последнее вре-
мя внимание исследователей, в том числе, за рубе-
жом [13–15].

За основу методов диагностики полупроводни-
ковых структур, а также детектирования распро-
страняющихся в них ЭМ волн может быть взят так

называемый радиоэлектрический эффект, заклю-
чающийся в увлечении свободных носителей за-
ряда ЭМ излучением в направлении своего рас-
пространения [16]. Данный эффект применитель-
но к стандартным 3D полупроводниковым СР тео-
ретически изучен в [16, 17] для различных поля-
ризаций волны. Увлечение электронов проводи-
мости уединенной волной в графеновой СР рас-
сматривалось в [18]. Однако наблюдение данно-
го явления в последнем случае требует достаточно
точной ориентации плоскости поляризации волны
вдоль графеновой плоскости, что является слож-
ной экспериментальной задачей. Кроме того, со-
здание свободного графенового листа затруднено
неизбежным возникновением дефектов и дефор-
маций поверхности [19], с целью устранения кото-
рых используют специальные подложки. Нетрудно
видеть, что 3Dматериалы лишены такой необходи-
мости.

В настоящей работе построена кинетическая
теория радиоэлектрического эффекта в СР на ос-
нове 3D дираковского кристалла, а также влияния
данного эффекта на продольную вольтамперную
характеристику (ВАХ) рассматриваемой структу-
ры. Отметим, что ВАХ СР в режиме поглоще-
ния ЭМ излучения изучалась в [20], где возни-
кающие участки ВАХ с абсолютной отрицатель-
ной проводимостью (АОП) интерпретировались
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как результат резонансного поглощения электро-
нами квантов ЭМ поля и оптических фононов,
приводящего к соответствующим квантовым пе-
реходам по штарковской лестнице. Ниже показа-
на возможность АОП в иной ситуации, а имен-
но в режиме увлечения носителей заряда ЭМ вол-
ной, поляризованной по кругу. Причем в отличие
от [20] здесь не потребуется условия для штарков-
ского квантования, и участки АОП удастся описать
в рамках квазиклассическогоподхода, основанного
на приближении времени релаксации.

ЭЛЕКТРОННЫЙ СПЕКТР СР
Рассматриваемая далее СР представляет со-

бой многослойную гетероструктуру, состоящую
из чередующихся слоев 3D дираковского кристал-
ла и обычного изолятора, выступающего в каче-
стве прокладочного материала (рис. 1). На дан-
ный момент такая структура вполне может быть
изготовлена с использованием доступных техно-
логий [21, 22]. Гамильтониан, описывающий дан-
ную структуру, можно записать следующим обра-
зом: 𝐻̂SL = υFτx ⊗ σ⃗ ⋅ 𝑝 + τz𝑉(𝑧). Здесь матрицы Па-
ули σ⃗ и τ⃗ отвечают соответственно за спиновые
и псевдоспиновые степени свободы [7], ⊗ — опе-
рация кронекеровского произведения, νF — ско-
рость на поверхностиФерми, 𝑝—трехмерный опе-
ратор импульса, 𝑉(𝑧) = 𝑉(𝑧 + 𝑑) — дополнитель-
ный скалярный потенциал, обусловленный чере-
дованием квантовых ям и барьеров вдоль оси 𝑂𝑧,𝑑—период СР. В низкоэнергетическом одномини-
зонном приближении закон дисперсии для элек-
тронов в минизоне проводимости можно записать
в следующем виде (ℏ = 1):ε(𝑝) = ε⟂(𝑝⟂) + Δ(1 − cos𝑝z𝑑), (1)
где 𝑝⟂ — поперечная по отношению к оси СР ком-
понента импульса электрона, ε⟂(𝑝⟂) =√Δ2

g + υ2
F𝑝2⟂,Δg — полуширина энергетической щели между зо-

ной проводимости и валентной зоной, Δ — струк-
турный параметр, выражающийся через интегралы
перекрытия волновых функций из соседних кван-
товых ям и имеющий смысл полуширины мини-

Рис. 1. Схема СР и конфигурация ЭМ полей: 1 — слой
3D дираковского кристалла, 2 — прокладочный слой
изолятора, 3 — ЭМ волна, поляризованная по кругу.

зоны проводимости. Считается, что выполняется
неравенство: Δ ≪ Δg.

ВЛИЯНИЕ ЭФФЕКТА УВЛЕЧЕНИЯ
НА ПРОДОЛЬНУЮ ВАХ

Поместим рассмотренную выше СР в поле
ЭМ волны, поляризованной по кругу и распро-
страняющейся против оси 𝑂𝑧 так, как показа-
но на рис. 1. Проекции векторов напряженности
ЭМ поля волны на координатные оси имеют вид:𝐸x = 𝐸0 cos(ω𝑡 + 𝑞𝑧), 𝐸y = 𝐸0 sin(ω𝑡 + 𝑞𝑧),𝐻x = 𝐸y, 𝐻y = −𝐸x, (2)

где 𝐸0, 𝑞 и ω — амплитуда, волновое число и ча-
стота волны соответственно. Считаем, что структу-
ра обладает электронной проводимостью. Соглас-
но выбранной ориентации векторов напряженно-
стей, поле волны передает импульс электронам,
увлекая их против оси 𝑂𝑧. Следовательно плот-
ность тока увлечения в отсутствие постоянного по-
ля направлена вдоль оси 𝑂𝑧. Вычислим продоль-
ную по отношению к оси СР компоненту плот-
ность тока 𝑗z при условии одновременного дей-
ствия как поля волны, так и постоянного электри-
ческого поля с напряженностью 𝐸dc, направленной
вдоль оси 𝑂𝑧. Для этого воспользуемся следующей
формулой: 𝑗z = −𝑒 ∑⃗𝑝 υz(𝑝)𝑓(𝑝, 𝑡), (3)

где υ⃗ = 𝜕𝑝ε, 𝑓(𝑝, 𝑡) — неравновесная функция рас-
пределения, учитывающая действие силовых полей
и являющаяся решением кинетического уравнения
Больцмана:𝜕𝑓𝜕𝑡 − 𝑒 (𝐸dc + 𝐸 + 1𝑐 [υ⃗, 𝐻⃗]) ⋅ 𝜕𝑓𝜕𝑝 =

= −𝑓(𝑝, 𝑡) − 𝑓0(𝑝)τ . (4)

Здесь 𝑓0(𝑝) — равновесная функция распределе-
ния, τ— время релаксации. Как и в [16, 17] предпо-
лагается, что длина ЭМ волны значительно превы-
шает длину свободного пробега носителей заряда.
Поэтому в (4) слагаемое с пространственной про-
изводной 𝜕𝑟𝑓 опущено. Последнее позволяет так-
жепренебречь координатной зависимостьюнапря-
женностей поля волны (2). Введем обозначение:γ = 𝑑Δ𝑔𝑐−1. Параметр γ имеет порядок γ ≈ υ𝑐−1, гдеυ — характерная скорость носителей заряда, при-
чем υ ≪ 𝑐. В нулевом приближении по малому па-
раметру υ𝑐−1 можно пренебречь действием магнит-
ного поля так, что решение (4) имеет вид:

𝑓(0)(𝑝, 𝑡) = 1τ
∞
∫
−∞ d𝑡1𝑒− 𝑡−𝑡1τ 𝑓0 (𝑝 + 𝑒𝑐(𝐴1 − 𝐴)) , (5)

где 𝐴(𝑡) — векторный потенциал ЭМ поля, 𝐴1 == 𝐴(𝑡1). Подставим (5) в (3) и учтем четность
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равновесной функции распределения. В резуль-
тате приходим к классическому выражению,
описывающему продольную ВАХ СР [23]: 𝑗(0)z == 𝑗0ΩBτ (1 +Ω2

Bτ2)−1. Здесь обозначено: 𝑗0 = 𝑛0𝑒𝑑Δ,ΩB = 𝑒𝐸dc
z 𝑑 — блоховская частота, 𝑛0 — кон-

центрация свободных носителей заряда в зоне
проводимости. Поправка для функции распреде-
ления в следующем приближении имеет вид:

𝑓(1)(𝑝, 𝑡)= 𝑒𝑐
𝑡
∫
−∞d𝑡2𝑒− 𝑡−𝑡1τ [υ⃗ (𝑝+ 𝑒𝑐(𝐴1−𝐴)) , 𝐻⃗(𝑡1)]×
× 𝜕𝜕𝑝𝑓0 (𝑝+ 𝑒𝑐(𝐴1−𝐴)) . (6)

После подстановки (6) в (3) и некоторых преобра-
зований приходим к следующему выражению для
поправки к плотности тока:

𝑗(1)z = 𝑒𝑐
∞
∫0

𝑒−ξ cos(ΩBτξ)dξ ⋅ ∑⃗𝑝 (−𝜕𝑓0𝜕ε )×× (ε⟂ (𝑝⟂+ 𝑒𝑐𝐴(𝑡−τξ)− 𝑒𝑐𝐴(𝑡))−ε⟂(𝑝⟂)) υ2
z(𝑝z). (7)

Далее вычисления проведем для случая предельно
низких температур таких, что можно сделать заме-
ну: (−𝜕ε𝑓0) → δ(ε − εF), где δ(ξ) — дельта-функция,εF — энергия, отвечающая уровню Ферми. Счи-
таем, что последний располагается внутри зоны
проводимости вблизи его дна так, что выполня-
ется неравенство: 0 < εF − Δg ≪ Δg. Если принять
следующее характерное для дираковских и гра-
феноподобных материалов численное значение
энергетической щели Δg ≈ 50 мэВ, то концентра-
ции свободных электронов в зоне проводимости𝑛0 ≈ 1014 см−3 соответствует энергия Ферми, рав-
ная εF ≈ 51 мэВ, что вполне удовлетворяет ука-
занному выше неравенству. Согласно последнему
в электронном переносе при низких температу-
рах будут участвовать только те электроны, кото-
рые находятся вблизи дна минизоны, т. е. электро-
ны с малыми значениями импульсов: 𝑝⟂υF ≪ Δg,𝑝⟂ω ≪ 𝑒𝐸0. В результате вычислений в (7), выпол-
ненных с учетом перечисленных условий, прихо-
дим к следующему результату:𝑗(1)z𝑗0 =

γΔεF − Δg

⎡⎢⎢⎢⎢⎣
𝑆01 +Ω2

Bτ2 +
∞∑𝑛=1 𝑆n ×

× ( 11 + (ΩB − 𝑛ω)2τ2 + 11 + (ΩB + 𝑛ω)2τ2)] ,
(8)

где обозначен

𝑆n(𝑎0) = 2π
π/2
∫0
√1 + 𝑎20 sin2 ξ cos(2𝑛ξ)dξ,

𝑆0(𝑎0) = 2π𝐸 (−𝑎20) − 1, (9)

E(ξ) — полный эллиптический интеграл 2-го ро-
да, 𝑎0 = 2ω−1Δ−1

g υF𝑒𝐸0 — безразмерная амплитуда

напряженности электрического поля волны. За-
висимость результирующей плотности тока, рав-
ной 𝑗z = 𝑗(0)z + 𝑗(1)z , от напряженности 𝐸dc

z показа-
на на рис. 2 сплошной линией. Здесь же пунктир-
ной линией показана продольная ВАХ СР в от-
сутствие ЭМ волны. Видно, что области отрица-
тельной дифференциальной проводимости в обо-
их случаях практически совпадают за исключени-
ем резонансных ситуаций, когда блоховская часто-
та кратна частоте ЭМ волны: ΩB = 𝑛ω. В послед-
нем случае плотность тока резко уходит в область
отрицательных значений, что соответствует АОП.
Аналогичная ситуация имела место и для СР с па-
раболическим поперечным спектром [17], где так-
же вычислялся ток увлечения в линейном прибли-
жении по параметру υ𝑐−1 ∼ γ. Однако в [17] ре-
зонанс, соответствующий АОП, возникал только
в одном случае: ΩB = ω. Появление других обла-
стей АОП являлось в [17] эффектом более высо-
кого порядка по γ и требовало достаточно боль-
ших интенсивностей волны, при которых ВАХ су-
щественно искажалась по сравнению с ВАХ в от-
сутствие эффекта увлечения. Согласно (8), в слу-
чае СР на основе дираковских кристаллов уже
в первом приближении по γ имеет место се-
рия резонансов, что является следствием непара-
боличности поперечного спектра рассмотренной
здесь СР.

Вычислим плотность тока в 𝑘-м резонансе. Для
этого положим в (8)ΩB = 𝑘ω и оставим в силу нера-
венстваωτ ≫ 1 только слагаемое с𝑛 = 𝑘. В результа-
те имеем: 𝑗resz ∼ −γ𝑗0 ∣𝑆𝑘(𝑎0)∣. Графики зависимости
плотности тока от амплитуды волны в первых двух
резонансах показаны на рис. 3. Нетрудно показать,
что в случае малых амплитуд волны (𝑎0 ≪ 1) плот-
ность тока в 𝑘-м резонансе пропорциональна 𝑎2𝑘0 .
В случае же больших амплитуд (𝑎0 ≫ 1) резонанс-
ное значение линейно по амплитуде. Последний
результат отличает рассматриваемый здесь эффект
от аналогичного в [17], где в линейном по γ прибли-
жении резонансное значение квадратично по ам-

Рис. 2. Продольная ВАХ СР, модифицированная
за счет радиоэлектрического эффекта (сплошная ли-
ния, ωτ = 30, 𝑎0 = 20) и ВАХ СР в отсутствие ЭМ вол-
ны (пунктирная линия).
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Рис. 3. Зависимость плотности радиоэлектрического
тока от безразмерной амплитуды волны 𝑎0: ωτ = 30,
1 —ΩВ = ω, 2 —ΩВ = 2ω, 3 — 𝐸dc

= 0.
плитуде волны. Линейная по амплитуде плотность
тока при 𝑎0 ≫ 1 является прямым следствием реля-
тивистского характера поперечного спектра носи-
телей заряда.

ЭФФЕКТ УВЛЕЧЕНИЯ В ОТСУТСТВИЕ
ПОСТОЯННОГО ПОЛЯ

В отсутствие постоянного поля электрический
ток вдоль оси СР существует только за счет увле-
чения электронов ЭМ волной. Поскольку импульс
ЭМ волны, передаваемый электронам проводимо-
сти, направлен против оси 𝑂𝑧, соответствующая
плотность тока имеет положительнуюпроекцию 𝑗z.
Подставляя в (8) 𝐸dc = 0, и учитывая неравенствоωτ ≫ 1, запишем:

𝑗z = γ𝑗0Δ𝑆0(𝑎0)εF − Δg
. (10)

График зависимости плотности тока увлечения
от безразмерной амплитуды волны 𝑎0, построен-
ный по формуле (10), показан на рис. 3 пунктир-
ной линией. Как и ожидалось, график для плот-
ности тока при 𝐸dc = 0 лежит в положительной об-
ласти. Из (10) следует, что для малых амплитуд
плотность тока увлеченияквадратичнапо амплиту-
де: 𝑗z ∝ γ𝑗0𝑎20, а для больших амплитуд — линейна:𝑗z ∝ γ𝑗0𝑎0. Заметим, что амплитудная зависимость
радиэлектрического тока аналогична соответству-
ющей зависимости для поглощаемой графенопо-
добным материалом мощности ЭМизлучения [24].
Эта особенность может служить дополнительным
указанием на правильность результатов вычисле-
ний. Действительно, за счет поглощения носите-
лями заряда энергии излучения импульс ЭМ поля
волны передается электронам, что и обеспечива-
ет увлечение последних вдоль направления распро-
странения излучения.

ЗАКЛЮЧЕНИЕ
В результате исследования эффекта увлечения

в СР на основе дираковских кристаллов получены
следующие результаты. Во-первых, эффект увле-

чения электронов ЭМ волной модифицирует про-
дольную ВАХ СР так, что появляется серия резо-
нансов: плотность тока испытывает резкое изме-
нение всякий раз, когда блоховская частота кратна
частоте волны (ΩB = 𝑛ω). Следует обратить внима-
ние на следующую особенность в поведении плот-
ности тока увлечения при включении постоянного
электрического поля с резонансным значением на-
пряженности. Как показано выше, несмотря на по-
ложительное значение напряженности постоянно-
го поля (𝐸dc

z > 0), проекция плотности тока 𝑗z в ре-
зонансе, согласно графикам на рис. 3, не увеличи-
вается, а, напротив, уменьшается вплоть до смены
своего знака. Причем данный эффект тем замет-
нее, чем выше интенсивность ЭМ излучения.

Во-вторых, каждый из таких резонансов явля-
ется эффектом первого порядка по малому пара-
метру γ в отличие от [17], где для СР на осно-
ве материалов с квадратичным законом диспер-
сии их носителей в соответствующем приближе-
нии появлялся только один резонанс. В-третьих,
для больших амплитуд волны плотность тока увле-
чения растет линейно с амплитудой, что являет-
ся прямым следствием релятивистского характера
поперечного спектра рассмотренной здесь СР. По-
следнее может быть использовано в качестве осно-
вы методов лабораторной диагностики поперечно-
го спектра носителей заряда СР на базе дираков-
ских кристаллов.

Работа поддержана ФГБОУ ВО ВолгГТУ в рам-
ках текущего финансирования и внутривузовско-
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Radioelectric effect in a superlattice based on a 3D Dirac crystal
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A kinetic theory for the radioelectric effect in a superlattice based on a 3D Dirac crystal in a constant
electric field has been constructed. The current density has been shown to get the resonance in the case
where the Bloch frequency is a multiple of the frequency of the electromagnetic wave. The latter can lead
to a change in the direction of the current density. The amplitude dependence of the radioelectric current
density has been studied.
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ВВЕДЕНИЕ
Квантовая теория плазменных волн для полу-

проводниковых сверхрешеток (СР) построена в ра-
ботах [1, 2]. Важным направлением исследования
коллективных явлений в конденсированных сре-
дах является изучение процессов распространения
плазменных волн в низкоразмерных электронных
системах и, в частности, в двумерных (2D) полу-
проводниковых СР. Не ослабевает внимание ис-
следователей к изучению нелинейных электромаг-
нитных волн, распространяющихся в полупровод-
никовых структурах с неквадратичным законом
дисперсии. В работах [3–5] изучены нелинейные
плазменные колебания электронного газа в полу-
проводниковой квантовой СР. В режиме редких
столкновений (ν ≪ ωp, частота столкновений элек-
трона с нерегулярностямикристаллической решет-
ки ν много меньше обобщенной плазменной ча-
стоты электрона в минизоне ωp) распространение
электромагнитной волны вдоль слоев СР, когда
ее поле направленопо осиСР, описывается уравне-
нием Sine-Gordon (SGE) [6]. Одними из наиболее
общих периодических решений SGE являются ре-
шения, выраженные через эллиптическиефункции
Якоби и получившие название кноидальных волн.
Когда характерное расстояние, на котором про-
исходит заметное изменение поля волны, значи-

тельно больше длины свободного пробега электро-
нов, можно считать поле волны однородным. На-
пряженность электрического поля волны при этом
имеет вид [7–9]

𝐸x(𝑡) = 𝐸0cn (2𝐾(κ)ω0π 𝑡, 𝑘) , (1)

где cn(𝑥) — эллиптическая функция Якоби, κ =
= 𝑒𝐸0𝑑2ωp

⋅ √β2 − 1β — модуль нелинейности (здесь

и далее ℏ = 1), ω0 = π2𝐾(κ) , β = 𝑢𝑉 ⋅ (β > 1), 𝑉 —

скорость волны в отсутствие электронов, 𝑢—фазо-
вая скорость волны,𝐾(κ)—полныйэллиптический
интеграл первого рода, 𝐸0 — амплитуда напряжен-
ности поля нелинейной волны. В [7–9] рассмотре-
ны особенности влияния поля нелинейной кнои-
дальной волнына различныефизическиепроцессы
в СР. В последнее время появилось значительное
количество работ, посвященных теории кноидаль-
ных волн [10–13]. Это подчеркивает актуальность
настоящего исследования.

В физике полупроводников вызывают повы-
шенный интерес процессы распространения плаз-
менных волн в 2D полупроводниковых СР. Воз-
можность возникновенияплазменных волниплот-
ность плазменных возбуждений в 2D электронном
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газеСРизучена в работах [14, 15]. В [16, 17] исследо-
вано влияние сильного постоянного и переменно-
го электрического поля на плазменные колебания
в 2D электронном газе СР. Возможность распро-
странения в 2D СР уединенных электромагнитных
волн показана в [18]. Работы [19–23] посвящены
исследованию новых материалов на основе графе-
на — графеновых СР и особенностям закона дис-
персии плазменных волн в таких структурах. В слу-
чае слабой неаддитивности энергетического спек-
тра графеновых СР выражения для нахождения за-
кона дисперсии плазменных волн ω(𝑘), получен-
ные для квантовых полупроводниковых СР, мож-
но использовать для оценки ω(𝑘) как в отсутствии
внешних воздействий, так и в сильном статическом
и переменном электрическом полях.

В данной работе исследуется влияние нелиней-
ной электромагнитной волны на закон дисперсии
плазменных волн в двумерной полупроводниковой
квантовой сверхрешетке.

ОСНОВНАЯ ЧАСТЬ
Энергетический спектр носителей заряда в 2D

СР можно выбрать в модельном виде [14, 15]ε(𝑝) = Δ − Δ2 [cos(𝑝x𝑑) + cos(𝑝y𝑑)] , (2)

гдеΔ—полуширина минизоны проводимости; 𝑑—
период СР; 𝑝 — квазиимпульс электрона. Огра-
ничимся одноминизонным приближением, прене-
брегая межминизонными переходами.

На рис. 1 представлена геометрия задачи. Пусть
в направлении оси ОХ СР приложено нелинейное
электрическое поле (1), которое будем описывать

векторным потенциалом 𝐴(𝑡) = {−𝑐Φ(𝑡)𝑒𝑑 , 0}. Удоб-
нее перейти от напряженности нелинейной волны
к безразмерному потенциалу Φ(𝑡)

Φ(𝑡) = 2 arcsin{κsn (2𝐾(κ)ω0π 𝑡, κ)} , (3)

где 0 < κ ⩽ 1, sn(𝑥)—эллиптическая функция Яко-
би.

В приближении самосогласованного поля га-
мильтониан взаимодействующих электронов с уче-
том процессов переброса имеет вид [16, 17]

𝐻 = ∑⃗𝑝 ε (𝑝 + 𝑒𝑐𝐴(𝑡)) 𝑎+𝑝𝑎𝑝 + 𝑒 1√𝑁x𝑁y

×
×∑⃗𝑝,𝑘 ∑𝑛,𝑚𝑈 (𝑘, 𝑡) ⋅ 𝑀(𝑘x)𝑀(𝑘y)𝑎+𝑝−𝑘+𝑔𝑎𝑝,

(4)

где 𝑎+𝑝, 𝑎𝑝 — операторы рождения и уничтожения
электрона с импульсом 𝑝; 𝑁x и 𝑁y — число потен-
циальных ям, образующих СР вдоль осей 𝑥 и 𝑦 со-

ответственно, 𝑔 = (𝑛2π𝑑 ,𝑚2π𝑑 ),
𝑀(𝑘x) = 𝑁x𝑑

∫0
φ∗(𝑥)φ(𝑥) exp(−𝑖𝑘x𝑥) 𝑑𝑥,

𝑀(𝑘y) = 𝑁y𝑑
∫0

φ∗(𝑦)φ(𝑦) exp(−𝑖𝑘y𝑦) 𝑑𝑦,
(5)

𝑈(𝑘, 𝑡) — самосогласованный потенциал, опреде-
ляемый следующим соотношением

𝑈(𝑘, 𝑡) = 2π𝑒χk ∑⃗𝑝 ∑𝑛,𝑚⟨𝑎+𝑝+𝑘+𝑔𝑎𝑝⟩𝑀(−𝑘x)𝑀(−𝑘y), (6)

χ— диэлектрическая проницаемость решетки.
Достаточно хорошим приближением, которым

пользуются в теоретической физике низкоразмер-
ных систем, является приближение случайных фаз
[14–17, 19, 21–23]. Уравнение движения для сред-
них ⟨𝑎+𝑝+𝑘+𝑔𝑎𝑝⟩ в этом случае имеет вид [16, 17]

{ 𝜕𝜕𝑡 + 𝑖 [ε (𝑝 + 𝑘 + 𝑒𝑐𝐴(𝑡)) − ε (𝑝 + 𝑒𝑐𝐴(𝑡))]}××⟨𝑎+𝑝+𝑘+𝑔𝑎𝑝⟩ = −𝑖𝑒𝑈(𝑘 + 𝑔, 𝑡)××𝑀 ([𝑘 + 𝑔]x)𝑀 ([𝑘 + 𝑔]y) (𝑛𝑝+𝑘+𝑔 − 𝑛𝑝),
(7)

d

d
X

Y

Ось СР

Ось СР

0
E0

Рис. 1. Геометрия задачи.
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где 𝑛𝑝 = ⟨𝑎+𝑝𝑎𝑝⟩ — числа заполнения электронных
уровней в 2D — электронном газе.

Решение уравнения (7) имеет вид

⟨𝑎+𝑝+𝑘+𝑔𝑎𝑝⟩ = −𝑖𝑒 𝑡
∫
−∞𝑑𝑡′𝑈(𝑘 + 𝑔, 𝑡)××𝑀 ([𝑘 + 𝑔]x)𝑀 ([𝑘 + 𝑔]y) (𝑛𝑝+𝑘+𝑔 − 𝑛𝑝)×

× exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑖

𝑡′
∫𝑡 [ε (𝑝+𝑘+ 𝑒𝑐𝐴(𝑡″))−ε (𝑝+ 𝑒𝑐𝐴(𝑡″))]𝑑𝑡″

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(8)

Для вычисления второго интеграла, входяще-
го в выражение (8), воспользуемся разложением
sinΦ(𝑡) и cosΦ(𝑡) в тригонометрический рядФурье
для значения модуля нелинейности κ ∈ (0, 1):

cosΦ(𝑡) = ∞∑𝑛=0 𝑎n cos 2𝑛ω0𝑡,
sinΦ(𝑡) = ∞∑𝑛=0 𝑏n sin (2𝑛 + 1)ω0𝑡, (9)

𝑎0 = 2𝐸(κ)𝐾(κ) − 1, 𝑎n = 4𝑛 π2𝐾2(κ) 𝑞nκ1 − 𝑞2nκ ,
𝑏n = 2(2𝑛 + 1) π2𝐾2(κ) 𝑞n+ 1

2κ1 + 𝑞2n+1κ , (10)

𝑞κ = exp (−π𝐾′(κ)𝐾(κ) ) , 𝐾′(κ) = 𝐾 (√1 − κ2) .
Подставляя решение уравнения (7) в (6), по-

лучаем уравнение, определяющее закон дисперсии
плазменных волн ω(𝑘). Оценки показывают, что
при ω0 > Δ и κ < 0.5 с достаточной степенью точ-
ности в дисперсионном уравненииможно оставить
только первые члены сумм (9). Тогда дисперсион-
ное уравнение примет вид2π𝑒2χ ∏(𝑘, ω)𝑆(𝑘) = 1, (11)

𝑆(𝑘) = ∑𝑛,𝑚 ∣𝑀 ([𝑘 + 𝑔]x) ∣
2 ∣𝑀 ([𝑘 + 𝑔]y)∣2√(𝑘x + 𝑔x)2 + (𝑘y + 𝑔y)2 , (12)

∏(𝑘, ω)=∑𝑝 𝐽2
+0 [Δ sin(𝑝x𝑑+αx) sin(αx)𝑎1(κ)2ω0 ]×× 𝐽2

+0 [Δ cos(𝑝x𝑑 + αx) sin(αx)𝑏1(κ)2ω0 ]×× 𝑛(𝑝 + 𝑘) − 𝑛(𝑝)Δ[sin(𝑝x𝑑+αx)sin(αx)𝑎0(κ)+sin(𝑝y𝑑+αy)sin(αy)]−ω,
(13)

где αx = 𝑘x𝑑2 , αx = 𝑘x𝑑2 .

Для получения явного вида 𝑆(𝑘) нужно задать
вид потенциальных ям в СР. При φ(𝑥) = const при0 ⩽ 𝑥 ⩽ 𝑑, и φ(𝑥) = 0 при 𝑥 < 0, 𝑥 > 𝑑 формула (12)
примет вид

𝑆(𝑘)= 4𝑑4 ∑𝑛,𝑚 [1−cos(𝑘x𝑑)] [1−cos(𝑘y𝑑)]
(𝑘x+𝑔x)2 (𝑘y+𝑔y)2√(𝑘x+𝑔x)2 (𝑘y+𝑔y)2 .

(14)
Даже в таком простом модельном случае при

произвольных значениях 𝑘 не удается получить
аналитическое выражение для 𝑆(𝑘). Однако при

малых значениях 𝑘 (𝑘x, 𝑘y ≪ π𝑑) ⋅ 𝑆(𝑘) ∼ 1𝑘 и спектр

плазмонов обладает дисперсией ω2 ∼ 𝑘, характер-
ной для 2D газа без периодического потенциала.

Для невырожденного электронного газа в пре-
деле высоких температур: Δ ≪ 𝑇 рассмотрим част-
ный случай, для которого можно получить анали-
тическое выражение закона дисперсии ω(𝑘). Приω0 ≫ Δ и 𝑘y = 0 получаем:

𝑆(𝑘) = ∑𝑛,𝑚 ∣𝑀 ([𝑘 + 𝑔]x) ∣
2 ∣𝑀 ([𝑘 + 𝑔]y)∣2√(𝑘x + 𝑔x)2 + (𝑘y + 𝑔y)2 , (15)

где 𝑓(𝑘x) = 1 + χ𝑇2π𝑒2𝑁0
𝑎0(κ)𝑆(𝑘x) .

На рис. 2 построен график зависимости часто-
ты плазменных волн от волнового числа ω(𝑘), по-
лученный с помощью численного анализа форму-
лы (15). Установлена возможность управления ча-
стотой плазменной волны параметрами внешней
нелинейной волны.Из рис. 2 следует, что уменьше-
ние амплитуды нелинейной волны приводит к уве-
личениюплазменнойчастоты.При 𝑘𝑑2 ≪ 2получа-

еможидаемуюдисперсионнуюзависимостьω2 ∼ 𝑘,
характерную для 2D газа без СР. В пределе линей-
ных волн (κ → 0) выражение (15) соответству-
ет закону дисперсии плазменных волн в 2D элек-
тронном газе СР, находящейся в условиях воздей-
ствия переменного высокочастотного электриче-
ского поля [17]. В случае, когда 𝐸0 = 0 (κ = 0) вы-
полняется предельный переход к результатам рабо-
ты [14].

Параметры электронного спектра СР мо-
гут быть оценены в рамках модели Кронига–
Пенни [15]. Таким образом можно из (11) опреде-
лить дисперсионную зависимость ω(𝑘) в широком
диапазоне температур, периода СР и ширины
потенциальных ям, образующих СР.

В последнее время внимание исследовате-
лей сосредоточено на изучении графеновых СР
и, в частности, особенностям законов дисперсии
плазменных волн в таких структурах [19–23], что
может определить дальнейший предмет исследова-
ния и развитие данной работы.

ЗАКЛЮЧЕНИЕ
Решена задача о влиянии нелинейной электро-

магнитной волны на закон дисперсии плазмен-
ных волн в двумерной полупроводниковой кван-
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Рис. 2. Закон дисперсии плазменных волнω(𝑘) при: κ = 0.4; 𝑇 = 100 K (а), κ = 0; 𝑇 = 100 K (б), κ = 0.4 (в); 𝑇 = 300 K,κ = 0; 𝑇 = 300 K (г).

товой сверхрешетке. Получено выражение, позво-
ляющее определить дисперсионную зависимостьω(𝑘) в широком диапазоне температур, периода
сверхрешетки и ширины потенциальных ям, обра-
зующих сверхрешетку. Показано, что при увели-
чении амплитуды нелинейной волны плазменная
частота уменьшается. В предельном случае слабой
нелинейности получено аналитическое выражение
для ω(𝑘). Расчеты выполнены на основе квантовой
теории плазменных волн в приближении случай-
ных фаз с учетом процессов переброса.

Данное исследование имеет фундаментальный
характер, полученные теоретические результаты
могут быть полезны при экспериментальном ис-
следовании СР и результативно дополняют имею-
щиеся сведения о коллективных эффектах в низко-
размерных полупроводниковых сверхструктурах.
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ВВЕДЕНИЕ
В современной науке наблюдается растущий

интерес к многослойным неоднородным гологра-
фическим дифракционным структурам (МНГДС).
Эти структуры имеют потенциал для широкого ис-
пользования как ключевые компоненты в оптиче-
ских сетях связи в качестве мультиплексоров [1–7]
и в генерации фемтосекундных лазерных импуль-
сов [8–13]. Основная особенность таких структур
заключается в их угловой избирательности, прояв-
ляющейся вформированиинабора локальныхмак-
симумов, которые зависят от соотношения толщин
промежуточных и дифракционных слоев.

Ранее проведенные исследования [1, 2] про-
демонстрировали перспективу управления угловой
избирательностью как одиночных, так и мульти-
плексированных МНГДС, сформированных в фо-
тополимерных композициях, содержащих высо-
кие концентрации нематических жидких кристал-
лов (ФПМ-ЖК). Например, применение внешне-
го электрического поля к определенным дифрак-

ционнымслоямпозволилоне только изменять уро-
вень дифракционной эффективности, но и моди-
фицировать сам угловой отклик, сопровождая этот
процесс значительным смещением угловой изби-
рательности [2]. В случае мультиплексированных
МНГДС, где последовательно были сформированы
несколько дифракционных структур под разными
углами записи, наблюдалось многократное расши-
рение как угловых, так и спектральных характери-
стик [1].

Вместе с тем уширение угловых и спектраль-
ных характеристик для фотонных структур также
возможно за счет изменения периода вдоль векто-
ра решетки (чирпирование). Так, например, в ра-
боте [14] авторы показали на примере одиночных
голографических дифракционных структур (ГДС)
в ФПМ возможность уширения селективного от-
клика дифрагировавшего излучения за счет фор-
мирования структуры с изменяющимся периодом.

Таким образом, основной целью работы яв-
ляется исследование процесса преобразования
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селективных характеристик электрически управ-
ляемых чирпированных МНГДС на основе
ФПМ-ЖК.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Математическая модель дифракции оптическо-

го излучения на чирпированной МНГДС с ФПМ-
ЖК, разработана в соответствии с работой [2].

Для создания чирпированных МНГДС, ис-
пользуются два монохроматических световых пуч-
ка, обладающие различнымифазовыми характери-
стиками. Один из пучков обладает постояннымфа-
зовым распределением 𝐸0, в то время как другой
пучок характеризуется фазовыми неоднородностя-
ми 𝐸1. Эти две волны направлены на сложнуюмно-
гослойнуюФПМ-ЖК структуру под углами θ0 и θ1.
При этом, будет учтен фазовый профиль φn

c(𝑟) чир-
пированной структуры для каждого слоя [14]:φn

c(𝑟) = φn0 + ∇φn ⋅ 𝑟 + 0.5∇2φn ⋅ 𝑟2, (1)
где ∇φn = 𝐾n0 является средней величиной,
а 0.5∇2φn квадратичным коэффициентом из-
менения модуля вектора решетки 𝐾.

Тензор же диэлектрической проницаемости
для ФПМ-ЖК в 𝑛-м слое МНГДС с перемен-
ным периодом будет определяться следующими
параметрами: объемной долей ЖК, изменением
состава полимера и ЖК компоненты, а также
самой чирпированной структуры:̂εn = (1−ρ) (εnp ⋅ ̂⃗𝐼+Δ ̂εnc+Δ ̂εnp)+ρ ( ̂εnLC+ ̂εnc+ ̂εnLC) , (2)

где ρ — определяет объемную долю нематиче-
ских ЖК, ̂⃗𝐼 — единичный тензор, εnp — зна-
чение полимерной составляющей, ̂εnLC — тензор
диэлектрической проницаемости ЖК составляю-
щей, Δ ̂εnp и Δ ̂εnLC — функции, определяющие из-
менение тензора диэлектрическойпроницаемости,Δ ̂εnc = 0.5Δ ̂εnp [𝑈0𝑈𝑚(𝑟) exp (𝑖 ⋅ φn

c(𝑟))] — периодиче-
ские изменения в тензоре диэлектрической прони-
цаемости, 𝑈0 и 𝑈m — амплитуда возмущения ди-
электрической проницаемости и нормированный
амплитудный профиль.

При решении задачи дифракции, предполо-
жим, что световойпучок𝐸0, падающийнаМНГДС,
имеет произвольную поляризацию с единичным
комплексным вектором поляризации 𝑒0 (рис. 1).
В случае брэгговской дифракции света в оптиче-
ски неоднородных ФПМ-ЖК слоях можно вос-
пользоваться методом медленноменяющихся ам-
плитуд и определить амплитуды взаимодейству-
ющих волн с помощью системы уравнений свя-
занных волн в частных производных следующего
вида [1, 2]:𝑁⃗m,n𝑟0 ⋅∇𝑒m,n0 =−𝑖𝐶m,n1 ⋅𝑛m,n1 ⋅𝐸m,n1 ⋅exp [+𝑖Θm,n] ,𝑁⃗m,n𝑟1 ⋅∇𝑒m,n1 =−𝑖𝐶m,n0 ⋅𝑛m,n1 ⋅𝐸m,n0 ⋅exp [+𝑖Θm,n] , (3)

где 𝐶m,n𝑗 (𝐸) = ω (𝑒m,n1 Δεn(𝑟)𝑒m,n0 )(𝑐c𝑛m,n1,0 cos βm,n1,0 )−1/4
являются коэффициентами связи, 𝑗 = {0, 1}— по-
рядок дифракции, 𝑟 — радиус вектор, 𝑛 = 1…𝑁 —
количество дифракционных слоев, 𝑁 — номер по-
следнего слоя,𝑚 = 𝑜, 𝑒—индекс, соответствующий
обыкновенным и необыкновенным волнам, 𝑛m,n1
определяет нормированный профиль показателя
преломления первой гармоники ГДС, Θm,n(𝑟, 𝐸)
является параметром интегральной фазовой рас-
стройки, которая выражается как [1, 2]:

Θm,n(𝑟, 𝐸) = 𝑟
∫0

Δ𝐾m,n(𝑟i, 𝐸) 𝑑𝑟i. (4)

Интегральная фазовая расстройка Θm,n(𝑟, 𝐸)
является параметром, обладающим сложной зави-
симостью, что в свою очередь осложняет процесс
получения решений для уравнений связанных волн
при высокой эффективности дифракции [1, 2]. Од-
нако, решение все же может быть найдено, ес-
ли для каждого ФПМ-ЖК слоя аппроксимироватьΘm,n(𝑟, 𝐸) параболической функцией, как было по-
казано в работе [1, 2]. Таким образом, возникает
связь между слоями, которая задается параметромΘm,n−1.

В случае ближней зоны дифракции (рис. 1), вы-
ражения световыхполей длянулевогоипервого ди-
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Рис. 1. Схема дифракции света на электрически управляемых МНГДС с изменяющимся периодом в ФПМ-ЖК.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



30 ШАРАНГОВИЧ и др.

фракционного порядка на выходе чирпированной
МНГДС могут быть определены как [1, 2]:

𝐸n1(η) = 𝑒o,n1 𝐸o,n1 (η) exp ⎡⎢⎢⎢⎢⎢⎣−𝑖
𝑑n

∫0
𝑘o,n1 𝑑𝑟i⎤⎥⎥⎥⎥⎥⎦+

+ 𝑒e,n1 𝐸e,n1 (η) exp ⎡⎢⎢⎢⎢⎢⎣−𝑖
𝑑n

∫0
𝑘e,n1 𝑑𝑟i⎤⎥⎥⎥⎥⎥⎦ ,

𝐸n0(ξ) = 𝑒o,n0 𝐸o,n0 (ξ) exp ⎡⎢⎢⎢⎢⎢⎣−𝑖
𝑑n

∫0
𝑘o,n0 𝑑𝑟i⎤⎥⎥⎥⎥⎥⎦+

+ 𝑒e,n0 𝐸e,n0 (ξ) exp ⎡⎢⎢⎢⎢⎢⎣−𝑖
𝑑n

∫0
𝑘e,n0 𝑑𝑟i⎤⎥⎥⎥⎥⎥⎦ ,

(5)

где ξ0 = ξ, ξ1 = η, ξ0, ξ1 — апертурные координаты.
Для нахождения распределения дифракцион-

ного поля в дальней зоне дифракции необходи-
мо воспользоваться взаимосвязью пространствен-
ных распределений и угловых спектров дифрагиру-
ющих пучков [1, 2]:

𝐸m
j (θ) = ∞

∫
−∞ 𝐸m

j (𝑙) exp [𝑖𝑘mj 𝑙θ] 𝑑𝑙, (6)

где угол θ определяет ориентацию плосковолновых
компонент 𝐸m

j (θ) в отношении волновых норма-
лей, а 𝑙 = ξ0, ξ1.

Затем, используя матричный метод, можно
описать процесс преобразования частотно-
угловых спектров взаимодействующих плоских
световых волн через всю МНГДС [1, 2]:𝐸m,N = 𝑇m,N ⋅ 𝐴m,N−1 ⋅ 𝑇m,N−1 ⋅… ⋅𝐴m,1 ⋅ 𝑇m,1 ⋅ 𝐸0, (7)

где 𝐸m,n = ⎡⎢⎢⎢⎢⎣
𝐸m,n0 (ω, Δ𝐾)𝐸m,n1 (ω, Δ𝐾)

⎤⎥⎥⎥⎥⎦,𝑇m,n = ⎡⎢⎢⎢⎢⎣
𝑇m,n00 (ω, Δ𝐾) 𝑇m,n10 (ω, Δ𝐾)𝑇m,n01 (ω, Δ𝐾) 𝑇m,n11 (ω, Δ𝐾)

⎤⎥⎥⎥⎥⎦ — матричная

передаточная функция для 𝑛-го ФПМ-ЖК слоя,𝐸0 = [𝐸0 (ω, Δ𝐾)0 ], ω — частота считывающего пуч-

ка, Δ𝐾—фазовая расстройка, 𝐴m,n является матри-
цей перехода для буферного слоя [8].

Компоненты матрицы 𝑇m,n определяются
как [1, 2]:

𝑇m,n00 = 𝐶m,n0 𝐶m,n1 𝑑2
n4ν1ν0
+1
∫
−1

exp [δ𝑚′(1−𝑦)+δ2𝑛′(1−𝑦)2]×
×Φ (𝑑′𝑏′ + 1, 2; 𝑏′δ2 ν1ν0 (1 − 𝑦2)) 𝑑𝑦,

𝑇m,n10,01=−𝑖𝐶m,n1,0 𝑑n2ν0,1
+1
∫
−1

exp [δ𝑚′(1−𝑦)+δ2𝑛′(1−𝑦)2]×

×Φ (𝑑′𝑏′ , 1; 𝑏′δ2 ν1ν0 (1−𝑦2)) 𝑑𝑦,
𝑇m,n11 =−𝐶m,n0 𝐶m,n1 𝑑2

n4ν1ν0
+1
∫
−1

exp [δ𝑚(1−𝑦)+δ2𝑛(1−𝑦)2]×
×Φ (𝑑′𝑎 + 1, 2; 𝑎δ2 ν1ν0 (1−𝑦2)) 𝑑𝑦,

где Φ(𝑎, 𝑏; 𝑐) является вырожденной гипер-
геометрической функцией первого рода,δ = 𝑑n

η1ν0 − η0ν12ν1 , θm,n𝑟j — углы между групповыми

нормалями 𝑁⃗m,n𝑟j и осью 𝑦, ηj = ηm,nj = ± sin θm,n𝑟j ,

𝑚 = η (−𝑎 + 𝑏ν1ν0) − 𝑖Δ𝐾′ 𝑑n2δ , νj = νm,nj = cos θm,n𝑟j ,

𝑑′ = −σ2, 𝑚′ = ξ (−𝑎′2 + 𝑏′ ν1ν0) − 𝑖Δ𝐾′ 𝑑n2δ , 𝑎′ = −𝑖 ×
× 𝑡nyν1(η1ν0 + η0ν1)2 , 𝑎 = 𝑖 𝑡nyν1ν0(η1ν0 + η0ν1)2 , 𝑛′ = 𝑏

′ν1ν0 −
𝑎′2 ,

𝑏 = 𝑖 𝑡nyν20(η1ν0 + η0ν1)2 , 𝑛 = ν1ν0 (𝑎 − 𝑏ν12ν0), 𝑏′ = −𝑖 ×
× 𝑡nyν1ν0(η1ν0 − η0ν1)2 , σ = 𝐶m,n0 𝐶m,n1(η1ν0 + η0ν1)2 .

В случае дифракции света на нечирпированных
МНГДС, сформированных в ФПМ без ЖК, име-
ющих однородные профили показателя преломле-
ния, компонентыматрицы 𝑇m,n переходят в извест-
ные, полученные другими авторами [5, 6].

ЧИСЛЕННЫЙ РАСЧЕТ
При численном моделировании исследовалась

двухслойнаяГДСсоднороднымипрофилямипока-
зателя преломления, в которой была записана чир-
пированная дифракционная структура на длине
волны λ = 633 нм и углами между записывающи-
ми пучками 2θ = 16 градусов. Параметры для моде-
лирования: λread = 1431 нм — длина считывающей
волны; 𝑑n = 20 мкм — толщины ФПМ-ЖК сло-
ев; 𝑡n = 120 мкм — толщина промежуточного слоя;
угол Брэгга для считывающей волны (λread) состав-
ляет θb = 18 градусов.

На рис. 2 приведена зависимость дифракцион-
ной эффективности (η) от угла поворота и длины
волны считывания, как одиночных, так и двухслой-
ных ГДС, которые имели, как постоянный период
решетки, так и изменяющийся с квадратичным ко-
эффициентом 0.5∇2φn = 3 ⋅ 105.

Как видно из рис. 2, наличие изменяющего-
ся периода у ГДС приводит к уширению угловых
и спектральных характеристик в 3.6 раза по сравне-
нию со стандартными ГДС. Еслиже сравнивать по-
лученные данные с результатами для мультиплек-
сированных МНГДС из работы [1, 2], то в слу-
чае мультиплексированных МНГДС увеличение
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Рис. 2. Зависимость дифракционной эффективности от угла поворота и длины волны считывания.

угловых и спектральных характеристик осуществ-
лялось за счет слияния селективностей двух ре-
шеток, при этом ширина локальных максиму-
мов не изменялась, а их количество возрастало.
Для случая с чирпированными МНГДС, коли-
чество локальных максимумов остается неизмен-
ным, но их ширина увеличивается. Таким образом,
для постоянства ширины локальных максимумов
в случае чирпированных МНГДС необходимо уве-
личивать ширину буферного слоя.

На рис. 3 приведена зависимость дифракци-
онной эффективности двухслойной стандартной
и чирпированной ГДС от угла поворота и дли-
ны волны считывания при воздействии внешнего
электрического поля на каждый фотополимерный
слой с жидкими кристаллами.

Как видно из рис. 3, при внешнем электри-
ческом воздействии к каждому дифракционному
слою происходит снижение дифракционной эф-
фективности и смещение угловой селективности
при считывании световым излучением с поляриза-
цией, совпадающей с собственныминеобыкновен-
ными волнами в образце, на одинаковую величину,
которая напрямую зависит от толщины дифракци-
онного слоя. При этом, для стандартной МНГДС
относительно общей ширины угловой селективно-

сти смещение более существенно, чем для чирпи-
рованной структуры. Так, например, при напря-
женности электрического поля 𝐸 = 1.16𝐸c, где 𝐸c —
критическая напряженность Фредерикса [15], сме-
щение для стандартной МНГДС составило 5 ло-
кальных максимумов, а для чирпированной — 2.

На рис. 4 приведена зависимость дифракци-
онной эффективности двухслойной стандартной
и чирпированной ГДС от угла поворота и дли-
ны волны считывания при считывании световой
волной с углом азимута поляризации 30 градусов
и электрическом напряжении на дифракционных
слоях 𝐸 = 1.32𝐸c.

Как видно из рис. 4, при электрическом воздей-
ствиии считывании световой волной, поляризация
которой отличается от собственных необыкновен-
ных волн в образце, дифракция света происходит
как на обыкновенных волнах, так и на необыкно-
венных. При этом для необыкновенных волн ха-
рактерно смещение угловой селективности, вслед-
ствие влияния электрического поля, а для обык-
новенных волн смещение отсутствует. В свою оче-
редь, для стандартных МНГДС можно наблюдать
значительный рост числа локальных максимумов
из-за наложения угловых селективностей на обык-
новенных и необыкновенных волнах. Для чирпи-

Рис. 3. Зависимость дифракционной эффективности от угла поворота и длины волны считывания при воздействии
внешним электрическим полем.
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Рис. 4. Зависимость дифракционной эффективности от угла поворота и длины волны считывания при воздействии
внешним электрическим полем и угле поляризации считывающего излучения θ = 30 градусов.

рованных МНГДС данный эффект менее заме-
тен вследствие незначительного смещения угловой
селективности относительно ширины локальных
максимумов.

ЗАКЛЮЧЕНИЕ
Таким образом, нами исследовано преобра-

зование селективных характеристик электриче-
ски управляемых чирпированных многослойных
неоднородных голографических дифракционных
структурах, сформированных в фотополимерных
композициях с высоким содержанием нематиче-
ских жидких кристаллов. Установлено, что при
считывании чирпированных многослойных неод-
нородных голографических ФПМ-ЖК дифракци-
онных структур количество локальных максиму-
мов угловой селективности остается неизменным,
ноихширина увеличивается.При считываниичир-
пированных многослойных неоднородных голо-
графических ФПМ-ЖК дифракционных структур
световой волной, поляризация которой совпада-
ет с поляризацией собственных необыкновенных
волн, и при одинаковой полярности прикладыва-
емого внешнего электрического поля к каждому
дифракционному слою происходит снижение ди-
фракционной эффективности со смещением угло-
вой селективности в одну сторону. При этом, от-
носительно общей ширины угловой селективно-
сти, у чирпированной структуры смещение проис-
ходит на меньшее число локальных максимумов,
вследствие их значительного уширения. При счи-
тывании чирпированных многослойных неодно-
родных голографических ФПМ-ЖК дифракцион-
ных структур световой волной, поляризация ко-
торой не совпадает с поляризацией собственных
необыкновенных волн, и при одинаковой поляр-
ности прикладываемого внешнего электрическо-
го поля к каждому дифракционному слою, коли-
чество локальных максимумов может быть увели-
чено за счет дифракции света на обыкновенных
и необыкновенных волнах. В то же время увели-

чение количества локальных максимумов у чир-
пированной структуры будет ниже по сравнению
со стандартной структурой, что связано с незна-
чительным смещением угловой селективности ди-
фрагировавшего излучения на необыкновенных
волнах относительноширины локальныхмаксиму-
мов.

Продемонстрировано, что с помощью мето-
да чирпирования возможно кратно уширить угло-
вые и спектральные характеристики многослой-
ных неоднородных голографических дифракцион-
ных структур, сформированных в фотополимери-
зующихся композициях с нематическимижидкими
кристаллами.
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We developed the analytical model of optical radiation diffraction on chirped multilayer inhomogeneous
diffraction structures formed by the holographic method in photopolymerizing compositions with nematic
liquid crystals having smooth optical heterogeneity in layer thickness. By numerical calculation, it was
shown that using the chirping method it is possible to multiply the angular and spectral characteristics of
multilayer inhomogeneous holographic diffraction structures formed in photopolymerizing compositions
with nematic liquid crystals.
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ВВЕДЕНИЕ

В связи с постоянным усовершенствованием
лазерной техники появилась возможность генера-
ции очень коротких оптических импульсов [1–4].
Длительность таких импульсов порядка несколь-
ких фемтосекунд, что значительно короче типич-
ных времен релаксации населенностей квантовых
уровней различных сред. В таких условиях по-
являются уникальные возможности исследования
неравновесных состояний вещества, соответству-
ющих инверснымнаселенностям квантовых состо-
яний.В таких средах с необходимостьюприсутству-
ют сверхсветовые режимы распространения лазер-
ных импульсов. На эту тему известно много работ,
начиная с 1960-х годов [5–8]. В экспериментальной
работе [5] зарегистрированная групповая скорость
превышала скорость света в вакууме в 6–9 раз.
В методических обзорах [6–8] детально исследова-
ны механизмы сверхсветового (superluminal) рас-
пространения.

Настоящая работа посвящена анализу сверх-
светового распространения импульсов в резонанс-
ных и квазирезонансных двухуровневых средах
с инверсной населенностью квантовых состояний.

РЕЗОНАНСНЫЕ СВЕРХСВЕТОВЫЕ
ИМПУЛЬСЫ

Распространение вдоль оси 𝑧 квазимонохро-
матического лазерного импульса в двухуровневой

среде описывается самосогласованной системой
уравнений Максвелла–Блоха (МБ)

𝜕𝑟𝜕𝑟 = 𝑖Δ𝑟 + 𝑖ψ𝑤, (1)𝜕𝑤𝜕𝑡 = 𝑖2 (ψ∗𝑟 − ψ𝑟∗) , (2)𝜕ψ𝜕𝑧 + 1𝑐 𝜕ψ𝜕𝑡 = −𝑖α𝑟 − 𝑖 𝑐2ω∇2⟂ψ. (3)

Здесь ψ = 𝑑ε/ℏ — комплексная частота Раби,ε и 𝑟 — комплексные огибающие электрическо-
го поля импульса и атомного дипольного момен-
та соответственно, 𝑤 — разность населенностей
(инверсия) квантовых состояний, 𝑑 — веществен-
ный матричный элемент дипольного момента рас-
сматриваемого квантового перехода, ℏ — посто-
янная Планка, 𝑐 — скорость света в вакууме,Δ = ω0 − ω—отстройка несущей частотыω импуль-
са от резонансной частоты ω0 квантового перехо-
да, α = 4π𝑑2𝑛ω/ℏ𝑐, 𝑛 — концентрация двухуровне-
вых атомов, ∇2⟂ — поперечный лапласиан.

В системе (1)–(3) мы пренебрегли диссипатив-
ными процессами, так как считаем, что длитель-
ность τp импульса и время наблюдения за процес-
сом распространения значительно короче всех вре-
мен релаксации.

Система материальных уравнений (1), (2) обла-
дает хорошо известным интегралом движения [9]𝑤2 + ∣𝑟∣2 = 𝑤2

in, (4)
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где 𝑤in — начальная разность населенностей кван-
товых состояний.

Учитывая (4), легко видеть, что в случае точного
резонанса (Δ = 0) система (1), (2) имеет следующие
решения 𝑟 = 𝑖𝑤in sin θ, 𝑤 = 𝑤in cos θ, (5)
где

θ = ∞
∫
−∞ ψ𝑑𝑡′, (6)

аψ является вещественнойдинамическойперемен-
ной.

Подставляя (5) в (3) с учетом (6), получим
в одномерном случае (∇2⟂ = ψ) уравнение синус–
Гордона (СГ) 𝜕2θ𝜕𝑧𝜕𝑡 + 1𝑐 𝜕2θ𝜕𝑡2 = α𝑤in sin θ, (7)

которое обладает «кинковым» решением вида [10]θ = σ arctan 𝑒(𝑡−𝑧/ν)/τp , (8)
где σ = 4, 1ν = 1𝑐 − α𝑤inτ2

p, (9)

а временная длительность τp выступает в качестве
свободного параметра.

Из (5), (6) и (8) находим

𝑤 = 𝑤in [1 − 2 sech 2 ( 𝑡 − 𝑧/ντp )] , (10)

ψ = ψm sech ( 𝑡 − 𝑧/ντp ) , ψm = 2τp . (11)

Из (11) видно, что огибающая лазерного им-
пульса имеет вид солитона, временная длитель-
ность которого равна τp. Как следует из (10), по-
сле прохождения солитона (при 𝑡 → +∞) разность
населенностей 𝑤 возвращается к своему начально-
му значению 𝑤in, которому оно было равно при𝑡 → −∞.

Скорость ν солитона определяется вторым вы-
ражением (9). При равновесной начальной засе-
ленности квантовых состояний 𝑤in < 0. Тогда, как
видно из (9), имеем досветовой режим распростра-
нения, при котором ν < 𝑐. Данный режим соот-
ветствует эффекту самоиндуцированной прозрач-
ности (СИП) [9, 10]. Передним фронтом лазерный
импульс индуцировано переводит атомы из основ-
ного состояния в возбужденное, а задним фрон-
том также индуцировано возвращает их к исход-
ному состоянию. Этим обусловлено замедленное
по сравнению со скоростью света распространение
солитона.

В случае неравновесной начальной заселенно-
сти (𝑤in > 0), как следует из второго выражения (9),
рассматриваемое решение формально описывает
сверхсветовой (superluminal) режим распростране-
ния солитона: ν > 𝑐. В этом случае оптический им-

пульс передним фронтом индуцировано перево-
дит атомы из возбужденного состояния в основ-
ное, а задним фронтом возвращает атомы в исход-
ное возбужденное состояние (см. (10)). На первый
взгляд, здесь скорость также должна быть меньше
скорости света, так как затрачивается время на пе-
рекачку энергии из атомов в импульс и на ее воз-
вращение обратно в атомы. Но такое рассуждение
явно не согласуется со второй формулой (9), из ко-
торой следует, что в этом случае скорость солитона
превосходит скорость света в пустоте. Дело в том,
что индуцированное излучение принеравновесной
заселенности квантовых уровней вызывает нахо-
дящаяся далеко впереди от центрального пика его
практически незаметная «хвостовая» часть. В ре-
зультате она порождает новый пик импульса, пе-
реводя среду к моменту прихода в нее старого пи-
ка в равновесное состояние. При этом старый пик
поглощается, и создается впечатление сверхсвето-
вого распространения максимума импульса. Таким
образом, со сверхсветовой скоростью распростра-
няется не энергия импульса, а его форма [6]. Та-
кой механизм распространения называется пере-
формированием (reshaping) [11]. Очевидно, при та-
ком механизме импульс также не переносит ин-
формацию.

В экспериментальной работе [5] зарегистри-
рованная групповая скорость светового импуль-
са превышала скорость света в вакууме в 6–9 раз.
Детальный теоретический анализ механизма пере-
формирования с интерпретацией результатов рабо-
ты [5] содержится в работе [6].

Согласно теореме площадей Мак-Колла–Хана
[9, 12], в равновесной среде устойчивы импульсы,
суммарная площадь 𝐴 = θ∣𝑡→+∞ = ∫ ∞−∞ ψ𝑑𝑡 которых
кратна значению 2π. В средах же с неравновес-
ной начальной заселенностью, для которых𝑤in > 0,
устойчивостью обладают импульсы, для которых𝐴 = π, 3π, 5π,… [12]. Из (8) и первого выражения (9)
следует, что в нашем случае 𝐴 = πσ/2 = 2π. Таким
образом, в равновесной среде (𝑤in < 0) 2π-солитон
СИП (11), для которого ν < 𝑐, является устойчи-
вым. В неравновесной же среде (𝑤in > 0) сверхсве-
товой рассматриваемый 2π-солитон неустойчив.
Здесь сразу же возникают два вопроса. 1) С ка-
кой скоростью распространяется в неравновесной
среде устойчивый π-импульс? 2) Почему, все-таки,
неустойчивый сверхсветовой 2π-солитон наблю-
дался в эксперименте?

АВТОМОДЕЛЬНЫЙ π-ИМПУЛЬС
Следуя [12], введем автомодельнуюпеременнуюξ = 𝑧 (𝑡 − 𝑧𝑐) . (12)

Тогда (7) примет вид обыкновенного диффе-
ренциального уравненияξθ″ + θ′ = α𝑤in sin θ, (13)
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где «штрих» обозначает производную по перемен-
ной ξ.

Численный анализ показывает, что уравне-
ние (13) обладает решением, при котором огиба-
ющая ψ имеет выделяющийся главный максимум
в точке ξ = 0 [12]. По бокам главного максиму-
ма имеются малоамплитудные осцилляции. При
этом площадь такого импульса равна π, что соот-
ветствует условию его устойчивости в неравновес-
ной среде.

В точке главного максимума 𝜕ψ𝜕𝑡 ∝ θ″ = 0. К то-
му же здесь ξ = 0. Поэтому, задавшись целью по-
иска решения в окрестности главного максимума,
можно пренебречь первым слагаемым в правой ча-
сти уравнения (13). Тогда имеем приближенное ре-
шение вида (8), гдеσ = 2, ν = 𝑐, (14)1τp = α𝑤in𝑧. (15)

Таким образом, площадь импульса определяет-
ся площадью его главного максимума в окрестно-
сти ξ = 0 и равна π. Используя также (5), найдем

𝑤 = −𝑤in tanh ( 𝑡 − 𝑧/𝑐τp ) . (16)

Если вначале (при 𝑡 = −∞) возбуждены все ато-
мы, то 𝑤in = 1/2. Тогда, как видно из (16), по про-
шествии импульса (при 𝑡 = +∞) имеем 𝑤in = −1/2.
Т. е., все атомы переходят в основное состояние.
Таким образом, по мере распространения автомо-
дельный π-импульс индуцированно переводит ато-
мы из возбужденного состояния в основное.

Для огибающей электрического поля из (6) и (8)
при учете (14) будем иметь первое выражение (11),
где ψm = 1τp , (17)

а скорость и длительность определяются соответ-
ственно формулами (14) и (15).

Итак, автомодельный π-импульс в неравновес-
ной среде распространяется со скоростью, равной
скорости света в вакууме. Это есть ответ на первый
вопрос, поставленный в конце предыдущего разде-
ла.

По мере распространения π-импульс испы-
тывает усиление, сопровождаемое его самосжати-
ем. При этом временная длительность импульса
уменьшается обратно пропорционально пройден-
ной дистанции, а амплитуда растет пропорцио-
нально данной дистанции.

Дистанцию 𝑙inst, на которой развивается
неустойчивость рассмотренного в предыдущем
разделе сверхсветового 2π-импульса, можно, исхо-
дя из теоремы площадей [9], оценить по формуле𝑙inst ∼ π/α𝑇∗2 , где 𝑇∗2 — время, характеризующее
неоднородное уширение квантового перехода. При

параметрах кристаллического рубина, использо-
ванного в [5], имеем 𝑙inst ≈ 30 см. В то же время
в экспериментальной работе [5] использовались
рубиновые образцы размерами от 7 до 24 см. Таким
образом, обсуждаемая неустойчивость не успевала
развиться. Поэтому наблюдался сверхсветовой2π-импульс, распространяющийся в режиме пе-
реформирования. Так выглядит ответ на второй
вопрос, поставленный в конце предыдущего
раздела.

Время жизни среды в неравновесном состоя-
нии ∼10−8 с. За это время сверхсветовой импульс
проходит дистанцию ∼1–10 м, что значительно
превосходит размеры использованных в [5] образ-
цов. Поэтому спонтанной релаксацией неравно-
весной среды к равновесному состоянию можно
было с хорошей точностью пренебречь.

КВАЗИРЕЗОНАНСНЫЕ СВЕРХСВЕТОВЫЕ
ИМПУЛЬСЫ

Рассмотрим теперь оптические импульсы,
распространяющиеся в условиях квазирезонанса
[13–15] δ = (Δτp)−1 ≪ 1. (18)

Понятно, что при столь большой отстрой-
ке Δ от резонанса возбуждение атомов является
слабым, т. е., 𝑤 должно незначительно отличаться
от 𝑤in. Проводя в (1) разложение по малому пара-
метру δ [13–15], будем иметь

𝑟 = −ψΔ𝑤 + 𝑖𝑤inΔ2 𝜕ψ𝜕𝑡 + 𝑤inΔ3 𝜕2ψ𝜕𝑡2 . (19)

Из (4) с точностью до членов ∼ ∣𝑟2∣ найдем
𝑤 = 𝑤in

⎛⎝1 − ∣𝑟2∣2𝑤2
in

⎞⎠ . (20)

Из (19) и (20) придем к выражению

𝑟 = −𝑤in
ψΔ (1 − ∣ψ∣22Δ2) + 𝑖𝑤inΔ2 𝜕ψ𝜕𝑡 + 𝑤inΔ3 𝜕2ψ𝜕𝑡2 . (21)

После подстановки (21) в (3) и простых преоб-
разований будем иметь𝑖𝜕Φ𝜕𝑧 = 𝑔∣Φ∣2Φ + β2 𝜕2Φ𝜕τ2 + 𝑐2ω∇2⟂Φ, (22)

где Φ = ψ𝑒−𝑖α𝑤in𝑧/Δ, (23)𝑔 = α𝑤in/2Δ3, β = 2α𝑤in/Δ3, τ = 𝑡 − 𝑧/νg, а линейная
групповая скорость νg определяется выражением1νg = 1𝑐 − 𝑤in

αΔ2 . (24)

Если в правой части (22) пренебречь тре-
тьим слагаемым, то получим одномерное нелиней-
ное уравнениеШредингера (НУШ). Коэффициен-
ты 𝑔 и β в этом уравнении обладают одинаковы-
ми знаками. В этом случае НУШ обладает устой-
чивыми решениями в виде «светлых» солитонов,
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распространяющихся с линейной групповой ско-
ростью νg [16]. Из (24) видно, что в неравновесной
(𝑤g > 0) среде νg > 𝑐. В этом случае, как и при
точном резонансе, сверхсветовое распространение
происходит в режиме переформирования. Поэтому
не возникает противоречий с принципами теории
относительности.

Одномерные сверхсветовые солитоны НУШ
можно наблюдать на дистанциях распространения,
меньших, чем длина дифракционного уширения
данных солитонов.Поэтому важно рассмотреть во-
прос устойчивости квазирезонансных трехмерных
локализованных импульсов — пространственно-
временных солитонов или световых пуль [17–20].
Для иллюстрации рассмотрим случай 𝑔, β > 0.

Следуя [19, 20], совершим преобразование Ма-
делунга ψ1 = √ρ exp (−𝑖ωφ/𝑐) , (25)
где ρ и φ — подлежащие определению функции.
Подставляя (25) в (22), придем к системе уравне-
ний, формально описывающей течение вообража-
емой квантовой жидкости:𝜕ρ𝜕𝑧 + ∇ (ρ∇φ) = 0, (26)𝜕φ𝜕𝑧 + (∇φ)22 − 𝑐ω𝑔ρ = ( 𝑐ω)2 ∇2√ρ2√ρ , (27)

где ∇2 = ∇2⟂ + 𝜕2/𝜕η2 — эффективный трехмерный
лапласиан,

η =√ 𝑐ωβτ, (28)

∇—оператор эффективного трехмерного градиен-
та в переменных 𝑟⟂ и η, 𝑟⟂ — поперечный к направ-
лению распространения импульса радиус-вектор.

Гидродинамический подход, основанный
на системе типа (26), (27), является очень эффек-
тивным в теории самофокусировки и формирова-
ния световых пуль [17–23].

Уравнение непрерывности (10) обладает авто-
модельным «сферически-симметричным» в систе-
ме координат (𝑟⟂, η) решением [21]

ρ = ψ3
m
𝑅20𝑅3 exp (− ζ2𝑅2) , φ = 𝑓(𝑧) + ζ2

2 𝑅2𝑅 , (29)

где ζ = √𝑟2⟂ + η2, 𝑅 = 𝑅(𝑧) — характерный размер
рассматриваемого сгустка световой энергии, ψm —
амплитуда поля, 𝑅0 — равновесное значение пара-
метра 𝑅, 𝑓(𝑧)—некоторая функция, штрих над пе-
ременой 𝑅 здесь и ниже обозначает производную
по переменной 𝑧.

Следуя [22], используем в левой уравнения (27)
приосевое приближение (near-axis approximation),
т. е., запишем 𝑒−𝑟2/𝑅2 ≈ 1 − 𝑟2/𝑅2. Приравнивая по-
сле этого в левой и правой частях выражения при𝑟0 и 𝑟2, придем к уравнениям

𝑓′ = 𝑐ω𝑔ψ2
m
𝑅30𝑅3 − 32 ( 𝑐𝑛ω)2 1𝑅2 , (30)

𝑅″ = −𝜕𝑈𝜕𝑅 = ( 𝑐𝑛ω)2 1𝑅3 − 2𝑐ω 𝑔ψ2
m
𝑅30𝑅4 . (31)

Уравнение (31) представляет собой уравнение
движения ньютоновской частицы единичной мас-
сы во внешнем поле с «потенциальной энергией»𝑈(𝑅), где 𝑅 и 𝑧 играют роли координаты частицы
и времени соответственно.

Первое слагаемое в правой части (31) соответ-
ствует эффектам дифракции. В свою очередь, вто-
рое слагаемое описывает влияние кубической (кер-
ровской) нелинейности.

Условия формирования устойчивого про-
странственно-временного солитона имеют вид(𝜕𝑈/𝜕𝑅)𝑅=𝑅0 = 0, (𝜕2𝑈/𝜕𝑅2)𝑅=𝑅0 > 0, что соответ-
ствует наличию локального минимума в зависи-
мости 𝑈(𝑅) при равновесном значении радиуса
пули. Из (31) легко видеть, что данным условиям
удовлетворить невозможно, так как зависимость𝑈(𝑅) не обладает локальным минимумом. Напро-
тив, в данной зависимости имеется локальный
максимум. Этот вывод согласуется с известным
фактом: при одной только керровской нелиней-
ности трехмерные пространственно-временные
солитоны неустойчивы [24].

ЗАКЛЮЧЕНИЕ
Проведенное в настоящей работе методическое

рассмотрение показывает, что сверхсветовые оп-
тические импульсы в неравновесных (усиливаю-
щих) средах неустойчивы, как и сами неравновес-
ные среды. Данный вывод согласуется с выводами
предыдущих работ, включая [6] и [8], хотя вопросы
устойчивости здесь исследованы другими способа-
ми. С другой стороны, не противоречащий фунда-
ментальнымфизическим принципам механизм пе-
реформирования позволяет наблюдать сверхсвето-
вые импульсы на дистанциях, меньших характер-
ных длин развития неустойчивостей.

СПИСОК ЛИТЕРАТУРЫ
1. Täschler P., Bertrand M., Schneider B. et al. // Na-

ture Photon. 2021. V. 15. P. 919.
2. Стремоухов С.Ю. // Изв. РАН. Сер. физ. 2024.

Т. 88. № 1. С. 48; Stremoukhov S.Yu. // Bull. Russ.
Acad. Sci. Phys. 2024. V. 88. No. 1. P. 38.

3. Конобеева Н.Н., Белоненко М.Б. // Изв.
РАН. Сер. физ. 2023. Т. 87. № 12. С. 1749;
Konobeeva N.N., Belonenko M.B. // Bull. Russ.
Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1829.

4. Кошкин К.В., Сазонов С.В., Калинович А.А., Ко-
миссарова М.В. // Изв. РАН. Сер. физ. 2024.
Т. 88. № 1. С. 68; Koshkin K.V., Sazonov S.V., Kali-
novich A.A., Komissarova M.V. // Bull. Russ. Acad.
Sci. Phys. 2024. V. 88. No. 1. P. 56.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



38 САЗОНОВ

5. Басов Н.Г., Амбарцумян Р.В., Зуев В.С. и др. //
ЖЭТФ. 1966. Т. 50. № 1. С. 23; Basov N.G., Am-
bartsumyan R.V., Zuev V.S. et al. // JETP. 1966.
V. 23. No. 1. P. 16.

6. Ораевский А.Н. // УФН. 1998. Т. 168. № 12.
С. 1311; Oraevskii A.N. // Phys. Usp. 1998. V. 41.
No. 12. P. 1199.

7. Сазонов С.В. // УФН. 2001. Т. 171. № 6. С. 663;
Sazonov S.V. // Phys. Usp. 2001. V. 44. No. 6.
P. 631.

8. Розанов Н.Н. // УФН. 2005. Т. 175. № 2. С. 181;
Rozanov N.N. // Phys. Usp. 2001. V. 48. No. 2.
P. 167.

9. Allen L., Eberly J.H. Optical resonance and two-
level atoms. N.Y.: John Wiley & Sons, 1975.

10. Полуэктов И.А., Попов Ю.М., Ройтберг В.С. //
УФН. 1974. Т. 114. № 1. С. 97.

11. Blaauboer M., Kofman A.G, Kozhekin A.E. et al. //
Phys. Rev. A. 1998. V. 57. P. 4905.

12. Lamb J.L. Elements of soliton theory. N.Y.: John
Wiley & Sons, 1980.

13. Crisp M.D. // Phys. Rev. A. 1973. V. 8. P. 2128.
14. Башаров А.М., Маймистов А.И. // Опт. и спек-

троск. 2000. Т. 88. № 3. С. 428; Basharov A.M.,
Maimistov A.I. // Opt. Spectrosc. 2000. V. 88.
No. 3. P. 380.

15. Sazonov S.V. // Roman. Rep. Phys. 2018. V. 70.
No. 1. P. 401.

16. Agrawal G.P. Nonlinear fiber optics. Boston: Aca-
demic Press, 1989.

17. Двужилова Ю.В., Двужилов И.С., Белонен-
ко М.Б. // Изв. РАН. Сер. физ. 2022. Т. 86.
№ 1. С. 68; Dvuzhilova Y.V., Dvuzhilov I.S., Belo-
nenko M.B. // Bull. Russ. Acad. Sci. Phys. 2022.
V. 86. No. 1. P. 46.

18. Двужилова Ю.В., Двужилов И.С., Белонен-
ко М.Б. // Изв. РАН. Сер. физ. 2021. Т. 85.
№ 12. С. 1701; Dvuzhilova Y.V., Dvuzhilov I.S.,
Belonenko M.B. // Bull. Russ. Acad. Sci. Phys.
2022. V. 85. No. 12. P. 1354.

19. Silberberg Ya. // Opt. Lett. 1990. V. 15. P. 1282.
20. Kivshar Yu.S., Agrawal G.P. Optical solitons. N.Y.:

Academic Press, 2003.
21. Карлов Н.В., Кириченко Н.А. Колебания, волны,

структуры. М.: Наука, 2001.
22. Ахманов С.А., Сухоруков А.П., Хохлов Р.В. //

УФН. 1967. Т. 93. № 9. C. 19.
23. Конобеева Н.Н., Трофимов Р.Р., Белоненко М.Б. //

Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1763;
Konobeeva N.N., Trofimov R.R., Belonenko M.B. //
Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12.
P. 1841.

24. Skarka V., Berezhiani V.I., Miklaszewski R. // Phys.
Rev. A. 1997. V. 56. No 1. P. 1080.
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An analysis of superluminal propagation of resonant and quasi-resonant soliton-like laser pulses in
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of instability development, it is possible to observe superluminal propagation of these pulse profiles due to
the reshaping mechanism.
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ВВЕДЕНИЕ

Проводимые в рамках фрактальной оптики ис-
следования свойств фрактальных спекловых по-
лей дали возможность найти решение ряда важных
вопросов фундаментального характера. Уточнено
применительно к спекловым структурам понятие
скейлинга (масштабной инвариантности) [1], дана
оценка фрактальности расположения дислокаци-
онных образований [2], рассмотрены особенности
перехода от релеевской статистики распределения
интенсивности к нерелеевской [3]. Весьма значи-
мыми оказались и прикладные аспекты выполнен-
ных исследований. К ним в первую очередь следует
отнести биомедицинские приложения. Так, фрак-
тальная спекловая технология позволила разрабо-
тать новые диагностические методы [4–6], повы-
сить информационную емкость систем связи [7],
дала возможность улучшить лечебные методики
в офтальмологии [8–11] и арт-терапии [12–15].

Как правило, на практике световой пучок
со спекловой структурой проходит некоторое рас-
стояние от начальной плоскости, где формирует-
ся спекловая структура, до плоскости, гдефиксиру-
ется с целью того или иного применения попереч-
ное распределение интенсивности. Однако в лите-
ратуре нет полноценной информации о характере
и степени трансформации амплитудно-фазовых,
скейлинговых и статистических характеристик из-
лучения в процессе его распространения. Целью
данной работы является оценка самосогласован-
ных изменений указанных характеристик в зависи-

мости от изначально задаваемых параметров. При
этом особое внимание уделяется нахождению сте-
пени адекватности начального поля его изображе-
нию в оптической системе.

ПОСТАНОВКА ЗАДАЧИ И МЕТОД
ЕЕ РЕШЕНИЯ

В качестве постановочной части задачи рас-
смотрим спекловый пучок, падающий на собира-
ющую линзу с фокусным расстоянием 𝑓. Началь-
ную плоскость разместим сразу за линзой, где ра-
диус кривизны 𝑅 волнового фронта пучка равен 𝑓.
Рассмотрим, как будет меняться структура пучка
в процессе фокусировки и какова степень корре-
ляции распределения поля в начальной плоскости
и в плоскости изображения, находящейся от линзы
на расстоянии 2𝑅.

При численном моделировании структуры
фрактального спеклового поля в начальной плос-
кости использовалась функция Вейерштрасса,
имеющая вид

𝑊x,y = σ 𝑉∑𝑣=0
𝑁∑𝑛=0 [𝑏(D−2)n cos [2π𝑠𝑏𝑛 [(𝑥 − 𝐾 + 12 )×

× sin(α𝑣) + (𝑦 − 𝐾 + 12 ) cos(α𝑣)] + ψn + ψv]] + 𝐴.(1)
Здесь 𝑊x,y — амплитуда поля излучения;𝑥, 𝑦— дискретные поперечные координаты (0 ⩽ 𝑥,𝑦 ⩽ 𝐾); σ — стандартное отклонение амплитуды

от среднего значения; 𝑁 — количество гармоник;𝑉 — количество азимутальных парциальных волн;
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𝑛 — номер гармоники; 𝑣 — индекс азимутальной
составляющей волны; α — элементарный азиму-
тальный угол поворота; 𝑏 — параметр скейлинга;𝑠 — масштабирующий параметр; 𝐷 — фрактальная
размерность графика функции Вейерштрасса
при одномерном представлении; ψn, ψv — фазы
компонент поля; 𝐴 — компонента с однородным
распределением амплитуды поля. При случайных
значениях фаз ψn, ψv формировалось спекловое
поле, плотность распределения интенсивности
в котором подчинялась релеевской статистике.

Для того, чтобы учесть сферичность волнового
фронта пучка на выходе линзы, функция (1) умно-
жалась на корректирующую функцию

𝐹x,y = 𝑒
𝑖 [[𝑥𝑢− (𝐾+1)𝑢2 ]2+[𝑦𝑢− (𝐾+1)𝑢2 ]2]π

λ𝑅 . (2)

Здесь параметр 𝑢 характеризует используемую
степень дискретизациипоперечных координат, λ—
длина волны, 𝑅 — радиус кривизны волнового
фронта, 𝑖 = √−1. В некоторых случаях для сниже-
ния влияния краевых эффектов использовалась до-
полнительная корректирующая функция 𝑇, играю-
щая роль «мягкой» диафрагмы

𝑇x,y = ξ𝑒[(𝑥𝑢−
(𝐾+1)𝑢2 )2+(𝑦𝑢− (𝐾+1)𝑢2 )2]4 , (3)

где ξ— постоянная величина.
Приведенные ниже результаты численного

моделирования, иллюстрирующие распростране-
ние спеклового пучка, получены для следующего
набора параметров: 𝐾 = 255, α = 2π/48, 𝑉 = 47,𝑣 = 0…𝑉, 𝑁 = 5, 𝑛 = 0…𝑁, σ = 3.3, 𝑠 = 0.05, 𝑏 = 2,𝐴 = 0. Случайные фазы ψn, ψv задавались с помо-
щью соотношений

ψn = rnd(𝑛)4π𝑛 + 1 , ψv = rnd(𝑣)4π𝑣 + 2 . (4)

Будем для наглядности считать, что 𝑅 = 1.5 м,
а длина волны λ = 0.5 ⋅ 10−6 м. Положим также,
что размер рабочего поля, определяемого величи-
ной 𝐾, в метрическом измерении равен 𝑎 = 0.02 м.
В этом же измерении расстояние между значащи-
ми точками рабочего поля составляет 𝑢 = 𝑎 ⁄ 𝐾 == 7.812 ⋅ 10−5 м.

Для оценки характеристик светового поля
на разных расстояниях за экраном использовал-
ся cоставляющий основу фурье-оптики метод
разложения изначального поля по плоским вол-
нам [16]. Он реализуется в несколько этапов.
Сначала с помощью процедуры быстрого преоб-
разования Фурье определяется пространственный
комплексный спектр излучения 𝑆 = cfft(𝑊). За-
тем с учетом набегов плоских волн на разных

расстояниях 𝑧 определяется новый комплексный
спектр 𝑄𝑄x,y = 𝑆x,y ⋅ exp [𝑖2π𝑧T (𝑐(𝑥)2 + 𝑐(𝑦)2)] . (5)

Для проведения дальнейших расчетов ему целе-
сообразно придать центрально-симметричный ха-
рактер𝐻x,y = ∣𝑄mod (𝑥+𝐾+12 , 𝐾+1),mod(𝑦+𝐾+12 , 𝐾+1)∣ . (6)

В формуле (5) расстояния 𝑧 выражаются в до-
лях так называемой длины Тальбо 𝑇 = 2𝑎2 ⁄ λ, т. е.𝑧T = 𝑧⁄𝑇. Входящие в эту формулу вспомогательные
функции 𝑐(𝑡) имеют вид𝑐(𝑡) = mod (𝑡 + 𝐾 + 12 , 𝐾 + 1) + 𝐾 + 12 . (7)

Наконец, на последнем этапе процедуры по-
средством обратного преобразования Фурье опре-
деляется распределение поля 𝐵x,y на расстоянии 𝑧T𝐵 = icfft(𝐻). (8)

РЕЗУЛЬТАТЫ РАСЧЕТОВ
Расчет показал, что в соответствии с представ-

лениями волновой оптики изначальный световой
пучок сначала фокусируется вплоть до фокусно-
го расстояния 𝑧 = 𝑅, а затем расходится, форми-
руя на расстоянии 𝑧 = 2𝑅 изображение начально-
го распределения. Такого рода трансформация пуч-
ка показана на рис. 1. На нем показаны распре-
деления ∣𝑊x,y∣. На рис. 1а показано распределе-
ние ∣𝑊x,y∣ сразу за линзой в предположении, что
световой пучок ограничивает квадратная диафраг-
ма, размер которой в 3.2 раза меньше размера ра-
бочего поля. Постепенное уменьшение размеров
пучка в процессе его фокусировки иллюстрирует
рис. 1б, где световое поле приведено на расстоянии𝑧 = 𝑅 ⁄ 2. Качественное преобразование структуры
пучка происходит в фокальной плоскости, когда𝑧 = 𝑅 (рис. 1в). В соответствии сположениемфурье-
оптики в этой плоскости поле является результатом
фурье-преобразования начального распределения
амплитудысветовыхколебаний.Сформированный
в фокальной плоскости фурье-образ имел вид си-
стемы концентрических окружностей, которые со-
ответствовали распределению пространственных
частот фрактального спеклового пучка. Наличие
скейлинга в фурье-образе доказывает то, что отно-
шение радиусов окружностей составляли постоян-
ную величину равную присутствующему в форму-
ле (1) параметру 𝑏 = 2. Изменение этого парамет-
ра, являющегося по сути коэффициентом скейлин-
га, приводило к изменению отношения радиусов.
Особенность пространственного спектра, обуслов-
ленная наличием скейлинга, во многом определя-
ет эффективность визуального воздействия фрак-
тальных структур при проведении лечебных про-
цедур в арт-терапии и офтальмологии. Дело в том,
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Рис. 1. Изменение структуры пучка в оптической системе. 𝑧 = 0 (а), 𝑅/2 (б), 𝑅 (в), 2𝑅 (г).

что в коре головного мозга обработка зрительных
сигналов, несущих информацию об изображени-
ях, осуществляется на основе структуры их про-
странственных спектров [14]. Из-за присутствия
скейлинга отсутствует необходимость в обработ-
ке пространственных спектров в широком частот-
ном диапазоне, достаточно зафиксировать лишь
их низкочастотную часть. Это ускоряет и облегча-
ет процесс зрительного восприятия рассматривае-
мых объектов и, как следствие, создает ощущение
комфорта и эстетического наслаждения. Происхо-
дящее при этом укрепление связей между нейрона-
ми в коре головного мозга способствует излечению
ряда глазных болезней (например, глаукомы). Рас-
пространяясь далее от фокальной плоскости пу-
чок увеличивает размеры и формирует на расстоя-
нии 𝑧 = 𝑅 изображение начального распределения
(рис. 1г).

Было обнаружено, что в процессе распростра-
нения спеклового пучка он сохранял фрактальные
признаки независимо от статистически независи-
мых реализаций их структуры. Оцениваемые мето-
дом покрытий [17] фрактальные размерности на-
чального распределения и его изображения оказа-
лись близки между собой и составляли величину2.5 ∓ 0.1. Минимальная фрактальная размерность,

равная 2.25 ∓ 0.05 соответствовала распределению
поля в фокальной плоскости. Параллельно с оцен-
кой значений фрактальной размерности на разных
расстояниях от начальной плоскости определялись
средние значения спеклов. Делалось это по отсеч-
ке 0.5 от максимального значения рассчитываемой
автокорреляционнойфункции. Расчет показал, что
размеры спеклов в изображении за счет дифракци-
онного уширения, примерно, на 20% превосходят
свои начальные размеры. Значительное уменьше-
ние спеклов (в 2.5 раза) наблюдалось вблизи фо-
кальной плоскости.

Расчет коэффициента корреляции η распреде-
лений поля в начальной плоскости и в плоскости
изображения (рис. 1а и 1г) дал значение η = 0.53.
Увеличение фрактальной размерности 𝐷 приводи-
ло к снижению η. Это хорошовидноиз хода кривой,
приведенной на рис. 2. В наиболее важной области
для практических применений (𝐷 < 1.5) уменьше-
ние величины η относительно максимального зна-
чения не превышает 30%.

ДРУГАЯ СТРУКТУРА ВОЛНОВОГО ФРОНТА

Для того, чтобы учесть влияние на характери-
стики излучения присутствия в начальной плоско-
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Рис. 2. Влияниефрактальной размерности𝐷 на значе-
ние коэффициента корреляции η.

сти сферической аберрации формуле (2) придавал-
ся иной вид

𝐹x,y = 𝑒𝑖[( 2𝑥𝐾+1−1)2
+( 2𝑦𝐾+1−1)2⋅[1+ρ[( 2𝑥𝐾+1−1)2

+( 2𝑦𝐾+1−1)2]]]⋅ π( 𝑎2 )2
λ𝑅 .
(9)

Входящий в выражение (9) параметр ρ харак-
теризует степень влияния аберрации на структу-
ру изображения. На рис. 3 это влияние графиче-
ски представлено в виде изменения коэффициента
корреляции η изображения и начального распреде-
ления поля. Из рисунка видно, что снижение коэф-
фициента корреляции, превосходящее 10%,проис-
ходит при ∣ρ∣ > 0.1.

Была рассмотрена также возможность исполь-
зования разработанного программного обеспече-
ния для случая распространения спекловой вол-
ны с изначально плоским волновым фронтом. Ис-
пользованный в нем метод плоских волн по срав-
нению с предыдущим случаем потребовал опре-
деленной корректировки. Это связано с тем, что
расходимость спеклового пучка требует увеличе-
ния размеров рабочего поля ввиду необходимо-
сти учета особенностей структуры пучка на его
периферии. Указанная проблема была преодоле-
на путем использования адаптивной схемы пер-
манентного увеличения размеров рабочего поля.
Было показано, что на расстоянии от начальной
плоскости 𝑧1 = 0.0001𝑑2 ⁄ λ, где 𝑑 — размер рабо-
чего поля, распределение интенсивности сохраня-
ет свойства, характерные для спекловогофракталь-
ного пучка. Количественный анализ трансформа-
ции структуры спекловой волны позволил уста-
новить, что такие характеристики поля как плот-

Рис. 3. Влияние сферической аберрации на структуру
изображения.

ность вероятности и радиус корреляции значений
интенсивности, их стандартное отклонение в об-
ласти 0 < 𝑧 < 𝑧1 в зависимости от реализации мо-
гут претерпевать заметные, а иногда значитель-
ные изменения. В то же время, фрактальная раз-
мерность, рассчитанная методом покрытий, испы-
тывала отклонения от среднего значения, равного2.45, не превышающие 2%. Это говорит об устой-
чивости такой важной характеристики спеклового
поля, как его фрактальная размерность.

ЗАКЛЮЧЕНИЕ
Распространение в оптических системах

и в свободном пространстве фрактальных спек-
ловых пучков рэлеевского типа характеризуется
рядом важных физических закономерностей.
Помимо того, что в процессе распространения
остается неизменной скейлинговая структура
их пространственного спектра, сохраняется как
фрактальная форма, так и плотность вероятно-
сти поперечного распределения интенсивности.
Однако величина фрактальной размерности, фик-
сируемой на различных расстояниях, в общем
случае может меняться в больших пределах. В то же
время фрактальные размерности пучков в началь-
ной плоскости и в плоскости изображения близки
между собой.

Коэффициент корреляции изначального поля
и его изображения зависит от задаваемой в началь-
ной плоскости фрактальной размерности и сни-
жается ее увеличением. Так, увеличения фракталь-
ной размерности от значения 2.25, до значения2.7 может уменьшить коэффициент корреляции
в 2 раза. Заметным образом влияет на коэффи-
циент корреляции присутствие в сформированном
в начальной плоскости пучке сферической аберра-
ции. Если вклад аберрации в структуру волново-
го фронта превосходит 10%, то следует считаться
с резкимпадением корреляционного коэффициен-
та. Дополнительный анализ процесса распростра-
ненияфрактального спеклового пучка в свободном
пространстве показал, что и в этом случае он сохра-
няет фрактальные свойства.

Авторы выражают благодарность профессору
физического факультета МГУ Боголюбову А.Н.
за поддержку данного направления исследований.
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Propagation of fractal speckles in optical systems and in free space
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The diffraction transformation of wave fractal fields is considered. It is shown that when light beams with
a speckle structure propagate in optical systems and in free space, their fractal properties have a high degree
of stability.
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ВВЕДЕНИЕ

Внастоящее время рентгеновские лучи являют-
ся одним из наиболее эффективных инструментов
исследования различных систем во многих обла-
стях науки и техники. При этом особое место зани-
мают источники рентгеновского излучения, осно-
ванные на синхротронном излучении релятивист-
ских электронов [1]. Метод генерации рентгенов-
ских лучей с помощью синхротронного излучения
привлекает все большее внимание исследователей,
что связано с широким распространением лазеров
мультитераваттного уровня и возможностью созда-
ния на их основе полностью оптического источни-
ка рентгеновского излучения с контролируемыми
параметрами.

Синхротронный генератор рентгеновских лу-
чей может быть основан на лазерном источнике,
формирующем релятивистское электронное зерка-
ло, параметры которого во многом определяют па-
раметры рентгеновских импульсов. Для наноплен-
ки идея синхронного ускорения электронов сверх-
мощным неадиабатическим лазерным импульсом
была впервые предложена в [2], и затем былииссле-
дованы характеристики формируемых релятивист-
ских электронных зеркал [3]. При перпендикуляр-
ном падении лазерного импульса с крутым фрон-
том и релятивистской амплитудой на плазменный

слой может происходить одновременное смещение
всех электронов слоя по нормали к поверхности
под действием продольной компоненты силы Ло-
ренца. Если амплитуда поля достаточно большая,
эта сила разгоняет электроны до релятивистских
скоростей и формирует релятивистское электрон-
ное зеркало с диаметром порядка диаметра лазер-
ного импульса и толщиной несколько нанометров.
Такой сгусток может сформироваться при безраз-
мерной амплитуде лазерного импульса 𝑎0, превы-
шающей определенный порог, зависящий от пара-
метров плазменного слоя [3] (𝑎0 = ∣𝑒∣𝐸0/(𝑚𝑐ω), где𝑒 и 𝑚 — заряд и масса электрона, 𝐸0 и ω — ампли-
туда и частота лазера с длиной волны λ и периодом𝑇0, 𝑐— скорость света в вакууме).

При отражении встречного лазерного импуль-
са от релятивистского электронного зеркала ча-
стота образующегося электромагнитного импуль-
са увеличивается вследствие преобразования До-
плера. При этом формируется когерентное излу-
чение, характеристики которого исследованы в [4,
5] для перпендикулярного падения встречного им-
пульса на зеркало. Для когерентного отраженно-
го излучения преобразование частоты пропорцио-
нально нормированной энергии электронов γ, что
связано с наличием не только продольного дви-
жения зеркала, но и поперечного, в результате че-
го направление отраженной волны не совпадает
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с направлением скорости электронов. Кроме то-
го, в формируемом излучении присутствует также
и некогерентная часть, для которой направление
распространения максимума интенсивности сов-
падает с направлением скорости электронов, а пре-
образование частоты пропорционально γ2. Следу-
ет отметить, что такое излучение может рассмат-
риваться как синхротронное в поле лазерного он-
дулятора встречной волны или как Томсоновское
рассеяние встречной волны электронами зерка-
ла в поле ускоряющей волны и кулоновском поле
ионов мишени, что определяет специфику взаимо-
действия. Аналитические оценки параметров этого
излучения показали [6], что при использовании со-
временных мультитераваттных лазеров возможна
генерация аттосекундных рентгеновских и гамма
пучков с высокой яркостью и максимальной энер-
гией в единицы МэВ.

Формирование электронных сгустков при
взаимодействии мощного лазерного импульса
с твердотельными мишенями и сопутствую-
щая генерация некогерентного рентгеновского
и гамма-излучения широко исследуются в лите-
ратуре [1, 6–11]. В качестве мишеней рассмат-
риваются пленки [6–8], нити и стержни [9],
полоски [10], кластеры [11] и др. с микрометровы-
ми или нанометровыми размерами вдоль одного
или нескольких направлений. Так, пленки нано-
метровой толщины могут быть сформированы
из различных материалов, в частности, графена,
который используется в лазерно-плазменных экс-
периментах уже более десяти лет. Рассматривается
как излучение электронов в поле одной волны
[7, 8, 10, 11], так и взаимодействие с полями двух
встречных волн [6, 9]. С точки зрения приложений
реализация схемы с одним лазерным импульсом
намного проще, чем схемы встречного распро-
странения двух импульсов, полученных от одного
лазерного источника. В то же время схема с дву-
мя импульсами позволяет обеспечить полный
контроль параметров формируемого излучения,
включая угловое распределение, энергиюфотонов,
интегральную по частоте энергию в импульсе,
спектральные характеристики и др., что может
быть существенным в различных применениях.

Целью настоящей статьи является численное
исследование процессов формирования реляти-
вистского электронного зеркала и его взаимодей-
ствия со встречной волной, а такжеопределение ха-
рактеристик генерируемого некогерентного излу-
чения рентгеновского диапазона частот.

ФОРМИРОВАНИЕ РЕЛЯТИВИСТСКОГО
ЭЛЕКТРОННОГО ЗЕРКАЛА И ЕГО

ВЗАИМОДЕЙСТВИЕ СО ВСТРЕЧНОЙ
ВОЛНОЙ

Для нахождения характеристик релятивистско-
го электронного зеркала проводился вычислитель-

ный эксперимент, включающий двумерные (2D)
численные моделирования с помощью PIC (в ан-
глоязычной литературе «particle-in-cell», «облако
в ячейке») кодов процесса взаимодействия уско-
ряющего неадиабатического лазерного импульса
релятивистской амплитуды с плазменным сло-
ем. Ускоряющий лазерный импульс с амплиту-
дой 𝑎0 = 10, линейной поляризацией вдоль оси 𝑥,
гауссовским поперечным профилем с диаметром
20 мкм (здесь и ниже диаметр лазерного импульса
соответствует диаметру лазерного луча, определя-
емому по уровню поля 𝑒−1 от максимального зна-
чения поля на оси) распространяется вдоль линии𝑥 = 20λ в положительном направлении оси 𝑧, дли-
на волны λ = 1 мкм. Такие параметры соответству-
ют широко распространенным в настоящее вре-
мя лазерным установкам с импульсной мощностью
порядка 100–200 ТВт. Импульс имеет вид отрезка
синусоиды длиной 5λ, что соответствует неадиаба-
тической форме (уже первый полуцикл имеет ам-
плитуду, близкую к максимальной амплитуде им-
пульса [4]). Толщина плазменного слоя 5 нм и кон-
центрация электронов 0.6 ⋅ 1022 см−3, его началь-
ное положение 𝑧 = 0.5λ. Характеристики электро-
нов релятивистского зеркала через 4.5 периода 𝑇0
лазерного поля после начала моделирования пред-
ставлены на рис. 1.

Из рис. 1а следует, что при выбранных парамет-
рах лазерного импульса и мишени к моменту вре-
мени 4.5 периода 𝑇0 лазерного поля от начала моде-
лирования формируется релятивистское электрон-
ное зеркало.Наибольшую энергиюимеют электро-
ны вблизи оси лазерного импульса (участок зерка-
ла от 𝑥 = 15λ до 𝑥 = 25λ), при этом их продольный
импульс существенно больше поперечного (рис. 1б
и 1в), а разброс направления скорости не превыша-
ет 0.2 градуса. Толщина зеркала около оси лазера
составляет порядка 3 нм.

Характеристики наиболее энергичных электро-
нов зеркала в зависимости от времени представле-
ны на рис. 2. Максимальная энергия электронов
релятивистского зеркала может достигать величи-
ны γmax = 2𝑎20 = 200 при выбранных параметрах ми-
шени [3, 4], поэтому ускорение электронов зерка-
ла при взаимодействии со встречной волной еще
продолжается (моделирование более длинных вре-
мен ускорения требует существенного увеличения
вычислительных ресурсов). Импульсы и энергия
электронов растут, в частности, увеличение энер-
гии происходит от γ = 44.5 до γ = 59. Угол, состав-
ляемый вектором скорости наиболее энергичных
электронов релятивистского зеркала относитель-
но оси 𝑧, также изменяется от −12 до −10.5 граду-
сов. Исходя из этих значений, необходимо выби-
рать угол падения встречной волны при проведе-
нии вычислительных экспериментов. Так как энер-
гия электронов и угол их вектора скорости изме-
няются согласованно и регулярно во время взаи-
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Рис. 1. Характеристики электронов релятивистского зеркала через 4.5 периода𝑇0 лазерного поля от начала моделиро-
вания: пространственное распределение электронов (а), продольный импульс (красная кривая 1) и нормированная
энергия γ (синяя кривая 2) (б), поперечный импульс (в). Импульсы нормированы на mс.
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Рис. 2. Характеристики наиболее энергичных электронов релятивистского зеркала в зависимости от времени: нор-
мированные энергия γ (синяя кривая) и продольный импульс 𝑝z (красная кривая) (а), нормированный поперечный
импульс 𝑝x (синяя кривая) и угол вектора скорости (в градусах) относительно оси 𝑧 (красная кривая) (б), геометрия
взаимодействия релятивистского электронного зеркала со встречной волной в момент времени 4.5𝑇0 от начала моде-
лирования (встречная волна схематично показана синей полосой, на рисунке масштабы по осям 𝑧 и 𝑥 различные) (в).

модействия со встречной волной, характеристики
формируемогоизлучения (энергияимпульса, спек-
тральная плотность излучения и др.) будут зависеть
не только от направления, но и от времени.

Встречная волна в вычислительном экспери-
менте задавалась как внешнее поле, что упрости-
ло модификацию уже имеющегося численного ко-
дана случайнеколлинеарногопадения ускоряюще-
го и встречного импульсов. Короткая длительность
встречной волны позволила детально исследовать
генерацию синхротронного излучения в различ-
ные моменты времени. Геометрия взаимодействия
релятивистского электронного зеркала со встреч-
ной волной (синяя полоса) в момент времени 4.5𝑇0
от начала моделирования показана на рис. 2в. Вза-
имодействие электронов зеркала со встречной вол-
ной начинается только после того, как зеркало
сформировалось и электроны набрали требуемую
энергию (в данном случае энергия электронов зер-
кала примерно в 4 раза меньше энергии γmax, дости-
жимой при увеличении времени ускорения). По-
ляризованная вдоль оси 𝑦 плоская встречная вол-
на с амплитудой 𝑎1 = 1 включала один период ла-
зерного поля 𝑇0. Угол ее падения составлял 170.3○
к оси 𝑧 (на рис. 2в масштабы по осям 𝑧 и 𝑥 раз-

личные). Использование различных поляризаций
ускоряющей и встречной волн позволило выде-
лить синхротронное излучение электронов зерка-
ла, связанное только с полем встречной волны.
При этом излучение, вызванное начальным уско-
рением электронов и их продолжающимся движе-
нием в поле ускоряющей волны, имело поляриза-
цию вдоль оси 𝑥 и не препятствовало этому. Дли-
тельность взаимодействия встречной волны с наи-
более энергичными электронами зеркала составля-
ет около 1.5𝑇0 (от 3.5𝑇0 до 5𝑇0 после начала моде-
лирования), именно для этого интервала времени
и представлены параметры электронов на рис. 2а
и 2б. Остальные электроны в окне моделирования
имеют существенноменьшиеэнергииво времявза-
имодействия со встречной волной и формируют
низкочастотную часть излучения, поэтому в расче-
те дальнего поля они не учитываются.

ИЗЛУЧЕНИЕ ЭЛЕКТРОНОВ ЗЕРКАЛА
ПРИ ДВИЖЕНИИ В ПОЛЕ ВСТРЕЧНОЙ

ВОЛНЫ
Моделирование взаимодействия лазерно-

го импульса с электронами с помощью PIC-
кодов не позволяет напрямую исследовать поля
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рентгеновских и гамма частот. В то же время
их генерация происходит в результате движения
и синхротронного излучения электронов в поле
встречного лазерного импульса [1], и такое движе-
ние уже допускаетPICмоделирование. В результате
высокочастотные излучаемые поля в дальней зоне
могут быть вычислены с помощью применения
потенциалов Лиенара–Вихерта по сохраненным
на каждом шаге PIC моделирования координатам
и импульсам частиц. Для расчета этого излучения
была написана отдельная программа.

Характеристики синхротронного излуче-
ния представлены на рис. 3. Поле излучения
электронов в зависимости от времени (рис. 3а)
на расстоянии 10 м от области моделирования
вдоль линии максимальной интенсивности, со-
ставляющей угол −11.2○ от оси 𝑧, имеет вид шума,
что связано с некоррелированным излучением
отдельных электронов зеркала, имеющих разные
координаты и импульсы. Длительность импульса
излучения определяется временем прохождения
встречной волны по релятивистскому зеркалу
и окружающим электронам (рис. 2в). Средняя
часть импульса излучения с большими амплиту-
дами длительностью около 1.5𝑇0 (по уровню 1/𝑒)
формируется наиболее энергичными электронами
релятивистского зеркала, находящимися вблизи
оси лазерного импульса, начало и конец импульса
излучения — менее энергичными электрона-
ми, окружающими зеркало с обеих сторон. Все
электроны с энергией γ в момент времени 5𝑇0,
удовлетворяющей условию γ < γm − 20, где γm —
энергия наиболее энергичных электронов в этот
момент времени, в расчете поля в дальней зоне
не участвовали.

Встречная волна включает всего один пери-
од поля, поэтому излучение одиночного элек-
трона (частицы в PIC моделировании) состоит
из двух коротких импульсов (выделено красным
эллипсом рис. 3в) — положительного и отрица-

тельного, разделенных промежутком времени, где
поле мало. Этот промежуток времени намного
больше длительности импульсов. Такая структу-
ра излучения электрона возникает из-за разно-
го преобразования времени при изменении ско-
рости и ускорения электрона во время его дви-
жения в поле встречной волны. Там, где им-
пульсы накладываются, возникает увеличенный
пик. Поскольку начальное распределение плотно-
сти в мишени случайное, расстояния между им-
пульсами излучения разных частиц также подчи-
няются случайному закону (рис. 3б), а суммарное
поле, излучаемое всеми электронами, становится
стохастическим.

СПЕКТРАЛЬНАЯ ПЛОТНОСТЬ ПОЛЯ
ИЗЛУЧЕНИЯ И УГЛОВОЕ РАСПРЕДЕЛЕНИЕ

ЭНЕРГИИ ИМПУЛЬСА
Частотные и угловые характеристики синхро-

тронного излучения электронов релятивистского
зеркала показаны на рис. 4. Спектральная плот-
ность поля излучения в точке на расстоянии 10 м
от области моделирования вдоль линии, составля-
ющей угол −11.2○ от оси 𝑧, для прежней амплитуды
встречной волны (𝑎1 = 1) представлены на рис. 4а.
Вычисление спектральной плотности проводилось
по алгоритму Вэлша. Спектральная плотность по-
ля имеет модуляцию, характерную для генерации
синхротронного излучения электронами в поле ла-
зерной волны [12]. Такая форма спектра содержит
несколько плавных максимумов, которые возника-
ют при наложении спектров двух близких по фор-
ме положительного и отрицательного импульсов,
составляющих полный импульс излучения одного
электрона (рис. 3в).Периодмодуляцииопределяет-
ся расстоянием между импульсами, а общая шири-
на спектра — длительностью импульса. Сложение
излучений от всех электронов приводит к допол-
нительной случайной высокочастотной модуляции
спектра, поскольку для двух электронов в зерка-

E
y
 

ба в

0.5

0

1.5

1

�0.5

�1.5

�2

�1

×106

E
y
 

0.5

0

1.5

1

�0.5

�1.5

�2

�1

×106

×10
_

14

E
y
 

0.5

0

1.5

1

�0.5

�1.5

�2

�1

×106

2.4 2.8 3.22.6 3 3.4

t ×10
_

14

3.132 3.136 3.14
3.134 3.138 3.142 3.146

3.144 3.148 3.13933.1392 3.1394 3.13963.1395 3.1397

t ×10
_

14
t

Рис. 3. Характеристики синхротронного излучения: зависимость поля излучения электронов от времени на рас-
стоянии 10 м от области моделирования вдоль линии максимальной интенсивности, составляющей угол −11.2○
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Здесь и ниже поле 𝐸y представлено в относительных единицах, время 𝑡 в секундах). Красным эллипсом на рис. 3в вы-
делен импульс излучения одиночного электрона.
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моделирования (б); то же, но в полярных координатах (в), спектральная плотность поля излучения для увеличенной
амплитуды встречной волны 𝑎1 = 5 (г); интегральная (по спектру) энергия импульса рентгеновского излучения в за-
висимости от угла для увеличенной амплитуды встречной волны (д).

ле частота модуляции их совместного спектра тем
больше, чем больше расстояние по времени меж-
ду их импульсами излучения, в результате спектр
получается фактически линейчатым (см. первый,
второй и третий максимумы на рис. 4а). Пери-
од модуляции составляет около 1.4 ⋅ 1018 Гц, т. е.
порядка 5.8 кэВ. Максимальное значение спек-
тральной плотности достигается вблизи частоты 2 ⋅1018 Гц, при этом энергия фотонов составляет око-
ло 8.3 кэВ. В спектральной плотности отчетливо
видны 9 периодов модуляции, таким образом, фор-
мируется некогерентное рентгеновское излучение
с максимальной энергией фотонов более 50 кэВ.
Для других направлениймаксимальная энергия из-
лученных фотонов уменьшается, при этом период
модуляции спектра также становится меньше. Так,
под углом 9○ наблюдается 4 максимума с шириной
каждого около 7.5 ⋅ 1017 Гц, что соответствует мак-
симальной энергии фотонов около 12 кэВ.

На рис. 4б представлена интегральная (по ча-
стоте) энергия импульса рентгеновского излуче-
ния в зависимости от угла от оси 𝑧 на расстоянии10 м от области моделирования. Энергия импульса

имеет максимум при отклонении от оси 𝑧 на угол−11.2○, что соответствует направлению скорости
наиболее энергичных электронов в момент време-
ни, соответствующий середине интервала взаимо-
действия встречной волны с зеркалом (рис. 2б).
Полная ширина распределения составляет поряд-
ка 2○ (по уровню половины высоты), что находит-
ся в хорошем соответствии с максимальной энер-
гией электронов γ в процессе взаимодействия [1].
Полярная диаграмма на рис. 4в демонстрирует, что
формируется узкий игольчатый луч, который мо-
жет найти применение во многих приложениях.

Спектральная плотность поля излучения элек-
тронов релятивистского зеркала для увеличенной
амплитуды встречной волны 𝑎1 = 5 показана
на рис. 4г. В этом случае модуляция спектральной
плотности практически отсутствует, поскольку
расстояние между двумя импульсами, входящими
в поле, излучаемое каждым электроном, увеличи-
лось и период модуляции стал малым. Максимум
спектральной плотности сдвинулся на частоту5 ⋅ 1018 Гц, при этом энергия фотонов вырос-
ла в 2.5 раза до значения ≈ 20.7 кэВ. При этом
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максимальное значение спектральной плотности
увеличилось незначительно (приблизительно
на 30%), а ее ширина увеличилась более, чем
в 2 раза, так что максимальная энергия фотонов
оказалась более 100 кэВ.

Интегральная (по спектру) энергия импульса
рентгеновского излучения в зависимости от угла
для увеличенной амплитуды встречной волны по-
казана на рис. 4д. Ширина распределения осталась
практически неизменной, что связано с наличи-
ем поля ускоряющего лазерного импульса во вре-
мя взаимодействия электронов зеркала со встреч-
ной волной. При этом максимальная энергия в им-
пульсе выросла в 2.6 раз в соответствии с уширени-
ем спектра генерируемого излучения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Максимальная энергия электронов реляти-

вистского зеркала γmax = 2𝑎20 = 200 достигается
для времени ускорения 𝑇acc/𝑇0 ≈ 3𝑎20/8 = 75 при
выбранных параметрах ускоряющего импульса
и мишени [3, 4]. Поэтому простой задержкой
встречной волны можно регулировать энергию
ускоренных электронов во время взаимодей-
ствия. Выбирая максимальную задержку, можно
получить энергию фотонов почти до 1 МэВ. Уве-
личение амплитуды ускоряющего импульса также
позволит увеличить энергию излучаемых фотонов
даже при малых временах ускорения. Так, для𝑎0 = 20 энергия электронов вырастает в четыре
раза, а максимальная энергия фотонов в 16 раз,
т. е. уже могут генерироваться гамма-лучи. Еще
одной возможностью управлять энергией фотонов
является увеличение амплитуды встречной волны.
Поскольку угловое распределение излучения с уве-
личением амплитуды встречной волны меняется
слабо (по крайней мере, до величины 𝑎1 = 5),
энергетическая эффективность схемы в экспери-
ментальных приложениях может быть увеличена
путем выбора сравнимых амплитуд ускоряю-
щей и встречной волн и оптимальных задержек
встречной волны относительно ускоряющей. Од-
новременно с увеличением максимальной энергии
фотонов увеличивается и энергия в излучаемом
импульсе.

Еще одной важной характеристикой рентге-
новского излучения является длительность им-
пульса. В вычислительном эксперименте длитель-
ность импульса определялась временем прохода
встречной волны по зеркалу и составляла поряд-
ка 5 фс, при этом диаметр зеркала был около10 мкм (область нахождения ускоренных электро-
нов с высокой энергией). Длительность импуль-
са можно уменьшить, если выбрать ускоряющий
импульс с меньшим диаметром (что позволит так-

же ослабить требования к мощности лазера), ли-
бо уменьшить диаметр встречной волны (при ис-
пользовании в экспериментах встречного импуль-
са с гауссовским поперечным распределением).
Оценки показывают [6], что в этом случае длитель-
ность импульса рентгеновского излучения может
составлять несколько сотен аттосекунд. Кроме то-
го, фокусировка встречной волны позволяет так-
же уменьшитьи диаметристочника рентгеновского
излучения до размера порядка 1–2 мкм.

Таким образом, преимуществами схемы яв-
ляются: возможность управлять параметрами
формируемого импульса; аттосекундная длитель-
ность генерируемого рентгеновского и гамма-
излучения; минимальный диаметр источника
порядка 1–2 мкм; ширина формируемого луча1–2 градуса и менее (игольчатый луч); возмож-
ность одновременно сформировать под разными
углами синхронизированные по времени импуль-
сы с разной энергией фотонов.

Установки с такими характеристиками могут
с успехом использоваться во многих приложениях.
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ВВЕДЕНИЕ

В настоящее время одной из важнейших задач
квантовой оптики является генерация различных
неклассических состояний электромагнитного по-
ля. Так, например, в процессе параметрического
излучения света можно получить сжатые состояния
электромагнитного поля [1–5]. Важно, что сжатый
свет может быть использован для сверхчувстви-
тельных измерений с уменьшением уровня шума
ниже стандартного квантового предела [6]. При
этом крайне востребованными оказываются мето-
ды, позволяющие управлять свойствами генериру-
емого света [7–9]. Еще одним интересным и пер-
спективным направлением является анализ нели-
нейных процессов, происходящих под действием
неклассического света. Данное направление явля-
ется еще малоизученным в силу своей новизны, од-
нако по нему уже было проведено несколько экс-
периментальных реализаций, одними из немного-
численных примеров которых служат эксперимен-
ты по возбуждению второй гармоники светом в со-
стоянии сжатого вакуума [10]. Эксперименты по-
казали, что начальное состояние поля и состоя-
нияфотонов сильно влияют на характеристики вы-

ходного сигнала второй гармоники [10]. В боль-
шинстве случаев нелинейные процессы рассмат-
риваются именно в случае классической накачки,
так как квантовая накачка характеризуется огра-
ниченным запасом фотонов, которые могут рас-
ходоваться в процессе взаимодействия в отличие
от классического случая, где число фотонов на-
столько велико, что их убывание пренебрежимо
мало. Темнеменее, физические особенности нели-
нейных процессов, возникающих под действием
неклассических полей, представляют собой крайне
важное направление современных квантовых ис-
следований.

В данной работе в рамках полностью кван-
тового рассмотрения исследовано взаимное вли-
яние одновременно происходящих процессов па-
раметрического излучения света в вырожденном
по частоте режиме и генерации второй гармоники
в нелинейной среде. Нельзя не отметить, что ра-
нее такой полностью квантовый подход уже был
успешно применен в ряде работ [11–13]. Так, в ра-
боте [11] аналитически в пределе малых времен
был описан процесс многократной генерации вто-
рой гармоники. В работе [12] в этом же приближе-
нии в результате анализа процесса генерации выс-
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ших гармоник было показано значительное сжатие
фундаментальноймоды.Детальный анализ кванто-
вого состояния поля фундаментальной моды, воз-
никающий в режиме генерации второй гармони-
ки, был проведен в [13]. В данной работе проведен-
ный анализ выходит за рамки приближения малых
времен, а в случае изначально малого запасенного
числа фотонов в системе позволяет найти аналити-
ческое решение. Кроме того, в отличие от [11–13],
в данной работе основное внимание уделено ана-
лизу именно процесса генерации параметрическо-
го излучения, поскольку изначально в фундамен-
тальной моде предполагается вакуум. Исследова-
ние заключается в анализе вырожденного по часто-
те режима, в результате чего возникает нелиней-
ное взаимодействие низкочастотной моды и мо-
ды на удвоенной частоте. На основе полученно-
го решения были исследованы различные режи-
мы динамики системы, приводящие к перераспре-
делению начальной энергии между высокочастот-
ной и низкочастотной модами. Обнаружены новые
эффекты, обусловленные квантовыми свойствами
поля в изначально заселенной моде. Аналитически
получены интегралы движения в системе и проде-
монстрированы особенности изменения среднего
числа фотонов для каждой из мод поля во време-
ни. Рассмотрены различные начальные состояния
каждого из полей, и для каждого из случаев деталь-
но проанализировано изменение статистики фото-
нов в каждой моде в процессе взаимодействия. По-
лучен параметр Шмидта, который количественно
характеризует степень перепутанности генерируе-
мых полевых состояний.

ТЕОРЕТИЧЕСКИЙ ПОДХОД
Исследуется динамика взаимодействия высоко-

частотного и низкочастотного полей в нелинейно-
оптической среде с ненулевой квадратичной
нелинейной восприимчивостью в условиях одно-
временно происходящих процессов вырожденного
по частоте параметрического излучения света
и генерации второй гармоники. Взаимодействие
полей рассматривается в рамках нестационарного
уравнения Шредингера:𝑖ℏ𝜕Ψ𝜕𝑡 = 𝐻̂Ψ. (1)

В исследуемом случае высокочастотное поле
является накачкой для вырожденного по частоте
процесса параметрической генерации, в то время
какфотонынизкочастотного поля стимулируют ге-
нерацию света на удвоенной частоте. Гамильтони-
ан такой системы имеет следующий вид:𝐻̂ = ℏω0 ̂𝑎+ ̂𝑎 + 2ℏω0 ̂𝑐 + 𝑖ℏΓ ( ̂𝑎+2 ̂𝑐 − ̂𝑐+ ̂𝑎2) , (2)
где ̂𝑎+ и ̂𝑎 — операторы рождения и уничтоже-
ния фотона в низкочастотном поле, соответствен-
но, а ̂𝑐+ и ̂𝑐— в высокочастотном поле. Коэффици-
ентΓопределяетсянелинейнойвосприимчивостью

среды второго порядка, а частоты ω0 и 2ω0 — это
собственные частоты квантовых полевых осцил-
ляторов, характеризующих низкочастотную и вы-
сокочастотную полевые моды, соответственно. Га-
мильтониан (2) описывает одновременно проис-
ходящие и взаимосвязанные процессы генерации
параметрического излучения и сигнала суммарной
частоты, точнее, второй гармоники, поскольку рас-
сматривается вырожденный режим.

В общем случае нестационарное уравнения
Шредингера (1) решается численно с помощьюме-
тода разложения решения по собственным (фоков-
ским) состояниям φn(𝑞1) и (φ̃k(𝑞2) невзаимодей-
ствующих подсистем низкочастотного и высокоча-
стотного поля, соответственно:ψ (𝑞1, 𝑞2, 𝑡) =∑Cn,kϕn (𝑞1) ϕ̃k (𝑞2) 𝑒− 𝑖𝐸nk𝑡ℏ , (3)
где 𝑞i — безразмерная полевая квадратура моды
квантового поля, Cn,k(𝑡) — зависящие от време-
ни амплитуды вероятности обнаружить 𝑛 фотонов
в низкочастотном поле и 𝑘 фотонов в моде второй
гармоники, а суммарная энергия 𝐸nk определяется
следующим образом:𝐸nkm = ℏω0 (𝑛 + 12) + 2ℏω0 (𝑘 + 12) . (4)

Подстановка решения (3) в уравнение (1) при-
водит к системе дифференциальных уравнений
для амплитуд вероятности Cn,k(𝑡):̇Cn,k = Γ (−√(𝑛 + 1)(𝑛 + 2)𝑘Cn+2,k−1+

+√𝑛(𝑛 − 1)(𝑘 + 1)Cn−2,k+1) . (5)

Решение данной системы было найдено анали-
тически для случая, когда в поле изначально запа-
сено малое количество фотонов.

В общем случае полученное решение позволит
нам рассчитать вероятность обнаружить 𝑛фотонов
внизкочастотноймодеи𝑘фотонов в высокочастот-
ной моде по следующей формуле:𝑊nk(𝑡) = ∣𝐶nk(𝑡)∣2 . (6)
При этом вероятность обнаружения 𝑛 фотонов
в низкочастотном поле может быть получена
по формуле: 𝑊n(𝑡) =∑𝑘 ∣𝐶nk(𝑡)∣2 . (7)

Аналогичная формула используется для вычис-
ления вероятности обнаружить 𝑘 фотонов в высо-
кочастотной моде:𝑊k(𝑡) =∑𝑛 ∣𝐶nk(𝑡)∣2 . (8)

В качестве начальных состояний квантового
поля были рассмотрены такие неклассические со-
стояния, как фоковское состояние Φn с различным
числом фотонов 𝑛 и когерентное состояние ∣α⟩,
которое может быть представлено в виде суперпо-
зиции фоковских состояний [14]:
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∣α⟩ =∑𝑛 exp (− ∣α∣22 ) 𝑎n√𝑛!Φn. (9)

Данное состояние характеризуется распреде-
лением Пуассона со среднем числом фотонов⟨𝑁⟩ = ∣α∣2 и дисперсией по числу фотонов 𝐷n = ⟨𝑁⟩.

Для количественной характеристики запутан-
ности полевыхмод был рассчитан параметрШмид-
та 𝐾 [15], который для нашей системы может быть
вычислен следующим образом:𝐾 = 1∑𝑛,𝑎,𝑘,𝑗𝐶nk𝐶∗ak𝐶∗nj𝐶aj

. (10)

Чем больше этот параметр, тем выше степень
перепутывания в системе [15, 16]. Минимальное
значение параметра Шмидта равняется 1, что со-
ответствует случаюполнойнезависимостиполевых
мод друг от друга.

Для случая, когда изначально вся энергия за-
пасена в высокочастотной моде и превалирует
процесс рождения низкочастотных фотонов, бы-
ло проведено сравнение полученных результатов
со случаем параметрической генерации под дей-
ствием классической накачки. Гамильтониан такой
системы имеет следующий вид:𝐻̂ = ℏω0 ̂𝑎+ ̂𝑎 + 𝑖ℏΓ ( ̂𝑎+2𝑒−2𝑖ω0𝑡 + ̂𝑎2𝑒2𝑖ω0𝑡) , (11)

где ̂𝑎+ и ̂𝑎 — это операторы рождения и уничтоже-
ния фотона в полевой моде, соответствующей ча-
стоте ω0.

Для случая классической накачки изменение
среднего числа фотонов в квантовой моде со вре-
менем хорошо известно и имеет следующий вид:

⟨𝑁a(𝑡)⟩ = sh2 (2Γ𝑡) . (12)
Поскольку в случае классической накачки в пара-
метр Γ включена амплитуда поля накачки, обоб-
щение данной формулы на квантовый случай при-
водит к выражению для правой части (12) в виде

sh2 (2Γ√⟨𝑁c⟩𝑡), где ⟨𝑁c⟩ — среднее число фотонов
на входе высокочастотной квантовой моды.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эффект истощения квантовой накачки

Первоначально в работе рассматривается взаи-
модействие квантовых полей при таком начальном
состоянии ψin1

, что высокочастотное поле находит-
ся в фоковском состоянии с 10 фотонами, а низко-
частотное — в вакууме. В результате анализа изме-
нения энергии каждой из полевых мод наблюдает-
ся периодическая перекачка энергии из одной мо-
ды в другую. Так, на рис. 1 представлены осцилля-
ции среднего числа фотонов в низкочастотной мо-
де, на фоне которых режим генерации сигнала па-
раметрическогоизлученияможно увидеть на самом
начальном этапе взаимодействия.

Для более детального исследования данного
режима сравним воздействие квантовой накачки
с влиянием классической, для изучения которой
был взят гамильтониан (11), соответствующий си-
стеме, состоящей из низкочастотного квантового
поля с параметрической нелинейностью. Из рис. 1
видно, что на начальном этапе энергетические кри-
вые совпадают. Однако в силу того, что в случае
квантовойнакачкиизначальный запасфотонов ко-
нечен и достаточно мал, с течением времени на-
чинает проявляться все в большей степени эффект
истощения накачки. Он проявляется значитель-
ным отклонением кривой, полученной в кванто-
вом случае, от результата, соответствующего клас-
сической накачке, в которой запас фотонов на-
столько велик, что их убывание никак не проявля-
ется.Как только эффектистощениянакачки стано-
вится существенным, возникает режим квазипери-
одического обмена энергией между полевыми мо-
дами.

б

t
t
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Рис. 1. Сравнение временных зависимостей изменения среднего числа фотонов в низкочастотной моде ⟨𝑁a(𝑡)⟩
в случае численного расчета для системы, состоящей из двух квантовых полевых мод, при начальном условииψin1
= ∣0⟩a∣ 10⟩c (а) и в случае аналитически полученной зависимости для параметрического излучения с классической

накачкой (б).
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Эффект достижения равновесного числа фотонов
в модах поля

Также был рассмотрен случай, когда высо-
кочастотное поле в начальный момент времени
находится в когерентном состоянии ψin2

= ∣0⟩a∣α⟩c
со средним числом фотонов ⟨𝑁⟩ = 20. При анали-
зе изменения средних энергий полей на началь-
ных этапах взаимодействия обнаружена перекач-
ка энергии из одной подсистемы в другую, во вре-
мя которой происходит квазипериодическая сме-
на режимов генерации параметрического излуче-
ния и второй гармоники. Эффективность данно-
го процесса постепенно снижается, пока не насту-
пает баланс между процессами генерации фото-
нов в низкочастотной и высокочастотной полевых
модах. Данный эффект соответствует достижению
равновесного числа фотонов в каждой из мод по-
ля, что хорошо проиллюстрировано на рис. 2 в виде
квазипериодического формирования так называе-
мых «плато», свидетельствующихо том, что среднее
число фотонов в каждой из полевых мод практиче-
ски не меняется со временем.

Формирование перепутанного двумодового полевого
состояния

Проанализируем свойства двумодового поле-
вого состояния, формирующегося в интервале вре-
мен, соответствующих «плато». Для любого момен-
та времени полевое состояние должно удовлетво-
рять закону сохранения энергии, согласно которо-
му суммарная энергия, запасенная в системе изна-
чально, сохраняется:

⟨𝑁a(𝑡)⟩ + ⟨𝑁c(𝑡)⟩ = 𝑐𝑜𝑛𝑠𝑡 = ⟨𝑁a(0)⟩ + 2⟨𝑁c(0)⟩. (13)

Более того, анализ системы уравнений Гей-
зенберга для операторов числа фотонов ̂𝑛𝑎 = ̂𝑎+ ̂𝑎
и ̂𝑛𝑐 = ̂𝑐+ ̂𝑐, записанных для гамильтониана (2),
⎧⎪⎪⎨⎪⎪⎩
̂𝑛′a(𝑡) = 2Γ ( ̂𝑐(𝑡) ̂𝑎+2(𝑡) + ̂𝑐+(𝑡) ̂𝑎2(𝑡)) ,̂𝑛′c(𝑡) = −Γ ( ̂𝑐(𝑡) ̂𝑎+2(𝑡) + ̂𝑐+(𝑡) ̂𝑎2(𝑡)) (14)

позволяет выявить следующий интеграл движения
в операторном виде:̂𝐼 = ̂𝑛a(𝑡) + 2 ̂𝑛c(𝑡). (15)

Найденный интеграл движения не только вос-
производит закон сохранения энергии (13), опреде-
ляя для выбранного начального условия соотноше-
ние между средним числом фотонов ⟨𝑘⟩ и ⟨𝑛⟩ высо-
кочастотной и низкочастотной мод поля в виде:

⟨𝑘⟩ = 2∣α∣2 − ⟨𝑛⟩2 , (16)

нои дает возможность получить для любогомомен-
та времени дисперсию суммы чисел фотонов в двух
модах, которая определяется начальной дисперси-
ей числафотонов входного высокочастотного поля:𝐷n+2k = 4∣α∣2. (17)
Соотношения (16) и (17) показывают, что двойное
распределение по числу фотонов в полевых модах
будет иметь анти-диагональную структуру с харак-
терной шириной, определяемой из (17). Это под-
тверждает и представленное на рис. 3 получен-
ное численно двумерное распределение по чис-
лу фотонов для момента времени, соответствую-
щий «плато». Действительно, распределение име-
ет анти-диагональный вид с широким разбросом
по номерам, квазилинейчатые структуры в рас-
пределении, подчиняющиеся закону (16), исходят
из четных высокихномеров𝑛, соответствующихва-
кууму в высокочастотном поле.

Представленное на рис. 3 распределение поз-
воляет детально проанализировать статистические
характеристики возникающих «квазистационар-
ных» состояний поля во время установления ба-
ланса между процессами генерации фотонов в рас-
сматриваемых полевых модах. Так, для низкоча-
стотного поля в распределении по числу фотонов
задействованы лишь четные номера состояний,
при этом для низких фоковских состояний ха-
рактерен спад вероятности с увеличением но-
мера состояния. Таким образом, распределение
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Рис. 2. Временная зависимость среднего числа фотонов в низкочастотной (а) и высокочастотной (б) модах поля в слу-
чае начального состояния ψin2

= ∣0⟩a∣α⟩c, где ∣α∣2 = 20.
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Рис. 3. 2D-распределение вероятности нахождения𝑛 фотонов в низкочастотной и 𝑘 фотонов в высоко-
частотной моде поля в случае начального состоянияψin3
= ∣0⟩a∣α⟩c, где ∣α∣2 = 20 для 𝑡 = 6.

низкочастотного поля аналогично распределению
для сжатого состояния [2, 16, 17]. Тем не менее,
для высоких номеров, соответствующих основа-
ниям анти-диагоналей на рис. 3, возникают ло-
кальные пики вероятности. Что касается статисти-
ки фотонов высокочастотного поля, то, с одной
стороны, распределение Пуассона, соответствую-
щее начальному состоянию (9), сильно деформи-
руется, однако при этом его очертания в изначаль-
ной окрестности номеров все же заметны. С дру-
гой стороны, наблюдается сильное проявление ва-
куума, а также низких фоковских состояний с чет-
ными номерами. Такое формирование квазиста-
ционарных состояний и есть проявление особен-
ностей установления баланса между процессами
генерации параметрического излучения и второй
гармоники.

Отметим, что, как и можно было ожидать, рас-
пределение, представленное на рис. 3, однознач-
но свидетельствует о формировании перепутанно-
го двумодового полевого состояния, которое немо-
жет быть представлено в виде произведения век-
торов состояний в отдельных модах. Для анали-
за квантовых корреляций в системе был рассчитан
параметр Шмидта (10), который показал, что мо-
ды в процессе нелинейного взаимодействия харак-
теризуются высокой степенью запутывания вплоть
до тех пор, пока в системе не наступит баланс.
В этом случае параметр Шмидта выходит на кон-
кретное значение, примерно равное 5, в окрестно-
сти которого осциллирует с малой амплитудой.

ЗАКЛЮЧЕНИЕ
Таким образом, изучена динамика взаимно-

го влияния процессов генерации второй гармо-
ники и параметрического излучения, одновремен-

но происходящих в нелинейной среде. Продемон-
стрирован эффект истощения квантовой накачки
при сравнении динамики среднего числа фотонов
в низкочастотной моде, в случае квантовой и клас-
сической высокочастотной накачки. Обнаружено
квазипериодическое формирование «плато» на за-
висимостях средней энергии в высокочастотном
и низкочастотном полях от времени, причем в дан-
ном режиме среднее числофотонов в каждой из по-
левых мод практически не меняется со временем.
Продемонстрировано формирование квазистаци-
онарного двумодового полевого состояния, возни-
кающего за счет установления баланса между рас-
сматриваемыми процессами, и выявлены его ста-
тистические характеристики. Показано, что в про-
цессе взаимодействия полевые моды оказывают-
ся сильно перепутаны, причем максимальная пе-
репутанность достигается именно для формирую-
щегося квазистационарного двумодового полевого
состояния в режиме баланса энергии между двумя
рассматриваемыми нелинейными процессами.

Работа выполнена при поддержке Министер-
ства науки и высшего образования РФ (грант
№075-15-2024-538) иприподдержкефонда «Базис»
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в рамках Программы развития Междисциплинар-
ной научно-образовательной школы Московского
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ВВЕДЕНИЕ
Нелинейное пропускание интерферометров,

заполненных различными оптическими средами,
в поле интенсивного света было экспериментально
продемонстрировано еще в 1970-е годы [1]. Особое
внимание исследователей привлекли гистерезис
и бистабильные и мультистабильные режимы
пропускания нелинейных интерферометров. Эти
явления вызвали большой интерес не только
из-за их фундаментальной значимости, но и из-
за вдохновляющих перспектив практического
применения для управления «светом с помо-
щью света» (см., например, обзор более тысячи
публикаций в монографии [2]). Было показано,
что большое значение для приложений имеют
интерферометры, заполненные материалами,
которые характеризуются высокой и малоинерци-
онной нелинейностью оптических характеристик.
Однако материалы, время нелинейного отклика
которых соответствовало бы субпикосекундному
диапазону, конкурентному для создания устройств
управления параметрами излучения в сравнении
с электронными аналогами, и нелинейность кото-
рых при этом наблюдалась бы при относительно
невысоких интенсивностях излучения, найдены

тогда не были [3]. Это не позволило реализовать
многообещающие научные проекты, такие как,
например, создание чисто оптических сверх-
быстродействующих цифровых вычислительных
систем [4].

Недавнее обнаружение у ряда сред в терагер-
цовом (ТГц) спектральном диапазоне гигантской
и одновременно малоинерционной нелинейности
показателя преломления колебательной природы,
в миллионы раз превосходящей нелинейность этих
сред в видимом и ближнем ИК диапазонах [5–13],
вновь привлекает внимание к возможности созда-
ния разнообразных систем сверхбыстрого управ-
ления «светом с помощью света», но теперь в ТГц
спектральном диапазоне [14, 15].

Важной особенностью многих оптических сред
в ТГц спектральном диапазоне является не толь-
ко высокаянелинейность показателяпреломления,
но и значительная величина его линейной части.
Это позволяет рассматривать нелинейные интер-
ферометры Фабри–Перо в их простейшем виде
кристаллическойпластины, для которойфренелев-
ское отражение вполне позволяет наблюдать зна-
чимые эффекты многолучевой интерферометрии
без напыления зеркал на грани пластины.
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Настоящая работа посвящена анализу возмож-
ности использования беззеркальных нелинейных
интерферометров Фабри–Перо для сверхбыстрого
дифференциального усиления ТГц излучения в по-
ле волны накачки той же частоты. Под дифферен-
циальным усилением в статье мы понимаем боль-
шое увеличение интенсивности выходного сигна-
ла Δ𝐼out при малом увеличении интенсивности сиг-
нала на входе в нелинейный интерферометр Δ𝐼in.
Энергия, необходимая для усиления сигнала, по-
ступает из волны накачки той же частоты. Высоко-
эффективным дифференциальное усиление пола-
гаем, когда Δ𝐼out ≫ Δ𝐼in.

В работе показано, что для наблюдения в нели-
нейном интерферометре Фабри–Перо режима
максимального нелинейного усиления любого
сигнала, в том числе терагерцового, необходимо,
чтобы геометрическая толщина рабочей среды
и интенсивность излучения на входе в интерфе-
рометр принимали фиксированные дискретные
значения, которые определяются френелевским
коэффициентом отражения среды и коэффици-
ентом ее нелинейного показателя преломления.
Расчетами продемонстрировано, что в кристал-
лическом кварце, который обладает гигантской
и малоинерционной нелинейностью показателя
преломления в ТГц диапазоне, режим дифферен-
циального усиления для излучения с центральной
частотой 1 ТГц возможно наблюдать при тол-
щинах порядка 1 мм и интенсивностях порядка108 Вт⋅см−2.

БИСТАБИЛЬНОСТЬ И УСИЛЕНИЕ
В НЕЛИНЕЙНОМ ИНТЕРФЕРОМЕТРЕ

ФАБРИ–ПЕРО
Функция пропускания нелинейного интерфе-

рометра Фабри–Перо, состоящего из двух плоско-
параллельных зеркал, между которыми заключена
оптическая среда, в случае нормального падения
излучения на интерферометр, имеет вид [2]

𝐼t= 𝐼01+ 4𝑅(1−𝑅)2 sin2 (2π𝐿λ 𝑛0+ 32 (1+𝑅1−𝑅)(2π𝐿λ ) 𝑛2𝐼t) ,
(1)

где 𝐼0 и 𝐼t — интенсивности излучения на вхо-
де и выходе из интерферометра, соответственно,λ — длина волны излучения, 𝐿 — геометрическая
толщина оптической среды интерферометра, 𝑛0 —
ее линейный показатель преломления, 𝑛2 — ко-
эффициент нелинейного показателя преломления
среды, 𝑅— коэффициент отражения зеркал интер-
ферометра.

Формула (1) справедлива и для описания про-
пускания беззеркального интерферометра, в кото-
ром отражение падающего излучения происходит
не от зеркал, а от границы раздела оптической сре-
ды интерферометра и воздуха. В таком случае ко-

эффициент отражения 𝑅 рассчитывается по фор-
муламФренеля и зависит только от показателя пре-
ломления среды. Впервые такой нелинейный без-
зеркальный интерферометр был эксперименталь-
но рассмотрен в 1979 году для монохроматического
излучения ближнего ИК диапазона спектра [16].

На рис. 1 в логарифмическом масштабе изоб-
ражена рассчитанная по формуле (1) кривая про-
пускания излучения частоты 1 ТГц беззеркальным
нелинейным интерферометром Фабри–Перо в ви-
де пластинки из кристаллического кварца толщи-
ной 𝐿 = 1.013 мм (показатель преломления 𝑛0 = 2.1
и, соответственно, коэффициент френелевского
отражения 𝑅 = 0.126). При входной интенсивно-
сти большей значения 1 ⋅ 108 Вт⋅см−2 нелинейное
пропускание резко увеличивается, превышая зна-
чение, которое было бы при линейной рефрак-
ции. В этом диапазоне входных интенсивностей
возможна реализация режима дифференциально-
го усиления слабого сигнала той же частоты (смот-
ри вставку на рисунке). Иногда этот режим также
называют «транзисторным» в силу сходства кри-
вой пропускания интерферометра при дифферен-
циальномусилении входногоизлучения вполе вол-
ны накачки с выходной характеристикой бипо-
лярного транзистора. При интенсивности поряд-
ка 3 ⋅ 108 Вт⋅см−2 и выше в функции пропуска-
ния интерферометра наблюдается бистабильность
пропускания, когда одному значению интенсивно-
сти на входе в интерферометр соответствует два
значения на выходе из него (строго говоря, одно-
му значению входной интенсивности на кривой
пропускания соответствует три значения, но од-
но из них — среднее — неустойчиво и не реализу-
ется на практике [2]). Важно отметить, что режи-
мы бистабильного пропускания возникают после

Линейное пропускание
Нелинейное пропускание

I0, 108 Вт/см2

A

В

t

t

I t
, 1
0
8
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2

0.50.2 21 5

0.5

0.2

2
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Рис. 1. Зависимость интенсивности излучения с ча-
стотой 1 ТГц на выходе из пластины кристаллическо-
го кварца толщиной 1.013 мм от интенсивности излу-
чения на входе в пластину (сплошная оранжевая кри-
вая). Вставка иллюстрирует возможность использова-
ния пластины кристаллического кварца для усиления
входного сигнала той же частоты (A— временной про-
филь входного сигнала, B — выходного). Синей пунк-
тирной линией приведен вид линейного пропускания.
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«транзисторного» режима. В этом смысле точка,
где наблюдается максимальное усиление, являет-
ся пороговой точкой и для наблюдения бистабиль-
ности. Однако, например, при несколько боль-
шей толщине пластинки кристаллического квар-
ца 𝐿 = 1.063 мм в кривой пропускания нелиней-
ного интерферометра режим дифференциального
усиления отсутствует, и наблюдается только режим
бистабильности. Математически условия наличия
в функции пропускания нелинейного интерферо-
метра Фабри–Перо режима дифференциального
усиления задаются выражениями [2]𝑑𝐼0𝑑𝐼t = 0, 𝑑2𝐼t𝑑𝐼20 = 0. (2)

Для дальнейшего анализа и вычислений удобно
ввести нормированные переменные:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿̃ = 2π𝐿λ 𝑛0,
𝐼̃t = 32 1 + 𝑅1 − 𝑅 𝑛2𝑛0 𝐿̃𝐼t,𝐼̃0 = 32 1 + 𝑅1 − 𝑅 𝑛2𝑛0 𝐿̃𝐼0.

(3)

В безразмерных переменных (3) функция про-
пускания (1) принимает более простой вид

𝐼̃0 = 𝐼̃t [1 + 4𝑅(1 − 𝑅)2 sin2 (𝐼̃t + 𝐿̃)] . (4)

Подстановка уравнения (4) в выражения (2)
в приближении отсутствия зависимости коэффи-
циента отражения от интенсивности приводит
к системе из двух линейно независимых уравнений⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + 𝑅22𝑅 − cos 2 (𝐼̃t + 𝐿̃) + 2𝐼̃t sin 2 (𝐼̃t + 𝐿̃) = 0,
sin 2 (𝐼̃t + 𝐿̃) + 𝐼̃t cos 2 (𝐼̃t + 𝐿̃) = 0. (5)

Система (5) сводится к уравнению
cos 2 (𝐼̃t + 𝐿̃) = 𝑓±(𝑅), (6)

где

𝑓±(𝑅) = −𝑅2 + 1 ±√𝑅4 + 34𝑅2 + 14𝑅 . (7)

Так как косинус в (6) не может по модулю пре-
вышать единицу, то решению уравнения (6) удо-
влетворяет только корень 𝑓

−
(𝑅). Далее для удоб-

ства переобозначим 𝑓
−
(𝑅) ≡ 𝑓(𝑅). Тогда решение

системы (5) относительно неизвестных 𝐼̃t и 𝐿̃ пред-
ставляется в виде⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐼̃t = 𝑓(𝑅)−1√1 − 𝑓(𝑅)2,𝐿̃ = −𝑓(𝑅)−1√1 − 𝑓(𝑅)2 − 12 arccos 𝑓(𝑅) + π𝑚, (8)

где𝑚— целое число.
Из выражений (8) для значений нормирован-

ных выходной интенсивности излучения 𝐼̃t и тол-
щины рабочей среды интерферометра 𝐿̃, при ко-
торых возможно наблюдение дифференциального

усиления, получаем соотношения ненормирован-
ных величин ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐼0 = λ2π 1𝐿𝑛2Φ(𝑅),𝐿 = λ2π𝑛0 (Ψ(𝑅) + π𝑚),
(9)

где

Φ(𝑅)= 23 1−𝑅1+𝑅
√1−(𝑓(𝑅))2𝑓(𝑅) (1+ 2𝑅(1−𝑓(𝑅))(1−𝑅)2 ) , (10)

Ψ(𝑅) = −√1(𝑓(𝑅))2𝑓(𝑅) − 12 arccos 𝑓(𝑅). (11)

Важно отметить, выражение Φ(𝑅) в (9) имеет
вид интеграла распада, который дает оценку усло-
вий начала в нелинейной среде мелкомасштабной
самофокусировки излучения [17] и, соответствен-
но, границ применимости используемого в насто-
ящей статье приближения плоской поперечно од-
нородной волны. Оценки известны [18]: эффект
пространственной неустойчивости плоской попе-
речно однородной волны начинает проявляться
в нелинейной среде при значении интеграла распа-
да больше π.
ПЛАСТИНА КРИСТАЛЛИЧЕСКОГО КВАРЦА

В ПОЛЕ ТГЦ ИЗЛУЧЕНИЯ
В экспериментальной работе [12] было показа-

но, что кристаллический кварц обладает в ТГц диа-
пазоне коэффициентом нелинейного показателя
преломления 𝑛2 = 5 ⋅ 10−10 см2⋅Вт−1, что примерно
в миллион раз больше, чем его значение для кри-
сталлического кварца в оптическом диапазоне [19].
Помимо гигантской и малоинерционной нелиней-
ности колебательной природы кристаллический
кварц обладает в ТГц диапазоне хорошей прозрач-
ностью и относительно большим линейным по-
казателем преломления 𝑛0 = 2.1 (на длине волны1 ТГц), что дает значение коэффициента отраже-
ния френелевских «зеркал» 𝑅 = 0.126. Важно, что
при таком относительно небольшом 𝑅 интеграл
распадаΦ(𝑅)имеет значениеменьшеπ, то есть пла-
стину кристаллического кварца можно рассмот-
реть в качестве беззеркального интерферометра
Фабри–Перо в поле плоской монохроматической
ТГц волны.

На рис. 2 приведенырезультаты расчета пофор-
мулам (9) значений толщины пластины кристал-
лического кварца и интенсивности ТГц излуче-
ния на входе в эту пластину, необходимых для
наблюдения максимального дифференциального
усиления слабого сигнала в поле интенсивной
волны накачки на частоте 1 ТГц. Из рисун-
ка видно, что допустимые толщины и интенсив-
ности принимают значения из дискретного на-
бора. Дискретность значений обусловлена цело-
численным параметром 𝑚, входящим в выра-
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Рис. 2.Значенияинтенсивности входногоизлучения 𝐼0
на центральной частоте 1 ТГц и соответствующей ей
толщины пластины кристаллического кварца 𝐿, при
которых наблюдается максимальное дифференциаль-
ное усиление сигналов. Целые числа обозначают по-
рядковый номер значений толщины пластины, удо-
влетворяющих условию максимального усиления.

жения (9). Каждому значению 𝑚 соответству-
ет своя толщина оптической среды и входная
интенсивность. При этом, чем больше толщи-
на пластинки кварца, тем меньшая входная ин-
тенсивность требуется для наблюдения эффекта
усиления.

При 𝑚 = 15 требуемая толщина пластинки
кварца равна 𝐿 (𝑚 = 15) = 1.013 мм, а входная ин-
тенсивность 𝐼0 (𝑚 = 15) = 1.1 ⋅ 108 Вт⋅см−2. Имен-
но при этих значениях мы наблюдали максималь-
ное дифференциальное усиление на рис. 1.

Оценим, дифференциальное усиление какого
порядка возможно достичь в нелинейном беззер-
кальном интерферометре Фабри–Перо на основе
кристаллического кварца. Для этого представим,
что на нелинейный интерферометр падает прямо-
угольный сигнал подобно тому, как это изображе-
но на рис. 1.Предположим, чтоминимальная нену-
левая интенсивность такого импульса составляет𝐼min = 0.9𝐼0 (𝑚), а максимальная — 𝐼max = 1.1𝐼0 (𝑚)
и Δ𝐼0 = 𝐼max − 𝐼min = 0.2𝐼0(𝑚). В результате прохож-
дения импульса через интерферометр максималь-
ное и минимальное значения его выходной ин-
тенсивности изменятся, и их разница составитΔ𝐼t. На рис. 3 наглядно изображены рассматрива-
емые диапазоны для случая 𝐼0 = 𝐼0(𝑚 = 15). В та-
ком случае Δ𝐼0 = 2.236 ⋅ 107 Вт⋅см−2 и Δ𝐼t = 5.890××107 Вт⋅см−2. Отношение Δ𝐼tΔ𝐼0 в общем случае непо-

стоянно. При малых 𝑚, когда 𝑑𝐼0(𝑚)𝑑𝑚 велико, силь-

но меняется и Δ𝐼tΔ𝐼0 . При больших 𝑚 производная𝑑𝐼0(𝑚)𝑑𝑚 мала, поэтомуи Δ𝐼tΔ𝐼0 почтипостоянно.Напри-

мер Δ𝐼t(𝑚=15)Δ𝐼0(𝑚=15) ≈ Δ𝐼t(𝑚=20)Δ𝐼0(𝑚=20) ≈ 2.63, в то время какΔ𝐼t(𝑚=5)Δ𝐼0(𝑚=5) ≈ 2.4.
Важным аспектом при экспериментальном ис-

пользовании усиления сигнала в нелинейном ин-
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Рис. 3. Модель усиления сигнала в нелинейном ин-
терферометре на основе пластинки кристаллического
кварца. Δ𝐼0 — амплитуда входного сигнала, Δ𝐼t — ам-
плитуда выходного сигнала.

терферометре Фабри–Перо является чувствитель-
ность режима максимального дифференциально-
го усиления к изменению параметров интерфе-
рометра. Рис. 4 иллюстрирует чувствительность
интерферометров к изменению толщины оптиче-
ской среды. Видно, что при изменении толщины
на 1мкмв беззеркальноминтерферометре сфрене-
левским коэффициентом отражения 𝑅 = 0.126 точ-
ка максимума дифференциального усиления сдви-
гается на 2% по входной интенсивности. В то же
время в интерферометре с зеркалами с коэффици-
ентом отражения 𝑅 = 0.99 при изменении толщи-
ны на 0.1 мкм пропускание интерферометра меня-
ется радикально и наблюдение режима дифферен-
циального усиления становится невозможным. Та-
кимобразом, беззеркальныеинтерферометрыиме-
ют преимущество перед интерферометрами с зер-
калами с точки зрения требуемой точности обес-
печения толщины оптической среды для наблюде-
ния эффекта максимального дифференциального
усиления.

ЗАКЛЮЧЕНИЕ
В настоящей работе, нами продемонстрирова-

на возможность использования пластины кристал-
лического кварца в качестве беззеркального нели-
нейного интерферометра Фабри–Перо в поле из-
лучения ТГц диапазона. Определены условия на-
блюдения дифференциального усиления ТГц излу-
чения в поле волны накачки той же частоты таким
интерферометром. Показано, что для реализации
усиления толщина оптической среды интерферо-
метра и величина излучения на входе в интерферо-
метр должны принимать конкретные дискретные
значения, определяемые значением коэффициен-
та отражения пластины и коэффициентом ее нели-
нейного показателя преломления.

Показано, что в кристаллическом кварце,
который обладает гигантской и малоинерцион-
ной нелинейностью показателя преломления
в ТГц диапазоне, режим максимального нели-
нейного усиления для излучения с центральной
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Рис. 4. Функция пропускания нелинейного интерферометра Фабри–Перо с рабочей средой из кристаллического
кварца: без зеркал (𝑅 = 0.126) (a) и с зеркалами (𝑅 = 0.99) (б). Сплошные кривые соответствуют толщинам оп-
тической среды, необходимым для наблюдения эффекта максимального дифференциального усиления. Штриховые
и штрихпунктирные кривые соответствуют малым отклонениям в толщине от значений, при которых наблюдается
максимальное дифференциальное усиление.

частотой 1 ТГц возможно наблюдать при тол-
щинах порядка 1 мм и интенсивностях порядка108 Вт⋅см−2. Оценки величины дифференци-
ального усиления излучения интерферометром
по изменению разницы между максимальным
и минимальным значениями интенсивности Δ𝐼t
импульса на выходе из интерферометра по отноше-
нию к изменению разницы между максимальным
и минимальным значениями интенсивности Δ𝐼0
импульса на входе в интерферометр показали,
что для кристаллического кварца отношение Δ𝐼t
к Δ𝐼0 для всех толщин, удовлетворяющих условию
максимального усиления, варьируется в диапазоне2.4–2.6 единиц.

Выявлено, что беззеркальные интерферометры
обладают меньшей чувствительностью к измене-
нию толщины оптической среды, чем интерферо-
метры с зеркалами. Благодаря этому беззеркальные
интерферометры становятся перспективными для
создания на их основе оптических устройств.

Полученные результаты указывают на то,
что нелинейный интерферометр Фабри–Перо
можно использовать для управления излучени-
ем ТГц диапазона за счет дифференциального
усиления, в том числе в качестве оптического
транзистора при использовании высокоинтенсив-
ного излучения и слабого управляющего импульса.
Приведенные в настоящей работе оценки могут
оказаться полезными при разработке оптических
транзисторов в ТГц спектральном диапазоне.

Работа выполнена при финансовой поддержке
Российского научногофонда в рамках гранта№24-
22-00084.
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Differential gain of THz radiation in crystalline quartz plate in the field of pump wave
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ITMO University, St. Petersburg, 197101 Russia
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The possibility to exploit nonlinear Fabry–Perot interferometers to differential gain of terahertz radiation
in the field of a pumpwave of the same frequency was theoretically considered. It is shown that inmirrorless
nonlinear Fabry–Perot interferometer consisted of crystalline quartz plate, which reflection is determined
by Fresnel reflection only, the regime of maximal differential gain of radiation with central frequency
at 1 THz can be observed at thickness of working medium near 1 mm and at radiation intensity with order
of magnitude at 108 W⋅cm−2.
Keywords: nonlinear Fabry–Perot interferometer, THz spectral range, mirrorless interferometer, crystalline
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ВВЕДЕНИЕ
Одной из наиболее интригующих областей оп-

тических исследований является нелинейная оп-
тика, где солитоны занимают особое место. Оп-
тический солитон представляет собой уединен-
ный лазерный импульс определенной длительно-
сти (от нано- до фемтосекунд) обладающий несу-
щей частотой видимого диапазона и способный
распространяться в нелинейной диспергирующей
среде без изменения своей формы на большие рас-
стояния. Особый интерес вызывают оптические
солитоны в керровской среде, которая описывает-
ся нелинейным уравнением Шредингера (НУШ)
обладающим солитонным решением [1]. Световые
пули или многомерные солитоны в однородной
керровской среде испытывают коллапс самофоку-
сировки при превышении определенного порога,
связанного с амплитудой импульсов. В частности,
двумерное НУШ приводит к возникновению так
называемого солитона Таунса [2], который являет-
ся вырожденным в свободном пространстве в том
смысле, что он возникает только при одном зна-
чении энергии. С физической точки зрения Та-
унсовский солитон представляет собой нестабиль-
ное состояние, которое разделяет два режима рас-
пространения света: расплывание импульса-пучка,
вызванное дифракцией, и его неограниченная са-
мофокусировка из-за нелинейности [3, 4]. Это по-

казывает, что нелинейность важна для образования
солитонов, но не гарантирует их устойчивость.

Удалось найти множество конфигураций опти-
ческих сред, в которых солитоны стабильны. Эти
конфигурации включают в себя материалы, учи-
тывающие более высокие порядки нелинейности
и дисперсии [5], среды с комбинированным типом
нелинейности [6], а также среды с неоднородно-
стями, которые могут компенсировать дифракци-
онное расплывание [7]. Солитоны также удалось
получить в искусственной оптической среде, опи-
сываемой дробным уравнением Шредингера [8].
Некоторым результатам, связанным с рассмотре-
нием дробных сред, посвящен мини-обзор [9]. Так
какнеограниченная самофокусировка является ос-
новным препятствием для формирования солито-
нов в керровской среде, были также рассмотре-
ны квадратичные нелинейные среды [10], в кото-
рых коллапс отсутствует. Другим интересным под-
ходом к получению солитонов является учет дис-
персии связи между плоскими волноводами с кер-
ровской нелинейностью в качестве аналога спин-
орбитальной связи в бозе-эйнштейновском кон-
денсате [11].

В нашей работе мы рассмотрели квадратично-
нелинейную среду с двумя плоскими волновода-
ми. С помощью изменения параметров, связанных
с положением и размером волноводов, а также из-
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менением параметров пробного решения, мы хо-
тели добиться стабильного распространения им-
пульсной пары на большие расстояния или, дру-
гими словами, получить солитонное решение. Как
уже было упомянуто выше, мы рассматриваем рас-
пространение пары импульсов пучков, начальны-
ми параметрами которых можно управлять. Рас-
смотрение проводится в режиме генерации вто-
рой гармоники (ГВГ) при нормальной дисперсии,
где каждому импульсу из пробного решения от-
веден собственный волновод со специально опре-
деленными характеристиками. Связь между ними
осуществляется за счет части энергии импульсов-
пучков, которая может проникать в область между
волноводами. Данная работа опирается на резуль-
таты ранее проведенных исследований [12, 13].

ОСНОВНЫЕ УРАВНЕНИЯ
Описание процесса генерации второй опти-

ческой гармоники проводится в квазиоптическом
приближении с зависимостью линейной воспри-
имчивости среды от координаты χω(𝑟⟂) в виде:χ(0)ω [1 + 𝑓ω(𝑟⟂)], где 𝑟⟂ — радиус-вектор, перпенди-
кулярный центральной оси волновода, χ(0)ω — ли-
нейная восприимчивость среды в центре попереч-
ного сечения одного из волноводов, а 𝑓ω(𝑟⟂)— без-
размерная функция, которая описывает профиль
волновода. В этом случае система уравнений для
описания процесса ГВГ в системе из двух планар-
ных волноводов принимает вид:

𝑖𝜕𝐴1𝜕𝑧 + βω2 𝜕2𝐴1𝜕τ2 − αω𝐴∗1𝐴2𝑒𝑖(2𝑘1−𝑘2)𝑧 =
= ω𝑔1(𝑥)𝐴1 + 𝑐2𝑛(0)ω ω 𝜕

2𝐴1𝜕𝑥2 ,
𝑖 𝜕𝐴2𝜕𝑧 + β2ω2 𝜕2𝐴2𝜕τ2 − α2ω𝐴21𝑒−𝑖(2𝑘1−𝑘2)𝑧 =

= 2ω𝑔2(𝑥)𝐴2 + 𝑐4𝑛(0)3ωω
𝜕2𝐴2𝜕𝑥2 ,

(1)

Здесь 𝐴1,2 — амплитуда огибающей первой и вто-
рой гармоники, соответственно, τ — локальное

время, которое равно τ = 𝑡 − 𝑧2 ⎛⎜⎝ 1𝑣(ω)g

+ 1𝑣(2ω)g

⎞⎟⎠,
где 𝑡 — время, 𝑧 — направление распро-
странения, 𝑥 — поперечная координата,𝑣(ω,2ω)g — групповые скорости для соответству-
ющих гармоник в центре волновода, причем∣𝑣(2ω)g − 𝑣(ω)g ∣ ≪ 𝑣(2ω)g , 𝑣(ω)g . Коэффициент βω,2ω от-
вечает за дисперсию групповой скорости в центре
волновода, за влияние нелинейности отвечаютαω = 2πω𝑐𝑛(0)ω χ(2)(2ω,−ω) и α2𝜔 = 4πω𝑐𝑛(0)2ω χ(2)(ω, ω), где

χ(2)(2ω,−ω), χ(2)(ω,−ω) — коэффициенты нели-

нейной восприимчивости второго порядка
в центре волновода. Волновые числа для пер-
вой второй гармоник представлены 𝑘1 = 𝑘(ω)
и 𝑘2 = 𝑘(2ω). Дифракция описывается вторым
слагаемым в правой части каждого из уравнений,
где 𝑛(0)2ω,2ω(𝑥) = 1 + (𝑛(0)2ω,2ω − 1) (1 + 𝑓ω,2ω(𝑥))— пока-
затели преломления гармоник, 𝑐 — скорость света
в вакууме. Первое слагаемое в правой части обоих
уравнений отвечает за влияние неоднородности,
в нем 𝑔1,2(𝑥):
𝑔1(𝑥) = 𝑛(0)2ω − 1

2𝑐𝑛(0)ω 𝑓ω(𝑥), 𝑔2(𝑥) = 𝑛(0)22ω − 1
2𝑐𝑛(0)2ω 𝑓2ω(𝑥),

где 𝑓ω,2ω(𝑥) — одномерная безразмерная функция,
определяющая профиль волновода. В дальней-
шем мы будем рассматривать случай группового
и фазового синхронизма, поэтому 𝑣g = 𝑣(2ω)g = 𝑣(ω)g
и 2𝑘1 = 𝑘2.

Для проведения численного моделирования
систему требовалось обезразмерить, поэтому
были введены следующие безразмерные пара-
метры: 𝐴1,2 = 𝐴1,2𝐴in, 𝑧 = 𝑧𝑙nl, 𝑥 = 𝑥𝑅in, τ = ττin,Δ𝑘 = Δ𝑘𝑙nl, 𝑙nl = (αω𝐴in)−1, 𝑎ω,2ω = 𝑅in𝑎ω,2ω. 𝐴in —
пиковая амплитуда в центре одного из волноводов,𝐿nl — нелинейная длина, равная расстоянию,
на котором происходит полная перекачка энер-
гии между гармониками, 𝑅in, τin — начальный
радиус и длительность импульса-пучка. Также
были введены безразмерные выражения для
коэффициентов из (1), отвечающих за дифрак-
цию, дисперсию, неоднородность, нелинейность:𝐷x1 = 𝑐𝑙nl2ω𝑛(0)ω 𝑅2

in

, 𝐷x2 = 𝑐𝑙nl4ω𝑛(0)2ω 𝑅2
in

, 𝐷τ1 = βω𝑙nl2τ2
in

,

𝐷τ2 = β2ω𝑙nl2τ2
in

, 𝐷q1 = 2πω𝑙nl𝑐𝑛(0)ω 𝑎2ω χ(0)ω , 𝐷q2 = 4πω𝑙nl𝑐𝑛(0)2ω 𝑎22ω χ(0)2ω ,

γ = α2ωαω . Вводя, приведенные выше безразмерные
параметры, получим:

𝑖𝜕𝐴1𝜕𝑧 = 𝐷q1𝑝1(𝑥)𝐴1−𝐷τ1 𝜕2𝐴1𝜕τ2 +𝐴∗1𝐴2+𝐷x1
𝜕2𝐴1𝜕𝑥2 ,

𝑖 𝜕𝐴2𝜕𝑧 = 𝐷q2𝑝2(𝑥)𝐴2−𝐷τ2 𝜕2𝐴2𝜕τ2 +γ𝐴21+𝐷x2
𝜕2𝐴2𝜕𝑥2 . (2)

𝑝1,2 = 𝑎−2ω,2ω
⎡⎢⎢⎢⎢⎣1 − exp

⎛⎝−(𝑥 − 𝑥w)2𝑎2ω,2ω
⎞⎠−

− exp
⎛⎝−(𝑥 + 𝑥w)2𝑎2ω,2ω

⎞⎠
⎤⎥⎥⎥⎥⎦ .

(3)

Пробное решение, которое подавалось на вход
среды, выглядит следующим образом:𝐴1(𝑧=0) = 𝐸11 exp (−(𝑥−𝑥w)2−(τ−τ10)2+𝑖φ11)++𝐸12 exp (−(𝑥+𝑥w)2−(τ−τ20)2+𝑖φ12) , (4)
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𝐴2(𝑧=0) = 𝐸21 exp (−(𝑥−𝑥w)2−(τ−τ10)2+𝑖φ21)++𝐸22 exp (−(𝑥+𝑥w)2−(τ−τ20)2+𝑖φ22) .
Здесь 𝐸11,12 и 𝐸21,22 определяют начальные значе-
ния амплитуды для пучков на основной и удво-
енной частотах, соответственно. Параметры φ11,12
и φ21,22 — задают начальное соотношения фаз меж-
ду импульсами, а τ10,20 за временную задержкумеж-
ду ними. За положение центров волноводов отвеча-
ет параметр 𝑥w, который также входит в выражение
для функции профилей волноводов (3).

Вид волноводной функции (3) обеспечива-
ет минимумы показателя преломления волновода
вблизи 𝑥 = ±𝑥w. Оптический пучок удерживается
вблизи центра волновода, однако его хвостовые ча-
сти проникают в зону между ними, обеспечивая
связь пар импульсов-пучков. Характерная ширина
волноводов равна 𝑎ω,2ω.

Численные расчеты проводятся на основе ме-
тода, разработанного в работе [12], который обес-
печивает сохранение интегралов движения, прису-
щих системе уравнений (2). Проверка сохранения
интегралов во время расчета гарантирует точность
результатов.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

Для исследования процесса формирования
и распространения импульсов-пучков в квадра-
тично-нелинейной среде с двумя планарными
волноводами нами было проведено численное
моделирование системы (2) с граничным услови-
ем (4). Распространение импульсов происходило
в режиме ГВГ, когда 𝐸21,22 = 0, то есть на вход
подавались только пучки основной частоты. Для
того чтобы проследить за влиянием начально-
го соотношения фаз на распространение пары
импульсов-пучков, мы изменяли φ11,12, при-
чем сигналы могли иметь как одинаковую фазу(φ11 = φ12 = 0), так и различную, когда φ12 плавно
изменялось в диапазоне от 0 до π. Помимо этого,
сигналы могли иметь временную задержку между
собой, когда τ10 ≠ τ20.

Коэффициенты дифракции при расчете при-
нимались равными 𝐷x1 = 0.1, 𝐷x2 = 0.05. Диспер-
сионные коэффициенты были равны 𝐷τ1 = 0.05,𝐷τ2 = 0.1, что соответствует нормальной дисперсии(𝐷τ1,2 > 0). Коэффициент нелинейности положи-
ли равным γ = 0.5. Параметры, отвечающие за ха-
рактеристики волноводов, принимались равными𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Параметр, отвеча-
ющий за положение центров волноводов 𝑥w, мог
изменяться во время расчета. Значения безразмер-
ных параметров, задающих характеристики моде-
лируемой среды, оставались постоянными для всех
расчетов.

Основываясь на результатах работы [13], бы-
ло получено солитоноподобное решение для па-

ры импульсов-пучков. Данное решение не являют-
ся в точности солитонными, поскольку не облада-
ет постоянными характеристиками, номеняет свои
пространственные и временные размеры, а также
интенсивность периодически, что иногда называ-
ют «дыханием». Однако оно является локализован-
ным, так как большая часть интенсивности ограни-
чена в небольшой области пространства-времени.

Солитонная пара формируется не сразу,
а только после завершения процесса перекачки
энергии между основной и второй гармониками
в каждом волноводе, что примерно соответству-
ет прохождению парой сигналов расстояния,
равного 20 нелинейным длинам. Полученная
«дышащая» импульсная пара распространялась
на расстояние в 600 нелинейных длин с сохране-
нием пространственно-временной формы, что
можно пронаблюдать на рис. 1а. Профиль сиг-
нала на левой границе моделируемого кристалла
сохраняет свою форму и в конце дистанции рас-
пространения, но теряет в интенсивности, что
можно увидеть на рис.1г–1е. Однако основная
потеря интенсивности происходит на начальном
этапе, когда происходит перекачка энергии во вто-
рую гармонику, и кроме того, часть энергии, еще
не захваченная в солитон, отдаляется от основного
пучка. Сравнение профилей на дистанциях 𝑧 = 100
и 𝑧 = 200 (рис.1д,е) показывает, что на этом этапе
максимальная интенсивность не только не упала,
но и несколько возросла за счет фокусировки. Ана-
лиз пиковой интенсивности на рис.1а показывает,
что данное солитоноподобное решение в целом
сохраняется вплоть до 𝑧 = 600.

Также стоит отметить, что в области между
волноводами наблюдается ненулевой уровень
интенсивности на протяжении всей дистанции
распространения. Как было упомянуто ранее,
часть энергии просачивается сквозь стенки вол-
новода, что говорит о взаимодействии импульсов
в отдельных волноводах между собой. На рис.1б
и 1в показана зависимость положения простран-
ственного и временного центров пары импульсов-
пучков от дистанции распространения. Видно,
что на рис. 1в положение максимумов импульсов
вдоль оси вплоть до 𝑥 осциллирует с небольшой
амплитудой около центра волновода. Временные
максимумы вместе с распространением отдаляют-
ся от заданного начального положения, что значит,
что импульсы отталкиваются друг от друга.

На рис. 2 показаны данные расчетов для па-
ры импульсов, запущенных с задержкой τ10 = 0.5,τ20 = −0.5, где в граничном условии постепенно
изменяется фаза импульса во втором волноводеφ12 в диапазоне от 0 до π с шагом 0.1π. Измене-
ние фазы не влияет на дистанцию распростране-
ния, пара импульсов распространяется стабильно
на 600 нелинейных длин, как и впервомрасчете для
сигналов с одинаковой фазой. Влияние начально-
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Рис. 1. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) синфазными (φ11 = φ12 = 0) пуч-
ками основной частоты 𝐸11 = 0.5, 𝐸12 = 0.5, 𝐸21 = 0, 𝐸22 = 0. Пиковые интенсивности (а) основной частоты (черный
и красный для левого и правого волноводов соответственно) и второй гармоники (синий и зеленый для левого и пра-
вого волноводов соответственно). Поперечные профили пучков при τ = 0 основной частоты (красный) и второй гар-
моники (синий) для 𝑧 = 0 (г), 𝑧 = 100 (д), 𝑧 = 200 (е). Зависимость положений пространственного (б) и временного (в)
центров от дистанции распространения. Параметры волновода 𝑥w = 2, 𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Коэффици-
енты дифракции 𝐷x1 = 0.1, 𝐷x2 = 0.05, коэффициенты дисперсии 𝐷τ1 = 0.05, 𝐷τ2 = 0.1, коэффициент нелинейностиγ = 0.5.

го соотношения фаз заключается в изменении ха-
рактера движения временных центров импульсов,
а также характера их взаимодействия, что можно
увидеть на рис. 2а и 2б. При постепенном увели-
чении фазы φ12 от 0 до π импульсная пара посте-

пенно переходит от взаимного отталкивания приφ11 = φ12 = 0 к взаимному притяжению при φ11 = 0,φ12 = π. В промежуточном режиме при φ12 ≈ 0.6π
временной центр осциллирует около положения
равновесия до 𝑧 = 300. После чего, в зависимости
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Рис. 2. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) пучками основной частоты𝐸11 = 0.5, 𝐸12 = 0.5, 𝐸21 = 0, 𝐸22 = 0. Пиковые интенсивности (а) основной частоты в правом волноводе и положение
временных центров импульсной пары (б) в зависимости от расстояния 𝑧 для разных начальных фаз. Пиковые интен-
сивности (в) пары импульсов основной частоты и положение их временных центров (г) для случаяφ11 = 0,φ12 = 0.6π.
Параметры волновода 𝑎ω = 𝑎2ω = 2,𝐷q1 = 10,𝐷q2 = 10. Коэффициенты дифракции𝐷x1 = 0.14,𝐷x2 = 0.05, коэффици-
енты дисперсии𝐷τ1 = 0.05,𝐷τ2 = 0.1, коэффициент нелинейности γ = 0.5.

от начального соотношения фаз и значения фазы
каждого импульса, временные центры импульсов
на основной частоте начинают отталкиваться, как
в случае с одинаковой фазой, но в данном случае
движение центров происходит с разными скоро-
стями (рис. 2в). У сигнала сменьшейначальнойфа-
зой центр движется быстрее, в то время как центр
второго импульса движется медленнее.Момент на-
чала движения центров импульсов по временной
оси совпадает с завершением полупериода процес-
са перекачки энергии между импульсами, который
стал особенно выражен при подобранном соотно-
шении фаз (φ11 = 0, φ12) = 0.6π), что можно уви-
деть на рис. 2в и 2г. Стоит отметить, что времен-
ная задержка была введена для того, чтобы эффект
притягивания и отталкивания временных центров
импульсов можно было отчетливо наблюдать. При
синхронном запуске импульсов эффект сохраняет-
ся, но для рассматриваемых расстояний отклоне-
ние центров импульсов очень мало и станет замет-
ным только на достаточно большой дистанции рас-
пространения.

Результаты, полученныеприисследовании вли-
яния положения волноводов на режим распро-
странения солитоноподобного решения, показаны
на рис. 3. С помощью изменения параметра 𝑥w,
который входит как в начальное решение (4), так
и в безразмерную функцию, задающую профиль
волновода (3), мы меняли положение центров гра-
диентных волноводов. На рис. 3 можно увидеть,
что при параметре 𝑥w = 1.9 (𝑎ω,2ω = 2) волноводы
начинают частично перекрываться, что увеличи-
вает влияние импульсов в разных волноводах друг
на друга.Этопроявляется в увеличеннойамплитуде
осцилляции пространственных центров импульсов
по сравнению с результатами для неперекрываю-
щихся волноводов при 𝑥w = 2.0. Энергия «хвостов»
импульсов, которая ранее просачивалась в область
между волноводами, начинает скапливаться в об-
ласти перекрытия, что можно увидеть на рис. 3в
на графиках для профилей сигналов при различ-
ных значениях дистанции распространения 𝑧. При
дальнейшем сближении волноводов амплитуда ос-
цилляций пространственных центров продолжает
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Рис. 3. Генерация пары связанных солитонов несинхронными (τ10 = −0.5, τ20 = 0.5) синфазными (ω11 = ω12 = 0) пуч-
ками основной частоты𝐸11 = 0.5,𝐸12 = 0.5,𝐸21 = 0,𝐸22 = 0. Пиковые интенсивности (а) основной частоты и положе-
ние пространственных центров (б) в зависимости от расстояния 𝑧 для 𝑥w = 1.8, 1.9, 2.0. Поперечные профили пучков
при τ = 0 и при 𝑥w = 1.9 для основной частоты в промежутке от 𝑧 = 20 до 𝑧 = 40 с шагом 𝑧 = 5 (в). Параметры вол-
новода 𝑎ω = 𝑎2ω = 2, 𝐷q1 = 10, 𝐷q2 = 10. Коэффициенты дифракции 𝐷x1 = 0.1, 𝐷x2 = 0.05, коэффициенты дисперсии𝐷τ1 = 0.05,𝐷τ2 = 0.1, коэффициент нелинейности γ = 0.5.

нарастать, и при достижении 𝑥w = 1.7 солитонопо-
добный режим нарушается: импульсная пара рас-
падается на расстоянии в 40 нелинейных длин.

ЗАКЛЮЧЕНИЕ
Таким образом, рассмотрен процесс формиро-

вания и распространения солитоноподобного ре-
шения в паре связанных оптических волноводов
в плоскомквадратично-нелинейномкристалле при
изменении параметров, связанных с положением
центров волноводов и соотношением фаз меж-
ду импульсами. Было обнаружено, что от началь-
ного соотношения фаз зависит характер взаимо-
действия импульсов. При определенной началь-
ной разнице фаз (δφ = 0.6π) наблюдается перекач-
ка энергии между волноводами, которая занимает
около 600 нелинейных длин. Перекрывание волно-
водами друг друга (𝑥w = 1.9) усиливает связь между
волноводами, что также влияет на пространствен-
ное положение сигналов во время распростране-
ния, добавляя заметную осцилляцию центров им-

пульсов вдоль пространственной оси. Пиковая ин-
тенсивность при этом снижается, так как часть
энергии импульсов начинает просачиваться в об-
ласть перекрытия волноводами друг друга, задер-
живаясь в ней.
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The process of propagation and formation of pulse pairs in a quadratically nonlinear crystal with two
waveguides is investigated when parameters related to the position of the waveguides relative to each other,
delay and phase ratio between pulses change. A change in the pulse propagation mode during the approach
of waveguides and the dependence of the nature of the interaction between the pulses on the initial phase
ratio were found.
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ВВЕДЕНИЕ

Униполярные, полуцикловые, предельно ко-
роткиеимпульсы (ПКИ)являютсяпределомсокра-
щения длительности электромагнитных импульсов
в заданномспектральномдиапазоне [1].Онисодер-
жат полуволну поля одной полярности и могут об-
ладать ненулевой электрической площадью, опре-
деляемой как интеграл от напряженности электри-
ческого поля 𝐸(𝑡) по времени 𝑡 в заданной точке
пространства [2–4]:𝑆E = ∫ 𝐸(𝑡)𝑑𝑡. (1)

Интерес к получению подобных импульсов ак-
тивно возрос в последнее время в связи с их воз-
можными многочисленными применениями для
сверхбыстрого управления свойствами квантовых
систем, голографии со сверхвысоким временным
разрешениемидр. приложений, см. обзоры [1, 5–8]
и монографию [9]. Так, полуцикловые квазиуни-
полярные импульсы аттосекундной длительности
(порядка сотен аттосекунд) в оптическом диапа-
зоне могут быть получены при когерентном сложе-
нии монохроматических составляющих широко-
полоснойнакачки [10], а такжеприбыстром тормо-

жении пучка релятивистских электронов в тонких
мишенях [11, 12]. В терагерцовом диапазоне уни-
полярные импульсы могут быть получены при раз-
личных нелинейных процессах в плазме [13–16],
сверхизлучении остановленной поляризации [17]
и др. способами, см. обзоры [1, 5–9].

Для одноцикловых и полуцикловых ПКИ
импульсов такой малой длительности по-иному
выглядят особенности когерентного распро-
странения и взаимодействия с резонансными
средами, в отличие от случая длинных мно-
гоцикловых импульсов [10, 18–22]. Изучение
взаимодействия ПКИ с веществом привело
к предсказанию ряда новых явлений в опти-
ке, таких как самокомпрессия импульса [23],
расталкивание полуволн противоположной по-
лярности [24], самоостановка света [25] и др.
Использование последовательности ПКИ, коге-
рентно распространяющихся в резонансной среде,
когда длительность импульсов короче времени
релаксации поляризации среды 𝑇2, приводит к со-
зданию и сверхбыстрому управлению решетками
разности населенностей и волнами поляриза-
ции среды на временах порядка длительности
импульсов [26–42].
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При этом также возможно создание так называ-
емых динамических микрорезонаторов, когда пара
предельно коротких импульсов сталкивается в сре-
де [43–45]. В этом случае разность населенностей
в области перекрытия импульсов имеет почти по-
стоянное значение, а по краям от нее возникает
решетка разности населенностей. Также возмож-
но, что разность населенностей имеет другое по-
стоянное значение, отличное от значения в области
перекрытия импульсов. Таким образом, возникает
микрорезонатор с размером порядка длины волны
резонансного перехода. Интерес к таким структу-
рам связан с активным изучением в последнее вре-
мя так называемых временных и пространственно-
временных фотонных кристаллов, то есть сред, по-
казатель преломления которых быстро меняется
во времени или в пространстве и во времени соот-
ветственно [46–49].

В данной работе приводится обзор последних
исследований авторов в области создания и управ-
ления решетками населенностей и динамических
микрорезонаторов с помощьюпоследовательности
предельно коротких импульсов, когерентно взаи-
модействующих со средой и сталкивающихся в сре-
де. Приводится анализ динамики микрорезона-
торов при столкновении 2π подобных импульсов
самоиндуцированной прозрачности (СИП). При
этом в отличие от ранних исследований, в кото-
рых было показано, что динамические резонаторы
не возникают при столкновении импульсов одной
полярности, в данной работе показано, что данное
ограничение снимается при добавлении к импуль-
су заднего фронта противоположной полярности.

СОЗДАНИЕ РЕШЕТОК НАСЕЛЕННОСТЕЙ
ПРИ КОГЕРЕНТНОМ ВЗАИМОДЕЙСТВИИ
ПРЕДЕЛЬНО КОРОТКИХ ИМПУЛЬСОВ

СО СРЕДОЙ
Возможность создания решеток атомных насе-

ленностей при когерентном взаимодействии свето-
вых импульсов со средой была обнаружена доволь-
нодавно впервых экспериментахпофотонному эху
[26, 27]. Однако в этих исследованиях использова-
лись длинные многоцикловые импульсы света на-
носекундной длительности, которые одномомент-
но не перекрывались в среде [28, 29]. Очевидно ис-
пользование длинных многоцикловых импульсов
не позволяет осуществить сверхбыстрое управле-
ние решетками разности населенностей. Создан-
ные таким образом решетки использовались в эхо-
голографии [30, 31] и для измерения времени ре-
лаксации поляризации среды 𝑇2 [32].

Другой альтернативный, более распространен-
ный способ создания решеток основаннаинтерфе-
ренции длинных монохроматических лазерных по-
лей, перекрывающихся в среде [50]. В таком спосо-
бе очевидно также нельзя осуществить сверхбыст-

рое управление решетками, например, их стира-
ние или мультиплицирование пространственной
частоты.

Создание и сверхбыстрое управление решет-
ками можно осуществить с помощью предельно
коротких импульсов — одноцикловых и полуцик-
ловых, когерентно взаимодействующих со средой.
Впервые данная возможность былапоказана теоре-
тически в работах авторов [33–40], когда импульсы
неперекрываются в среде [33–36] и перекрываются
в среде [37, 39, 40], см. также обзоры [41, 42]. Созда-
ние таких решеток происходит за счет интерферен-
ции волн поляризации среды, наведенных преды-
дущим импульсом, с последующим импульсом.

Альтернативное объяснение создания таких ре-
шеток, справедливое при малых амплитудах воз-
буждающих импульсов и в разреженной среде, ко-
гда среда слабо возбуждена, основано на интерфе-
ренции площадей импульсов или интерференции
амплитуд связанных состояний среды [51]. Обзор
последних результатов этих исследований приве-
ден в [41, 42], и мы не будем на этом останавли-
ваться.

ДИНАМИЧЕСКИЕ МИКРОРЕЗОНАТОРЫ
И ВРЕМЕННЫЕ ФОТОННЫЕ КРИСТАЛЛЫ

ПРИ СТОЛКНОВЕНИИ ПРЕДЕЛЬНО
КОРОТКИХ ИМПУЛЬСОВ В СРЕДЕ

В работе [43] впервые была показана возмож-
ность формирования так называемых динамиче-
ских микрорезонаторов, возникающих при столк-
новении π/2 подобных униполярных импульсов
прямоугольной формы в двухуровневой резонанс-
ной среде. При этом, как показали численные рас-
четы, в области перекрытия импульсов разность
населенностей имеет постоянное значение — «све-
тоиндуцированный канал», а вне этой области ме-
няется скачком и имеет другое значение. В этом
смысле можно говорить о формировании дина-
мического микрорезонатора в среде. Размер такой
структурыпорядкапространственного размераим-
пульса (длины волны резонансного перехода).

В последующей работе [44] была рассмотрена
динамика такого микрорезонатора при столкнове-
нии уже 2π подобных импульсов СИПпрямоуголь-
ной формы и длительности порядка 1 фс. Числен-
ные расчеты показали возможность формирования
и управления динамическими микрорезонатора-
ми при увеличении числа столкновений импульсов
в среде. Подробные исследования, проведенные
в работе [45] показали, что форма и параметры ре-
зонатора существенно зависят от формы сталки-
вающихся импульсов и от крутизны фронтов —
чем круче фронты, тем больше глубина модуляции
микрорезонатора. Эти исследования проводились,
когда среда моделировалась в двухуровневом при-
ближении. Численные расчеты, проведенные в ра-
боте [52], показали возможность наведения мик-
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рорезонаторов при столкновении униполярных
импульсов прямоугольной и треугольной формы
в трехуровневой среде.

В упомянутых исследованиях сталкивающиеся
импульсы были униполярными. Возможность со-
здания микрорезонаторов с брэгговскими зеркала-
ми была показана в статье [53]. В этой работе па-
ра одноцикловых аттосекундныхимпульсов, состо-
ящих из двух полуволн противоположной поляр-
ности, сталкивались в центре среды. Параметры
импульсов были подобраны так, чтобы импульсы
действовали подобно 4π импульсам СИП. Числен-
ные расчеты показали, что в центре среды, где им-
пульсы сталкиваются, среда остается практически
невозбужденной. А по краям от этой области фор-
мируются квазипериодические решетки населен-
ностей, длиной всего в несколько периодов и лока-
лизованныевокрестностиобластиперекрытияим-
пульсов.

Пространственная частота данных структур
возрастала с ростом числа столкновений импуль-
сов. Таким образом, в среде возникал локальный
микрорезонатор с брэггоподобными зеркалами.
Оценки показали, что коэффициент отражения
таких структур на длине волны, соответствующей
максимуму брэгговского отражения, составлял
порядка 30%.

Детальный анализ динамики таких микроре-
зонаторов, возникающих при столкновении полу-
цикловых аттосекундных импульсов, был проведен
на основе численного решения системы уравнений
Максвелла–Блоха в двух- и трехуровневой среде
в работе [54]. В работе [55] показана возможность
создания временных фотонных кристаллов при
столкновении пары полуцикловых аттосекундных
импульсов в трехуровневой среде. Практическая
реализация таких сред с быстроменяющимсяпока-
зателем преломления трудно осуществима на прак-
тике за счет обычных нелинейно-оптических ме-
ханизмов, так как они очень медленные [56]. Для
этой цели разработаны ряд экзотических мате-
риалов с необычными свойствами [56, 57]. Од-
нако, приведенные нами исследования показы-
вают возможность реализации пространственно-
временных фотонных кристаллов в двух- и много-
уровневых резонансных средах с помощью после-
довательности предельно коротких импульсов, так
как при этом происходит создание решеток насе-
ленностей, т. е. изменениепоказателяпреломления
среды в пространстве и во времени.

Упомянутые исследования динамики таких
структур проводились за счет численного реше-
ния системы уравнений для матрицы плотности
совместно с волновым уравнением для напряжен-
ности электрического поля. Какое-либо анали-
тическое описание отсутствовало. В работе [58]
был предложен простой аналитический подход,
показывающий возможность создания таких мик-

рорезонаторов. Он основан на приближенном
решении временного уравнения Шредингера
в приближении внезапных возмущений, когда
длительность импульса считалась малой по срав-
нению с периодом резонансного перехода среды.
Амплитуда поля возбуждающих импульсов также
считалась малой. В таком подходе среда считалась
разреженной и слабо возбужденной, динамика
волн поляризации не учитывалась.

Более подробный подход вне рамок при-
ближения внезапных возмущений был описан
в [59]. Результаты данного анализа показывают
возможность создания микрорезонаторов с брэгго-
подобными зеркалами (разность населенностей
меняется в пространстве по гармоническому
закону слева и справа от области перекрытия
импульсов) на каждом резонансном переходе сре-
ды. В случае униполярных импульсов необычной
формы (прямоугольной) в работе [52] также была
показана возможность наведения микрорезонато-
ров.

Детально аналитический подход, показываю-
щий создание таких микрорезонаторов, основан-
ный на приближенном решении уравнения Шре-
дингера с помощью теории возмущений, представ-
лен в работе [60]. Результаты расчетов населенно-
стей (добротности микрорезонатора), выполнен-
ные с помощью данного подхода, согласуются с ре-
зультатами численного решения системы уравне-
ний для матрицы плотности среды, когда амплиту-
да возбуждающих импульсов мала.

Обсудимкратко основнуюидеюданного подхо-
да. Он основан на приближенном решении урав-
нения Шредингера в приближении слабого поля,
когда применима теория возмущений. Среда счи-
тается разреженной, при этом влиянием соседних
атомов друг на друга и изменением формы падаю-
щих импульсов при распространении в среде мож-
но пренебречь. Также в указанных приближениях,
как показано ранее [36–41], задачу о взаимодей-
ствии последовательности предельно коротких им-
пульсов с протяженной средой, можно свести к за-
даче о взаимодействии этих импульсов с единичной
квантовой системой при изменении задержкимеж-
ду импульсами. В первом порядке теории возму-
щений выражение для населенности связанных со-
стояний с номером 𝑘 после прохождения импульса
имеет вид [61]

𝑤k = 𝑑2
1kℏ ∣∫ 𝐸(𝑡)𝑒𝑖ω1k𝑡𝑑𝑡∣2 .

В этом выражении, 𝑑1k — дипольный момент пере-
хода, ω1k — частота резонансного перехода среды.
Для простоты считаем, что на среду воздействует
пара полуцикловых импульсов (задним фронтом
противоположной полярности пренебрегаем),
следующих с задержкой Δ: 𝐸(𝑡) = 𝐸01 exp [−𝑡2/τ21]+
+𝐸02 exp [−(𝑡 − Δ)2/τ22]. Тогда выражение для
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населенности в указанных выше приближени-
ях может быть записано в виде (при условии:ω1kτ1,2 ≪ 1 [36, 41, 58–60]:

𝑤k = 𝑑2
1k𝑆2

E,1ℏ2 +

𝑑2
1k𝑆2

E,2ℏ2 + 2𝑑2
1kℏ2 𝑆E,1𝑆E,2 cosω1kΔ, (2)

в котором 𝑆E,1,2 = 𝐸01,2τ1,2√π— электрические пло-
щади импульсов.

В случае протяженной среды задержка Δ ∝ 𝑧/𝑐
(𝑐 — скорость света) пропорциональна моменту
времени, когда второй импульс приходит в точ-
ку среды, имеющую координату 𝑧 [36, 41]. Ес-
ли импульсы сталкиваются в какой-либо точ-
ке среды, то для расчета населенностей в этой
точке (и вблизи нее) надо положить задержкуΔ = 0 в выражении (2), что приводит к соотно-

шению 𝑤k = 𝑑2
1kℏ2 (𝑆E,1 + 𝑆E,2)2. Оно показывает, что

в этой области населенности определяются квад-
ратом суммарной электрической площади импуль-
сов.

Вне области перекрытия импульсов для расче-
та населенностей надо пользоваться общим соот-
ношением (2). Из него видно, что выражение для
населенности𝑤k представляет собой сумму квадра-
тов электрических площадейимпульсов и содержит

«интерференционный член» 2𝑑2
1kℏ2 𝑆E,1𝑆E,2 cosω1kΔ,

т. е. периодически зависит от задержки между им-
пульсами Δ. В этом смысле, как показано в рабо-
те [36], можно говорить о том, что воздействие па-
ры униполярных импульсов в приближении слабо-
го поля определяется интерференцией электриче-
ских площадей импульсов.

Также это выражение показывает возникнове-
ние периодической решетки населенностей гар-
монической формы вне области перекрытия им-
пульсов. Несмотря на простоту, результаты данно-
го подхода имеют эвристическую силу, так как они
предсказывают возможность формирования мик-
рорезонатора с брэггоподобными зеркалами в виде
решеток населенностей гармонической формы (2)
на каждом резонансном переходе многоуровневой
среды. Глубина модуляции этих решеток определя-
ется квадратом электрическойплощадиимпульсов.
Физически возникновение данных решеток связа-
но с интерференцией электрических площадей им-
пульсов в приближении слабого поля.

В сильных полях и плотных средах, когда ста-
новится не применимы указанные выше прибли-
жения, необходимо рассматривать более сложные
модели, основанные на материальных уравнени-
ях для многоуровневой среды совместно с вол-
новым уравнением для напряженности электриче-
ского поля. При этом обычно для описания среды
используют двухуровневое приближение, которое
может оказаться не пригодным в случае предель-

но коротких импульсов. Данный вопрос обсуждал-
ся в работах [62–64]. Численные расчеты, прове-
денные в этих работах, показали, что эффект воз-
никновения решеток, форма которых близка к гар-
монической, как предсказывают результаты, полу-
ченные в рамках теории возмущений, сохраняет-
ся и в трехуровневой среде. При этом в числен-
ных расчетах параметры трехуровневой среды со-
ответствовали атомам Rb87 [63], а также атомар-
ному водороду [54, 64], что показывает возмож-
ность наблюдения эффекта в реальных системах.
Также результаты численного решения временно-
го уравненияШредингера для одномерной кванто-
вой ямы с учетом ионизации показали сохранение
решеток [65].

С практической точки зрения возникновение
решеток хорошего качества (например, по форме,
близкой к гармонической) возможно, когда ос-
новное состояние среды несильно опустошается,
т. е. среда не сильно возбуждается и ионизация
не значительна. В этом случае среда должна
не сильно возбуждаться под действием импульсов.
Такой критерий легко установить в случае, когда
длительность полуциклового импульса τ короче
характерного времени 𝑇g, связанного с энер-
гией основного состояния 𝐸1, τ < 𝑇g = 2πℏ/𝐸1.
Среда будет несильно возбуждаться и иониза-
ция незначительна, если электрическая площадь
падающего импульса 𝑆E меньше характерной атом-
ной меры площади 𝑆E < 𝑆at = ℏ/𝑒𝑟, где 𝑒 — заряд
электрона, 𝑟 — характерный размер квантовой
системы [22]. В численных расчетах, проведен-
ных в работе [64] для параметров, соответство-
вавших атому водорода, данное условие было
выполнено.

Физически сохранение эффекта решеток
и микрорезонаторов в многоуровневой среде легко
понять, если вспомнить физический механизм
их формирования [34–36, 41]. Проходящий по сре-
де предельно короткий импульс оставляет после
себя среду в суперпозиционном квантовом состоя-
нии, в котором когерентность среды (поляризация
среды), т. е. недиагональные элементы матрицы
плотности осциллируют на каждом резонанс-
ном переходе среды. Это приводит к появлению
волн поляризации среды, которые существуют
в течение времени релаксации 𝑇2. Эти колебания
поляризации существуют всегда независимо от то-
го, сколько уровней среды учитывается два или
более. Последующий импульс будет когерентно
управлять этими осцилляциями дипольного мо-
мента, что приведет к возникновению решетки
разности населенностей на каждом резонансном
переходе среды, как отмечалось выше. Поэтому,
приближение двухуровневой среды представляется
оправданным в подобных задачах. Поэтому, ниже
мы будем использовать для простоты двухуровне-
вое приближение.
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В случае большой амплитуды поля динами-
ка микрорезонаторов изучалась с помощью чис-
ленного решения системы уравнений Максвелла-
Блоха для двухуровневой среды [60]. В расчетах
использовались полностью униполярные импуль-
сы гауссовой формы длительностью сотни атто-
секунд. При этом импульсы действовали подоб-
но 2π импульсам СИП. Результаты численных рас-
четов показали невозможность создания микроре-
зонаторов, когда сталкивающиеся импульсы име-
ли одинаковую полярность. Когда импульсы име-
ли противоположную полярность, в области пере-
крытия импульсов возникал локальный микроре-
зонатор.Пространственныйпериоднаводимых ре-
шеток возрастал с ростом числа столкновений. Бо-
лее сложная динамика микрорезонаторов возника-
ла при столкновении 4π импульсов.

Результаты этих исследований [60] показыва-
ют, что формирование микрорезонаторов возмож-
но, когда сталкивающиесяимпульсыимеют разную
полярность. Снять указанные ограничения можно,
если использовать не полностью униполярный им-
пульс, как в работе [60], а квазиуниполярный суб-
цикловый импульс, содержащиймощнуюполувол-
ну поля и задние фронты противоположной по-
лярности. Сказанное иллюстрируется результата-
ми численного расчета, представленного в следую-
щем разделе.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

Для изучения динамики решеток разности на-
селенностей при столкновении последовательно-
сти 2π-подобных импульсов СИП в резонансной
среде проводилось численное решение системы
уравнений Максвелла-Блоха, включающей в себя
материальные уравнения для недиагонального эле-
ментаматрицыплотности ρ12, разностинаселенно-
стей среды (инверсии) 𝑛 = ρ11 − ρ22 двухуровневой
среды, ее поляризации 𝑃 и напряженности элек-
трического поля 𝐸 [66, 67]:𝜕ρ12(𝑧, 𝑡)𝜕𝑡 = −ρ12(𝑧, 𝑡)𝑇2 + 𝑖ω0ρ12(𝑧, 𝑡)−

−
𝑖ℏ𝑑12𝐸(𝑧, 𝑡)𝑛(𝑧, 𝑡), (3)

𝜕𝑛(𝑧, 𝑡)𝜕𝑡 = −𝑛(𝑧, 𝑡) − 𝑛0(𝑧)𝑇1 +

+
4ℏ𝑑12𝐸(𝑧, 𝑡) Im ρ12(𝑧, 𝑡), (4)

𝑃(𝑧, 𝑡) = 2𝑁0𝑑12 Re ρ12(𝑧, 𝑡), (5)𝜕2𝐸(𝑧, 𝑡)𝜕𝑧2 −
1𝑐2 𝜕2𝐸(𝑧, 𝑡)𝜕𝑡2 = 4π𝑐2 𝜕2𝑃(𝑧, 𝑡)𝜕𝑡2 . (6)

Данная система уравнений (3)–(6) содержит
следующие параметры (значения некоторых из них
приведены в таблице 1): 𝑧—продольная координа-
та, 𝑐 — скорость света в вакууме, 𝑡 — время, 𝑁0 —
концентрация двухуровневых атомов, ℏ — приве-
денная постояннаяПланка,ω0 —частота резонанс-
ного перехода среды (λ0 = 2π𝑐/ω0 — длина волны
резонансного перехода), 𝑑12 — матричный элемент
дипольного момента резонансного перехода среды,𝑛0 —разность населенностей среды при отсутствии
электрического поля, причем 𝑛0 = 1 для поглощаю-
щей среды. Возможность применения двухуровне-
вого приближения в подобных задачах обсуждалась
выше и в работах [36, 41, 52–55, 58–60, 62–65].

Для создания последовательности импуль-
сов использовались нулевые граничные условия
на концах области интегрирования, которая имела
длину 𝐿 = 12λ0. Двухуровневая среда помещалась
в центре области интегрирования между точками
с координатами 𝑧1 = 4λ0 и 𝑧2 = 8λ0. В начальный
момент времени в среду слева направо и справа
налево из вакуума запускалась пара субцикловых
импульсов, выражение для которых имеет вид:

𝐸(0, 𝑡) = 𝐸01𝑒− (𝑡−τ1)2τ2 cos (ω0 [𝑡 − τ1]) , (7)

𝐸(𝐿, 𝑡) = 𝐸02𝑒− (𝑡−τ2)2τ2 cos (ω0 [𝑡 − τ2]) . (8)
Здесь τ1,2 — задержки, которые регулируют момент
встречи импульсов. Импульсы действовали подоб-
но 2π импульсам СИП и имели одну полярность,
но содержали задние фронты противоположной
полярности. Одномерное распространение полу-
цикловыхимпульсов на большие расстоянияможет
быть реализовано в коаксиальных волноводах [68].

В таком случае импульсы сталкивались в цен-
тре среды, затем выходили из нее. На границах

Таблица 1. Параметры задачи, использованные в численном моделировании

Длина волны резонансного перехода среды λ0 = 700 нм
Дипольный момент перехода 𝑑12 = 20 Д
Время релаксации разности населенностей 𝑇1 = 10 пс
Время релаксации поляризации 𝑇2 = 5 пс
Концентрация атомов 𝑁0 = 1018 см−3
Амплитуда поля 𝐸01 = 𝐸02 = 259 000 ед. СГС
Длительность импульса возбуждения τ τ = 580 ас
Параметры задержки τ1 = τ2 = 3τ
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области интегрирования размещались идеальные
зеркала. Импульсы отражались от них и вновь воз-
вращались в среду. Проводилось численное реше-
ние системы уравнений (2)–(5) при параметрах,
указанных в таблице ниже, с начальными условия-
ми в виде импульсов (6)–(7). Строились и анализи-
ровались пространственно-временные зависимо-
сти поляризации и разности населенностей среды.
Параметры численного моделирования указаны
в таблице. Длина волны перехода в сотни наномет-
ров могут быть реализованы, например в атомных
парах или квантовых точках. Однако, результаты
теоретического рассмотрения на основе уравне-
ния Шредингера, проведенного выше, показыва-
ют возможность формирования решеток и резона-
торов и носят общий характер. Концентрация ча-
стиц влияет на отражательную способность реше-
ток, и их форма может искажаться при ее больших
значениях [53, 54, 60].

На рис. 1 представлена пространственно-вре-
менная динамика разности населенностей и по-
ляризации. После первого столкновения импульса
около момента времени порядка 23 фс среда оста-
ется в слабо возбужденном состоянии.Микрорезо-
натор начинает формироваться после 2-го столк-
новения, произошедшего в районе момента вре-
мени 50 фс, разность населенностей в центре по-
чти постоянна, а по краям изменяется скачком.
Вне области перекрытия импульсов среда остает-
ся в невозбужденном состоянии со значением ин-
версии 𝑛 = 1. После последующих столкновений
в моменты времени 75, 100, 125 фс и т. д. фор-
ма микрорезонатора становится более выражен-
ной. Отдельный интерес представляет формирова-
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Рис. 1. Динамика разности населенностей 𝑛(𝑧, 𝑡) (a);
динамика поляризации 𝑃(𝑧, 𝑡) при столкновении па-
ры субцикловых импульсов СИП одинаковой поляр-
ности (б), 𝐸01 = 𝐸02, в центре среды в точке 𝑧 = 6λ0.
Параметры расчета указаны в табл. 1.

ние сложных структур поляризации, образующих-
ся в области микрорезонатора, см. рис. 1б. Такие
структуры поляризации существуют в течение вре-
мени 𝑇2 и могут излучать световые волны в разных
направлениях.

Результаты расчетов, когда импульсы имели
противоположную полярность, 𝐸01 = −𝐸02, пред-
ставлены на рис. 2. Остальные параметры такие же,
как на рис. 1. Видно, что смена полярности одного
из импульсов влияет на динамику системы. В этом
случае микрорезонатор формируется уже сразу по-
слепервого столкновенияимпульсов.Вцентре сре-
ды, в точке 𝑧 = 6λ0, система находится в невоз-
бужденном состоянии, а по краям от нее разность
населенности изменяется скачком. С ростом чис-
ла столкновений пространственная частота реше-
ток увеличивается. При этом в области локализа-
ции микрорезонатора образуются сложные струк-
турыполяризации в виде стоячих волн. Взаимодей-
ствие падающих импульсов возбуждения с этими
колебаниями поляризации является причиной уве-
личения пространственной частоты решеток насе-
ленностей [34, 35]. Похожее поведение разности
населенностей наблюдалось в [60] при столкнове-
нии полностью униполярных импульсов противо-
положной полярности.

ЗАКЛЮЧЕНИЕ
Исследование взаимодействия полуцикловых

импульсов с резонансными средами привело
к предсказанию и детальному исследованию
нового явления — возможности формирования
и сверхбыстрого управления динамическими
микрорезонаторами, возникающих при столк-
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Рис. 2. Динамика разности населенностей 𝑛(𝑧, 𝑡) (a);
динамика поляризации 𝑃(𝑧, 𝑡) при столкновении па-
ры субцикловых импульсов СИП противоположной
полярности (б), 𝐸01 = −𝐸02, в центре среды в точке𝑧 = 6λ0. Параметры расчета указаны в табл. 1.
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новении предельно коротких импульсов в среде.
С ростом числа столкновений импульсов парамет-
рами данного микрорезонатора можно управлять.
Показано, что микрорезонатор может возникать,
когда сталкивающиеся 2π подобные субцик-
ловые импульсы СИП имеют как одинаковую,
так и противоположную полярность, в отличие
от результатов ранних исследований [60].

Исследованный эффект представляет интерес
для остановки и хранения импульсов света в сре-
де [25], создания сверхбыстрых аттосекундных
оптических переключателей [69], голографии
со сверхвысоким временным разрешением [70],
создания пространственно-временных фотонных
кристаллов нового типа с управляемыми парамет-
рами [46–49], а также в физике фотонных кристал-
лов [71–73]. Полученные результаты открывают
новые направления исследований в аттосекундной
физике и оптике предельно коротких импуль-
сов и показывают возможность сверхбыстрого
управления состоянием среды на сверхкоротких
временных масштабах с помощью субцикловых
световых импульсов.

Исследование поддержано грантом Российско-
го научного фонда в рамках проекта № 23-12-00012
(создание динамических резонаторов) и Государ-
ственным заданием ФТИ им. А.Ф. Иоффе, тема
0040-2019-0017 (создание решеток разности насе-
ленностей).

СПИСОК ЛИТЕРАТУРЫ
1. Архипов Р.М., Архипов М.В., Розанов Н.Н. //

Квант. электрон. 2020. Т. 50. С. 801;
Arkhipov R.M., Arkhipov M.V., Rosanov N.N. //
Quantum Electron. 2020. V. 50. No. 9. P. 801.

2. Джексон Дж. Классическая электродинами-
ка. М.: Мир, 1965. 702 с.; Jackson J.D. Classical
Electrodynamics. N.Y.: Wiley, 1962.

3. Бессонов Е.Г. // ЖЭТФ. 1981. Т. 80. С. 852;
Bessonov E.G. // Sov. Phys. JETP. 1981. V. 53.
P. 433.

4. Розанов Н.Н. // Опт. и спектроск. 2009. Т. 107.
№ 5. С. 761; Rosanov N.N. // Opt. Spectrosc.
2009. V. 107. No. 5. P. 768.

5. Сазонов С.В. // Опт. и спектроск. 2022. Т. 130.
№ 12. С. 1846; Sazonov S.V. // Opt. Spectrosc.
2022. V. 130. No. 12. P. 1573.

6. Розанов Н.Н., Архипов Р.М., Архипов М.В. //
УФН. 2018. Т. 188. С. 1347; Rosanov N.N.,
Arkhipov R.M., Arkhipov M.V. // Phys. Usp. 2018.
V. 61. P. 1227.

7. Архипов Р.М., Архипов М.В., Пахомов А.В.
и др. // Письма в ЖЭТФ. 2023. Т. 117.
№ 1. С. 10; Arkhipov R.M., Arkhipov M.V.,
Pakhomov A.V. et al. // JETP Lett. 2023. V. 117.
No. 1. P. 8.

8. Розанов Н.Н. // УФН. 2023. Т. 193. С. 1127;
Rosanov N.N. // Phys. Usp. 2023. V. 66. P. 1059.

9. Розанов Н.Н., Архипов М.В., Архипов Р.М.
и др. Терагерцовая фотоника. М.: РАН, 2023.
360 c.

10. Hassan M.T., Luu T.T., Moulet A. et al. // Nature.
2016. V. 530. P. 66.

11. Wu H.-C., Meyer-ter Vehn J. // Nature Photon.
2012. V. 6. P. 304.

12. Xu J., Shen B., Zhang X. et al. // Sci. Reports.
2018. V. 8. P. 2669.

13. Bogatskaya A.V., Volkova E.A., Popov A.M. //
Phys. Rev. E. 2021. V. 104. Art. No. 025202.

14. Богацкая А.В., Волкова Е.А., Попов А.М. //
Изв. РАН. Cер. физ. 2024. Т. 88. № 1. C. 74;
Bogatskaya A.V., Volkova E.A., Popov A.M. //Bull.
Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 61.

15. Ilyakov E., Shishkin B.V., Efimenko E.S. et al. //
Opt. Express. 2022. V. 30. P. 14978.

16. Сазонов С.В. //Изв. РАН.Cер.физ. 2022.Т. 86.
№6.С. 766;Sazonov S.V. //Bull. Russ. Acad. Sci.
Phys. 2024. V. 88. No. 1. P. 643.

17. Pakhomov A., Arkhipov M., Rosanov N. et al. //
Phys. Rev. A. 2022. V. 106. No. 5. Art.
No. 053506.

18. Bucksbaum P.H. // AIP Conf. Proc. 1994. V. 323.
No. 1. P. 416.

19. Dimitrovski D., Solov’ev E.A., Briggs J.S. // Phys.
Rev. A. 2005. V. 72. Art. No. 043411.

20. Moskalenko A.S., Zhu Z.-G., Berakdar J. // Phys.
Reports. 2017. V. 672. P. 1.

21. Arkhipov R., Arkhipov M., Babushkin I. et al. //
J. Opt. Soc. Amer. B. 2021. V. 38. P. 2004.

22. Rosanov N., Tumakov D., Arkhipov M. et al. //
Phys. Rev. A. 2021. V. 104.No. 6. Art.No. 063101.

23. Arkhipov R., Arkhipov M., Demircan A. et al. //
Opt. Express. 2021. V. 29. P. 10134.

24. Архипов Р.М., Архипов М.В., Федоров C.В.
и др. // Опт. и спектроск. 2021. Т. 129.
№ 10. С. 1286; Arkhipov R.M., Arkhipov M.V.,
Fedorov S.V. et al. // Opt. Spectrosc. 2021.

25. Arkhipov M., Arkhipov R., Babushkin I. et al. //
Phys. Rev. Lett. 2022. V. 128. Art. No. 203901.

26. Abella I.D., Kurnit N.A., Hartmann S.R. // Phys.
Rev. 1966. V. 141. P. 391.

27. Штырков Е.И., Лобков В.С., Ярмухаме-
тов Н.Г. // Письма в ЖЭТФ. 1978. Т. 27.
№ 12. С. 685; Shtyrkov E.I., Lobkov V.S.,
Yarmukhametov N.G. // JETP Lett. 1978. V. 27.
No. 12. P. 648.

28. Моисеев С.А., Штырков Е.И. // Квант. элек-
трон. 1991. Т. 18. № 4. С. 447; Moiseev S.A.,
Shtyrkov E.I. // Sov. J. Quant. Electron. 1991.
V. 21. No. 4. P. 403.

29. Штырков Е.И., Самарцев В.В. // Опт. и спек-
троск. 1976. Т. 40. № 3. С. 392.

30. Shtyrkov E.I., Samartsev V.V. // Phys. Stat. Sol. A.
1978. V. 45. P. 647.

31. Штырков Е.И. // Опт. и спектроск. 2013.
Т. 114. № 1. С. 105; Shtyrkov E.I. // Opt.
Spectrosc. 2013. V. 114. No. 1. P. 96.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



МИКРОРЕЗОНАТОРЫ И ВРЕМЕННЫЕ ФОТОННЫЕ КРИСТАЛЛЫ 77

32. Szczurek M., Kusnierz M. // Opt. Commun. 1989.
V. 74. P. 121.

33. Архипов Р.М., Архипов М.В., Бабушкин И.
и др. // Опт. и спектроск. 2016. Т. 121. С. 810;
Arkhipov R.M., Arkhipov M.V., Babushkin I.
et al. // Opt. Spectrosc. 2016. V. 121. P. 758.

34. Arkhipov R.M., Arkhipov M.V., Babushkin I.
et al. // Opt. Letters. 2016. V. 41. P. 4983.

35. Arkhipov R.M., Arkhipov M.V., Babushkin I.
et al. // Sci. Reports. 2017. V. 7. Art. No. 12467.

36. Arkhipov R., Pakhomov A., Arkhipov M. et al. //
Sci. Reports. 2021. V. 11. Art. No. 1961.

37. Rosanov N.N., Semenov V.E., Vysotina N.V. //
Laser Phys. 2007. V. 17. P. 1311.

38. Pusch A., Hamm J.M., Hess O. // Phys. Rev. A.
2010. V. 82. No. 2. Art. No. 023805.

39. Архипов Р.М., Архипов М.В., Пахомов А.В.
и др. // Опт. и спектроск. 2017. Т. 123. С. 600;
Arkhipov R.M., Arkhipov M.V., Pakhomov A.V.
et al. // Opt. Spectrosc. 2017. V. 123. P. 610.

40. Архипов Р.М., Архипов М.В., Пахомов А.В.
и др. // Опт. и спектроск. 2018. Т. 124. С. 510;
Arkhipov R.M., Arkhipov M.V., Pakhomov A.V.
et al. // Opt. Spectrosc. 2018. V. 124. P. 541.

41. Архипов Р.М. // Письма в ЖЭТФ. 2021. Т. 113.
С. 636; Arkhipov R.M. // JETP Lett. 2021. V. 113.
P. 611.

42. Архипов Р.М., Архипов М.В., Пахомов А.В.
и др. // Изв. вузов. Радиофиз. 2023. Т. 66.
№ 4. С. 317; Arkhipov R.M., Arkhipov M.V.,
Pakhomov A.V. et al. // Radiophys. Quantum
Electron. 2024. V. 66. No. 4. P. 286.

43. Архипов Р.М., Архипов М.В., Пахомов А.В.
и др. // Опт. и спектроск. 2022. Т. 130.
№ 11. С. 1707; Arkhipov R.M., Arkhipov M.V.,
Pakhomov A.V. et al. // Opt. Spectrosc. 2022.
V. 130. No. 11. P. 1443.

44. Diachkova O.O., Arkhipov R.M., Arkhipov M.V.
et al. // Opt. Commun. 2023. V. 538. Art.
No. 129475.

45. Arkhipov R.M., Diachkova O.O., Arkhipov M.V.
et al. // Appl. Phys. B. 2024. V. 130. P. 52.

46. Lustig E., Sharabi Y., Segev M. // Optica. 2018.
V. 5. No. 11. P. 1390.

47. GalifÏ E., Tirole R., Yin S. et al. // Adv. Photonics.
2022. V. 4. No. 1. Art. No. 014002.

48. Sharabi Y., Dikopoltsev A., Lustig E. et al. //
Optica. 2022. V. 9. No. 6. P. 585.

49. Boltasseva A., Shalaev V.M., Segev M. // Opt.
Mater. Expr. 2024. V. 14. No. 3. P. 592.

50. Eichler H.J., Günter P., Pohl D.W. Laser-induced
dynamic gratings. Berlin, Heidelberg, New York,
Tokyo: Springer-Verlag, 1981.

51. Arkhipov R., Arkhipov M., Pakhomov A. et al. //
Laser Phys. 2022. V. 32. No. 6. Art. No. 066002.

52. Архипов Р.М. // Квант. электрон. 2024. Т. 54.
№ 2. С. 77.

53. Arkhipov R., Pakhomov A., Diachkova O. et al. //
Opt. Letters. 2024. V. 49. No. 10. P. 2549.

54. Diachkova O., Arkhipov R., Pakhomov A. et al. //
Opt. Commun. 2024. V. 565. P. 130666/.

55. Arkhipov R. // arXiv:2402.16122. 2024.
56. Lustig E., Segal O., Saha S. et al. //

Nanophotonics. 2023. V. 12. P. 1.
57. Saha S., Segal O., Fruhling C. et al. // Opt.

Express. 2023. V. 31. No. 5. P. 8267.
58. Архипов Р.М., Розанов Н.Н. // Опт. и спек-

троск. 2024. Т. 132. № 5. С. 532.
59. Архипов Р.М., Дьячкова О.О., Архипов М.В.

и др. // Опт. и спектроск. 2024. Т. 132. № 9.
С. 918.

60. Arkhipov R., Pakhomov A., Diachkova O. et al. //
JOSA B. 2024. V. 41. No. 8. P. 1721.

61. Ландау Л.Д., Лифшиц Е.М. Квантовая ме-
ханика. Нерелятивистская теория. М.: Нау-
ка, 1974; Landau L.D., Lifshitz E.M. Quantum
mechanics: non-relativistic theory. V. 3. Elsevier,
2013.

62. Arkhipov R. // Laser Phys. 2024. V. 34. 36. Art.
No. 065301.

63. Архипов Р.М., Архипов М.В., Розанов Н.Н. //
Опт. и спектроск. 2024. Т. 132. № 4. С. 434.

64. Arkhipov R., Arkhipov M., Pakhomov A. et al. //
Phys. Rev. A. 2024. V. 109. Art. No. 063113.

65. Архипов Р.М., Дьячкова O.O., Белов П.А. и др. //
ЖЭТФ. 2024. Т. 166. № 2(8). С. 1.

66. Аллен Л., Эберли Дж. Оптический резонанс
и двухуровневые атомы. М.: Мир, 1978. 223 с;
Allen L., Eberly J.H. Optical resonance and two-
level atoms. N.Y., Wiley, 1975.

67. Ярив А. Квантовая электроника. М.: Совет-
ское радио, 1980. 488 с; Yariv A. Quantum
Electronics. N.Y.: Wiley, 1975.

68. Розанов Н.Н. // Опт. и спектроск. 2019. Т. 127.
С. 960; Rosanov N.N. // Opt. Spectrosc. 2019.
V. 127. P. 1050.

69. Hassan M.T. // ACS Photonics. 2024. V. 11.
No. 2. P. 334.

70. Архипов Р.М., Архипов М.В., Розанов Н.Н. //
Письма в ЖЭТФ. 2020. Т. 111. С. 586;
Arkhipov R.M., Arkhipov M.V., Rosanov N.N. //
JETP Lett. 2020. V. 111. P. 484.

71. Манцызов Б. Когерентная и нелинейная оп-
тика фотонных кристаллов. М.: Физматлит,
2013. 149 с.

72. Двужилова Ю.В., Двужилов И.С., Шилов Т.Б.
и др. // Изв. РАН. Сер. физ. 2022. Т. 86.
№ 12. С. 1708; Dvuzhilova Yu.V., Dvuzhilov I.S.,
Shilov T.B. et al. // Bull. Russ. Acad. Sci. Phys.
2022. V. 86. No. 12. P. 1454.

73. Двужилова Ю.В., Двужилов И.С., Белонен-
ко М.Б. // Изв. РАН. Сер. физ. 2024. Т. 88.
№ 1. С. 80; Dvuzhilova Yu.V., Dvuzhilov I.S.,
Belonenko M.B. // Bull. Russ. Acad. Sci. Phys.
2024. V. 88. No. 1. P. 66.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



78 АРХИПОВ и др.

Microcavities and photonic time crystals formed by collision of half-cycle light pulses
in a resonant medium

R. M. Arkhipov𝑎, ∗, M. V. Arkhipov𝑎, ∗, A. V. Pakhomov𝑎, 𝑏, O. O. Diachkova𝑎, 𝑏, N. N. Rosanov𝑎
𝑎Ioffe Institute, Saint-Petersburg, 194021 Russia𝑏St. Petersburg State University, Saint-Petersburg, 199034 Russia

∗e-mail: arkhipovrostislav@gmail.com

We discussed the authors’ recent research into the generation and ultrafast control of light-induced
dynamic microcavities and photonic time crystals created by the collision of half-cycle pulses in a medium.
The possibility of guiding microcavities during the collision of self-induced transparency half-cycle pulses
of the same polarity has been demonstrated.
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ВВЕДЕНИЕ
При выводе модельных уравнений, описываю-

щих распространение лазерных импульсов в нели-
нейных диспергирующих средах, часто используют
два хорошо известных приближения. Распростра-
нение квазимонохроматических импульсов в сре-
де с керровской нелинейностью в области прозрач-
ности диэлектрика можно описать нелинейным
уравнением Шредингера (НУШ) для огибающей
импульса [1]. При этом соответствующий кри-
терий большого числа осцилляций поля задает-
ся выражением (ω0τp)2 ≫ 1, где ω0 — централь-
ная частота импульса, τp — его длительность. Для
описания импульсов, включающих в себя всего
несколько колебаний светового поля ω0τp∼1 (пре-
дельно короткие импульсы), используют уравне-
ния, записанные непосредственно для электриче-
ского поля импульса или его спектра [2–8]. Для
таких импульсов приближение медленно меняю-
щейся огибающей (ММО) становится непримени-
мо. В обоих случаях, когда спектр импульса лежит
в области оптическойпрозрачности, соответствую-
щее условиеможно записать в виде ∣ω0 − ωR∣ τp ≫ 1,
где ωR — характерная частота линии резонансно-
го поглощения. При этом выражение для диспер-
сионного отклика можно разложить в ряд. Нетруд-

но видеть, что для квазимонохроматических им-
пульсов данное соотношение совпадает с условием
ММО при существенном удалении несущей часто-
ты импульса от резонанса. Однако, в случае мате-
риалов с несколькими узкими линиями поглоще-
ния, например, молекулярных газов, условие опти-
ческой прозрачности может нарушаться даже ко-
гда импульс содержит достаточно большое число
осцилляций поля, хотя существенного поглоще-
ния при этом не происходит и материал можно
с хорошей степенью точности считать прозрачным.
Теоретическому анализу уравнений, описывающих
распространение импульсов в указанных случаях,
и нахождению условий солитоноподобных режи-
мов и посвящена настоящая работа.

МЕТОД МОМЕНТОВ

Уравнение, описывающее однонаправленное
распространение оптических импульсов в нели-
нейной среде с дисперсией, имеет вид𝜕𝐸(𝑧, τ)𝜕𝑧 = −2π𝑐 𝜕𝜕τ×

×⎛⎝
∞
∫0

χ (τ′)𝐸(𝑧, τ − τ′) 𝑑τ′ + χ(3)4π 𝐸3(𝑧, τ)⎞⎠ . (1)
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где τ = 𝑡 − 𝑧/𝑐, 𝑧 — координата, вдоль кото-
рой распространяется сигнал, χ(τ) = Θ(τ)2𝑒2 ××∑𝑙,𝑗 𝑁l𝐴lj sinωijτ/𝑚ωlj — функция импульсного
отклика, связанная с диэлектрической восприим-
чивостью среды преобразованием Фурье

χ(ω) = ∞
∫0

χ(τ)𝑒𝑖ωτ𝑑τ = 𝑛0 − 12π ,
𝑛0(λ) = 1 + 4π𝑒2𝑚ω20 ∑𝑙,𝑗 𝑁l𝐴lj

λ2
ljλ20 − λ2

lj

, (2)

Θ(τ) — функция Хевисайда, 𝑒 — заряд электро-
на, 𝑁l — концентрация атомов или молекул сор-
та 𝑙, 𝐴lj — величина, пропорциональная силе ос-
циллятора 𝑗-го резонанса, ωlj — частота соответ-
ствующего резонанса, 𝑐 — скорость света в вакуу-
ме, λ0 — центральная длина волны импульса, χ(3) == ∑𝑙 𝑁lχ(3)l /∑𝑙 𝑁l — результирующая кубическая
восприимчивость среды, 𝑛2 = ∑𝑙 𝑁l𝑛2,𝑙 /∑𝑝 𝑁𝑙 —
результирующий нелинейный показатель прелом-
ления, χ(3)l , 𝑛2,l — кубическая восприимчивость
и нелинейный показатель преломления атомов или
молекул сорта 𝑙. Представим электрическое по-
ле 𝐸 в виде𝐸(𝑧, τ) = 12ψ(𝑧, τ) exp (−𝑖ω0τ) + к.с. (3)

Подставляя (3) в (1), получаем𝜕ψ𝜕𝑧 = −2π𝑐
∞
∫0

𝜕χ (τ′)𝜕τ′ ψ (𝑧, τ − τ′)×
× 𝑒𝑖ω0τ′ 𝑑τ′ + 𝑖γψ∣ψ∣2 − γω0

𝜕𝜕τ (ψ∣ψ∣2) .
(4)

Здесь ψ является огибающей электрического поля,γ = 3χ(3)ω0/8𝑐 = 𝑛20ω0𝑛2/8π—коэффициенткубиче-
скойнелинейности, 𝑛0 ≈ 1 + 2πχ—показатель пре-
ломления среды, ω0 — центральная частота сигна-
ла. При переходе от уравнения (1) к (4) мы прене-
брегли генерацией гармоник. В частности, в рабо-
те [9] было показано, что для импульсов, включа-
ющих в себя порядка одного-двух колебаний по-
ля кубическаянелинейность обуславливает генера-
цию четвертой гармоники. Соответствующий эф-
фект генерации нечетных гармоник в среде с квад-
ратичной нелинейность был описан в работе [10].
Отметим, что уравнение (1) описывает как квази-
монохроматические импульсы, так и предельно ко-
роткие [11–13].

Анализ динамики параметров импульса прово-
дится на основе метода моментов [14]. Пробное ре-
шение выберем в виде

ψ = 𝐵 exp (−12 (τ−𝑇2τp )
2(1+𝑖𝐶)+𝑖(ϕ+Ω(τ−𝑇))) , (5)

где 𝐵 — амплитуда сигнала, 𝐶 — параметр, опре-
деляющий частотную модуляцию, ϕ — фаза, Ω —

сдвиг частоты. Все параметры зависят от координа-
ты 𝑧. Определим моменты импульса в виде

𝑊 = ∞
∫
−∞ ∣ψ∣2𝑑τ, (6)

τ2
p = 2𝑊

∞
∫
−∞ (τ − 𝑇)2∣ψ∣2𝑑τ, (7)

𝐶 = 𝑖𝑊
∞
∫
−∞ (τ − 𝑇) (ψ∗ 𝜕ψ𝜕τ − ψ𝜕ψ

∗𝜕τ ) 𝑑τ, (8)

𝑇 = 𝑖𝑊
∞
∫
−∞ τ∣ψ∣2𝑑τ, (9)

Ω = − 𝑖2𝑊
∞
∫
−∞ (ψ∗ 𝜕ψ𝜕τ − ψ𝜕ψ

∗𝜕τ ) 𝑑τ, (10)

фазу найдем из следующего выражения∞
∫
−∞ (

𝜕ψ𝜕𝑧 ψ∗ − 𝜕ψ∗𝜕τ ψ) 𝑑τ = −2𝑖∑𝑖,𝑗 𝐷lj×
× Im

∞
∫0

∞
∫
−∞ ψ∗(τ)ψ (τ − τ′) 𝑒𝑖(ω0−ωlj)τ′𝑑τ𝑑τ′+

+2𝑖γ ∞
∫
−∞ ∣ψ∣4𝑑τ − 𝑖 γω0 Im

∞
∫
−∞ ∣ψ∣2ψ∗ 𝜕ψ𝜕τ 𝑑τ.

(11)

Используя метод моментов, получаем

𝑊 = 𝑊0 exp⎛⎝2 − Im
𝑧
∫0

𝑘s𝑑𝑧⎞⎠ , (12)

𝜕τp𝜕𝑧 = Im
⎡⎢⎢⎢⎢⎣
(1 + 𝑖𝐶)22τp 𝜕2𝑘s𝜕ω20

⎤⎥⎥⎥⎥⎦ , (13)

𝜕𝐶𝜕𝑧 = Re
⎡⎢⎢⎢⎢⎣
(1 + 𝐶2) (1 + 𝑖𝐶)τ2

p

𝜕2𝑘s𝜕ω20
⎤⎥⎥⎥⎥⎦+

+

γ𝑊√2πτp (1 − Ωω0) ,
(14)

𝜕𝑇𝜕𝑧 = Re [(1 + 𝑖𝐶) 𝜕𝑘s𝜕ω0 ] +
3γ𝑊2√2πω0τp , (15)

𝜕Ω𝜕𝑧 = Im
⎡⎢⎢⎢⎢⎣
(1 + 𝐶2)τ2

p

𝜕𝑘s𝜕ω0
⎤⎥⎥⎥⎥⎦ −

γ𝑊𝐶2√2πω0τ3
p

, (16)

𝜕φ𝜕𝑧 = Re
⎡⎢⎢⎢⎢⎣𝑘s + (1 + 𝑖𝐶)

2
4τ2

p

𝜕2𝑘s𝜕ω20
⎤⎥⎥⎥⎥⎦+

+

γ𝑊4√2πτp (5 + Ωω0) +Ω𝑇z. (17)

Здесь 𝑘s = 𝑖 ∑𝑙,𝑗 𝐷ljτp (2𝑖𝐹 (ζlj) +√π exp (−ζ2
lj))÷÷√1 + 𝐶2 назовем солитонным волновым чис-

лом, ζlj = τpΔωlj/√1 + 𝐶2, Δωlj = ω0 −Ω − ωlj, 𝐷lj =
ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



О ДИНАМИКЕ ПАРАМЕТРОВ ИМПУЛЬСОВ, РАСПРОСТРАНЯЮЩИХСЯ В СРЕДЕ 81

= 2π𝑒2𝑁l𝐴lj/𝑚𝑐, 𝑊 = 𝐵2τp√π, 𝑊0 = 𝐵20 τ0√π, 𝐵0, τ0 —
начальные значения соответствующих параметров𝐹(ζ) = exp (−ζ2) ∫ ζ0 exp (𝑡2) 𝑑𝑡— функция Доусона.

СОЛИТОНОПОДОБНЫЙ РЕЖИМ
РАСПРОСТРАНЕНИЯ

В качестве среды будем рассматривать воздух,
который на 21% состоит из кислорода O2 и на 79%
из азота N2. На аргон Ar, водяные пары H2O
и углекислый газ CO2 приходится меньше одного
процента от концентрации всехмолекул.Показате-
лем преломления воздуха представлен в работе [15].
Рассмотрим окно прозрачности воздуха, принад-
лежащее диапазону от 3.5–4.1 мкм, в котором
дисперсия групповой скорости β2 аномальна.
Основной вклад в аномальную дисперсию воздуха
дают две резонансные длины волны углекислого
газа λ1 = 4.223 мкм, λ2 = 4.291 мкм, и поэтому
в выражении для коэффициента групповой дис-
персии β2 = (λ30/2π𝑐2)𝑑2𝑛0(λ0)/𝑑λ2 = 𝜕2𝑘/𝜕ω20 (где𝑘 = ω0𝑛0/𝑐 — волновое число) можно учитывать
только эти слагаемые.

В нелинейный показатель преломления воздуха
дает наибольший вклад кислород и азот [16]𝑛2 = 0.79𝑛2,N2

+ 0.21𝑛2,O2
,

𝑛2,O2,N2
= 𝑃−1

O2,N2λ−2
O2,N2

− λ−20 . (18)

Здесь 𝑃N2
= 14.63 ГВт, λN2

= 0.3334 мкм для азота
и 𝑃O2

= 14.62 ГВт, λN2
= 0.3360 мкм для кислоро-

да. Аппроксимация (18) справедлива в диапазоне1–4 мкм.

Для рассмотрения солитоноподобного режима
положим 𝐶 = 0, 𝜕𝐶/𝜕𝑧 = 0. Кроме того, будем рас-
сматривать предел Δωτp ⩾ 2.67, (19)

гдеΔω = ω0−ω1,ω1 —ближайшаякцентральной ча-
стоте импульса резонансная частота среды. В этом
пределе справедливо асимптотическое разложение
функции Доусона в ряд [17]

𝐹(𝑥) = 12𝑥 + 14𝑥3 + 38𝑥5 + 1 ⋅ 3 ⋅ 5 ⋅ ..(2𝑛 − 1)2n+1𝑥2n+1
. (20)

Из системы (12)–(17) получаем𝑊 = 𝐵20 τ0√π = 8π𝐼0τ0√π/𝑐𝑛0, Ω = 0,
𝐼0 = 𝑐√2τ20ω0𝑛0𝑛2

RRRRRRRRRRRR
𝜕2𝑘sR𝜕ω20

RRRRRRRRRRRR , (21)

𝑇 = (𝜕𝑘sR𝜕ω0 +
3𝑛0𝑛2𝐼02√2𝑐 ) 𝑧, (22)

φ = ⎛⎝𝑘sR + 14τ0
𝜕2𝑘sR𝜕ω20 +

5𝑛0𝑛2ω0𝐼04√2𝑐 ⎞⎠ 𝑧. (23)

𝑘sR = Re 𝑘s — действительная часть солитонно-
го волнового числа, величину 𝜕2𝑘s𝑅/𝜕ω20 мож-
но назвать солитонным коэффициентом группо-
вой дисперсии. Зависимость интенсивности им-
пульса от его длительности, описываемая выра-
жением (21), представлена на рис. 1а и 1б. Для
рис. 1а условие (19) выполняется если τp > 35 фс,
а для рис. 1б — если τp > 72 фс.

Из уравнения (4) можно получить уравнение
с дисперсией в виде ряда, если разложить подын-
тегральную функцию ψ (𝑧, τ − τ′) в ряд и восполь-

tp, фс tp, фс

10
, В

т/
см

2

10
, В

т/
см

2

ба

6 × 1011

5 × 1011

4 × 1011

3 × 1011

2 × 1011

1 × 1011
5 × 1010

3 × 1011

2.5 × 1011

2 × 1011

1.5 × 1011

1 × 1011

20 40 6030 50 70 8040 60 9050 70 110 120100

Рис. 1. Зависимость интенсивности импульса от его длительности на центральной длине волны сигнала λ = 3.6 (а),3.9 мкм (б).
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зоваться преобразованием Фурье 𝜕nχ(ω)/𝜕ωn == (𝑖)n ∫ ∞0 τnχ(τ)𝑒𝑖ωτ𝑑τ.
Выполнив преобразования, получим𝜕ψ𝜕𝑧 = 𝑖 (𝑘 − ω0𝑐 )ψ −∑𝑛 (𝑖)

n−1𝑛! βn 𝜕nψ𝜕τn +
+ 𝑖γψ∣ψ∣2 − γω0

𝜕𝜕τ (ψ∣ψ∣2) .
(24)

Здесь β1 = 𝜕𝑘/𝜕ω0 − 1/𝑐, βn = 𝜕n𝑘/𝜕ωn0 (𝑛 ⩾ 2),𝑘 = 𝑛0ω0/𝑐. Решение этого уравнения совпадает
с (21)–(23), если функцию Доусона представить
в виде асимптотического ряда (20). Таким об-
разом, разложение дисперсии (24) справедливо,
если выполняется условие (19). В противном
случае для описания динамики импульсов нужно
рассматривать уравнения (1) или (4).

Определим пределы применимости пробного
решения (5) с помощью правила сохранения элек-
трической площади [18]∞

∫
−∞ 𝐸(τ, 𝑧)𝑑τ = 𝑐𝑜𝑛𝑠𝑡. (25)

Очевидно, что если электрическое поле им-
пульса можно представить в виде производной
по времени 𝐸 = 𝜕Φ/𝜕τ от функции, убывающей
на бесконечности, то условие (25) выполняется
и площадь импульса равна нулю [4]. Представим
функцию Φ в виде [19]Φ(τ, 𝑧) = − ψ2𝑖ω0 exp (−𝑖ω0τ) + к.с., (26)

тогда

𝐸(τ, 𝑧)= 12(ψ exp (−𝑖ω0τ)− 1𝑖ω0
𝜕ψ𝜕τ exp (−𝑖ω0τ)+к.с.).

(27)
Вклад второго слагаемого в (27) пропорциона-

лен 1/ω0τp и им можно пренебречь, если импульс
включает в себя порядка пяти и более осцилляций
поля [19]. В этом случае (27) переходит в (3) с огиба-
ющей в виде (5). Таким образом, правило сохране-
ния площади импульса накладывает ограничения
на применимость пробного решения вида (5). Сле-
дует отметить, что приближение однонаправленно-
го распространения следует применять с осторож-
ностью, поскольку оно может приводить к наруше-
нию правила сохранения электрической площади
[20–22].

ЗАКЛЮЧЕНИЕ
С помощью метода моментов аналитически

описано распространения солитоноподобных им-
пульсов в воздухе. Вклад дисперсии учтен посред-
ством интеграла Дюамеля. Найден критерий (19),
отделяющий два режима распространения сигнала.
Показано, что и дляимпульсов, включающих в себя
порядка десятиколебанийполя,может бытьнепри-
менимо приближение ММО, если спектр импуль-

са лежит вблизи резонанса среды. Для этих случаев
получена система уравненийнапараметрыимпуль-
са. Найдено частое решение этой системы.

Работа Халяпина В.А. выполнена при фи-
нансовой поддержке гранта Министерства науки
и высшего образования РФ № 075-02-2024-1430.

Авторы благодарят профессора С.В. Сазонова
за полезные обсуждения в ходе подготовки работы.
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On the dynamics of the parameters of pulses propagating in the medium
with anomalous dispersion of the group velocity
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We analyzed themutual influence of simultaneous processes of second harmonic generation and parametric
down conversion within the framework of a fully quantum approach. The effect of depletion of quantum
pumping has been revealed. The effect of establishing a balance between the processes under consideration
and achieving an equilibrium number of photons in the field modes is found. The generation of a strongly
entangled two-mode field is demonstrated.
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ВВЕДЕНИЕ
В последнее время все более востребованной

становится технология радиовидения в радиофо-
тонных радарах, для осуществления которой необ-
ходимо создавать радиопортрет «блестящих точек»
удаленного объекта в СВЧ диапазоне [1–4]. Такие
радары могут быть использованы применительно
к ситуациям, когда окружающее пространство тре-
бует точного контроля — в аэропортах, морских
портах, в густонаселенных городах, на крупных ав-
тодорогах и др. Для реализации этой технологии
необходимо создание приемных устройств с вы-
сокой разрешающей способностью. При этом ис-
пользование приемных устройств СВЧ, построен-
ных на исключительно радиоэлектронной компо-
нентной базе, не всегда может подходить для ре-
шения такой задачи из-за ограничений по рабочей
полосе частот. В то же время более высокая разре-
шающая способность по дальности может быть до-
стигнута с помощью использованияширокополос-
ных и сверхширокополосных импульсов в качестве
локационных сигналов [5–7]. Высокое разрешение

по углу поступления сигнала на приемную антенну
может быть получено с помощью голографическо-
го метода, где для формирования радиоголограм-
мы к отраженной волне добавляется опорная СВЧ
волна и регистрируется результат интерференции
двух волн, т. е. записывается электронная радио-
голограмма, которая затем может быть оцифрова-
на и подвергнута спектральному анализу для из-
влечения информации о местоположении удален-
ного объекта [8, 9]. Приемные устройства, спро-
ектированные на основе радиофотонных техноло-
гий, позволяют реализовать алгоритм формирова-
ния и регистрации радиоголограмм [10–12].

СХЕМА ПРИЕМНОГО УСТРОЙСТВА
Схема приемного устройства для формирова-

ния и регистрации радиоголограммы представле-
на на рис. 1. Она разработана для решения одно-
мерной задачи определения угла прихода отражен-
ного сигнала на приемную антенну от удаленного
объекта. Решение этой задачи требует формирова-
ния и регистрации радиоголограммы отраженной
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Рис. 1. Схема приемного устройства: 1 —излучающая антенна, 2 —приемная антенна, 3 — линия передвижения при-
емной антенны, θ— угол , 𝐿— расстояние между излучающей и приемной антеннами, OF — оптоволокно, MZM —
двойной параллельный электрооптический модуляторМаха–Цандера, PD—фотодетектор, Анализ— анализ с помо-
щью пакета программ, Результат — выходные данные.

от объекта волны СВЧ. Для этого опорная вол-
на в радиофотонном блоке обработки, состоящем
из волоконного лазера, двойного параллельного
электрооптического модулятора и фотодетектора,
смешивалась с входным сигналом каждого при-
емника линейной антенной решетки. В результа-
те этого формировалась интерференционная кар-
тина взаимодействия отраженной и опорной волн,
т. е. происходил учет фазовой информации фронта
отраженнойволны. Затемполученнаяинтерферен-
ционная картина подвергалась спектральному ана-
лизу, в ходе которого определялся уголпоступления
отраженной волны на приемную антенну.

ИССЛЕДОВАНИЕ РАБОТЫ СХЕМЫ
С ПОМОЩЬЮ ЧИСЛЕННОГО

МОДЕЛИРОВАНИЯ
С помощью численных моделирований в сре-

де MatLab была исследована работа такой систе-
мы. Волна, отраженная от объекта, рассматрива-
лась как излучение с синусоидальной зависимо-
стью от времени с плоским фронтом (дальняя зо-
на). В таком случае разность фаз между сигнала-
ми СВЧ, регистрируемыми соседними приемника-
ми, является постоянной. После смешивания от-
раженного и опорного сигналов в двойном парал-

лельном модуляторе Маха–Цандера и последую-
щего их фотодетектирования формируется сигнал,
содержащий сведения об интенсивности интерфе-
ренционной картины отраженной и опорной волн𝐼p−r в точкенахожденияотдельногоприемника.При
этомвсе оптические частотныекомпонентыоказы-
ваются отфильтрованными. При условии постоян-
ства разности фаз сигналов между соседним при-
емниками 𝐼p−r является синусоидальной функци-
ей, аргументом которой является номер приемни-
ка в решетке или его координаты вдоль решетки.
То есть на решетке формируется пространственная
волна с частотой, зависящей от угла падения от-
раженной волны на решетку (угол падения отсчи-
тывается от вертикали к середине линейной антен-
ной решетки). Поэтому угол падения можно опре-
делять, вычисляя преобразование Фурье и находя
частотный максимум интерференционной карти-
ны 𝐼p−r.

При проведении численных моделирований
использовались следующие параметры схемы: дли-
на волны СВЧ 3 см, длина решетки 1.5 м, коли-
чество приемников 100, расстояние между сосед-
ними приемниками линейной антенной решетки
1.5 см. Фаза опорной волны соответствовала слу-
чаю нормального падения (угол θ градусов от вер-
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тикали к линейной антенной решетке) при смеши-
вании отраженного и опорного сигналов в модуля-
тореМаха–Цандера.На рис.2а продемонстрирова-
на 𝐼p−r в результате усреднения по времени для слу-
чая одиночного отражающего объекта (шум пред-
полагался малым), на рис. 2б показан ее спектр.
В рассматриваемом случае отраженная волна па-
дала на антенную решетку под углом 50 градусов
от нормали. Различие формы 𝐼p−r от синусоидаль-
ной функции связано с относительно малой часто-
той расположения приемников на длине простран-
ственной волны. Однако расстояние между прием-
никами на периоде пространственной волны вы-
брано с учетом того, чтобы при скользящем па-
дении отраженной волны на периоде находилось
не менее двух точек оцифровки для сохранения ин-
формации. В случае низкого уровня шума угол па-
дения волны определяется с достаточной точно-
стью и составляет 50 градусов. В случае увеличен-
ных шумов точность определения угла будет де-
терминирована полушириной спектрального пика,
т. е. линейным размером антенной решетки. Ес-
ли рассматривать полуширину спектрального пика
по уровню половинной мощности, то она оказыва-
ется порядка одного градуса, что соответствует ди-
фракционной ширине луча.

На рис. 2в изображена 𝐼p−r в случае двух отра-
жающих объектов, расположенных под углами 25
и 50 градусов от нормали. На рис. 2г отображен
ее спектр. Направления на два объекта хорошо
определяются, несмотря на более сложный вид 𝐼p−r,
связанный с биением двух близких частот отра-
женных сигналов. На рис. 2д продемонстрирован
спектр 𝐼p−r для случая двух близкорасположенных
по углу объектов (объекты расположены под уг-
лами 20 и 21 градус от нормали). Объекты могут
быть разрешены, что подтверждает сделанную вы-
ше оценку.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ
СХЕМЫ

В качестве источника отраженной волны в схе-
ме экспериментального макета приемника для
определения угла падения сигнала (рис. 1) исполь-
зуется рупорная антенна. Излучение СВЧ генера-
тора, настроенного на частоту 7.5 ГГц, разделяет-
ся на 2 канала. Первый канал ведет к рупорной ан-
тенне, излучающей сигнал, второй—через аттеню-
атор (ослабление 20 дБ) к одному из плеч двойного
параллельногомодулятораМаха–Цандера, предва-
рительно настроенного на квадратурную рабочую
точку (середина линейного участка передаточной
функции). Приемная антенна в виде отрезка пря-
моугольного волновода, перемещаемая вдоль ли-
нии 3, регистрирует падающие волны со сфери-
ческим фронтом, излучаемые рупорной антенной.
Сигнал с приемной антенны поступает на мало-
шумящий СВЧ усилитель (26 дБ). Затем усилен-

ная волна поступает на второе плечо двойного па-
раллельного электрооптического модулятора. Оп-
тические поля, промодулированные СВЧ сигнала-
ми, поступившими на оба плеча модулятора, сум-
мируются и поступают на фотодетектор по опти-
ческому волокну. СВЧ поле, полученное в резуль-
тате фотодетектирования, поступает на измеритель
мощности через усилитель (23 дБ). Данные о за-
меренной мощности оцифровываются и затем ана-
лизируются с помощью пакета программ в среде
MatLab.

В схеме использованы следующие компоненты:
● AgilentN1912A—измерительмощностиСВЧ;
● IXblue MXIQ-LN-30 — двойной параллель-

ный модулятор Маха–Цандера с полосой 30 ГГц;
● Pure Photonics PPCL550 — малошумящий

непрерывный одномодовый лазер с длиной волны
излучения 1.5 мкм;
● НПФДилаз ДФДШM40—широкополосный

InGaAs PIN фотодетектор;
● Agilent аттенюаторы 3 и 10 дБ;
● Малошумящий усилитель с полосой частот

1–18 ГГц.
Экспериментальные данные, полученные

на макете, результаты их обработки, а также срав-
нение их с теоретической моделью представлены
на рис. 3. Интерференционная картина, получен-
ная в ходе эксперимента для угла прихода сигнала
30.8°, показана на рис. 3а (красная кривая 1).
Ее форма аналогична кривой на рис. 2а, полу-
ченной в результате численного моделирования
схемы. На рис. 3а также помещена кривая, демон-
стрирующая результат интерференции в случае
поля сферической волны (синяя кривая 2), когда
отраженный объект находится на недостаточном
удалении от приемной антенны. Разность фаз
двух кривых являлась свободным параметром
и была выбрана из условия максимально близ-
кого соответствия кривых. Можно заключить,
что теория дает достаточно хорошее совпадение
с экспериментом.

На рис. 3б продемонстрированы угловые спек-
тры, полученные в результате Фурье-анализа ин-
терференционных картин. Оценка угла, проведен-
ная по середине экспериментального распределе-
ния (по уровню −3 дБ), составляет 30.8°. Это зна-
чение совпадает с истинным углом в эксперимен-
те и является близким к углу 30.2°, полученно-
му по середине теоретического спектра. Точность
вычисления угла определяется шириной распре-
деления, полученного в результате Фурье-анализа.
В рассматриваемом случае ширина спектра значи-
тельная и составляет около 20°. Это обусловлено
тем, что расстояние до источника сигнала являет-
ся недостаточно большим, поэтому падающая вол-
на является не плоской, а сферической. В резуль-
тате величина периода пространственной волны
изменяется нелинейно вдоль линии перемещения
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Рис. 2. Сигнал на выходефотодетектора для одиночного отражающего объекта, расположенного под углом 50 градусов
от нормали: усредненная по времени интенсивность интерференционной картины 𝐼p−r (а); спектральный вид 𝐼p−r (б).
Сигнал на выходе фотодетектора в случае двух отражающих объектов: усредненная по времени 𝐼p−r для объектов, рас-
положенных под углами 25 и 50 градусов от нормали (в) и ее спектральный вид (г); спектральный вид 𝐼p−r (д) в случае
двух близкорасположенных целей под углами 20 и 21 градус.
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Рис. 3. Экспериментальные данные и результаты их обработки. Сравнение экспериментальных и теоретических ин-
терференционных картин (а) и угловых спектров (б): 1 — эксперимент, 2 — теория (сферическая волна). Предло-
женный алгоритм обработки экспериментальных данных (в): 1, 2 — спектры данных, полученных с правой и левой
половин антенной решетки, 3 — полный спектр для сравнения. Исходные и восстановленные координаты цели (г):
1 — истинное положение источника, 2 — восстановленное положение, желтая линия — антенная решетка.

приемной антенны (линейной антенной решетки).
Для небольших уровней шума (отношение сиг-
нал/шум более 10–12 дБ) такой метод оценки угла
прихода сигнала может быть приемлемым, однако
для более зашумленных данных алгоритм обработ-
ки должен быть модифицирован.

Путем к определению истинных координат ис-
точника может служить решение уравнений макси-
мального правдоподобия с использованием метода
последовательных приближений. Первое прибли-
жение может быть получено путем деления массива
данных интерференционной картины на две рав-
ные части, соответствующие правой и левой поло-
винам антенной решетки. В ходе регистрации из-
лучения каждая часть решетки обнаруживает ис-
точник под своим углом. В рассматриваемом слу-
чае эти углы составляют 26° и 36° согласно спек-
трам 1 и 2 на рис. 3в. Точка пересечения прямых
линий, проходящих через середины половин ан-
тенной решетки под найденными углами, дает све-

дения о положении источника в первом прибли-
жении (рис. 3г). В рассматриваемом случае обра-
ботки данных измеренное значение угла поступле-
ния сигнала составляет 31.4 градуса. Таким обра-
зом, ошибка по углу оказывается менее 1°, а коор-
динаты 𝑥 и 𝑦 истинного (265,342) и восстановлен-
ного (241,285) источников различаются в пределах
10% и 20% соответственно.

ЗАКЛЮЧЕНИЕ
Рассмотрена задача определения угла прихода

отраженной волны на линейную антенную решет-
ку. Предложена схема радиофотонного приемно-
го устройства СВЧ для формирования и регистра-
ции радиоголограмм. Проведено численное и экс-
периментальное исследования такого устройства.
Предложен алгоритм обработки интерференцион-
ной картины для определения координат отража-
ющего объекта в случае сферичности отраженной
волны при недостаточном удалении приемника
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от объекта.Массив данных с антенной решетки де-
лится на две части для определения угла падения
на каждую из них. Точка пересечения прямых, про-
ходящих через середины половин антенной решет-
ки под найденными углами, может быть использо-
вана в качестве первого приближения к истинным
координатам отражающего объекта, которое мо-
жет быть уточнено с использованием метода мак-
симального правдоподобия.
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ВВЕДЕНИЕ

В субтерагерцовом и терагерцовом диапазоне
частот наиболее мощными источниками монохро-
матического излучения являются гиротроны, осно-
ванные на отборе энергии от винтовых электрон-
ных потоков, движущихся в вакууме. На сегодняш-
ний день реализованынепрерывные источники из-
лучения в диапазоне 0.5 ТГц c выходной мощно-
стью250Вт [1], и вимпульсномрежимев диапазоне0.67ТГц с выходноймощностью 200 кВт [2] и в диа-
пазоне 1 ТГц с выходной мощностью 1–1.5 кВт
[3, 4]. Одновременно, гиротроны демонстрируют
и сложную хаотическую динамику, развивающую-
ся в условиях большой надкритичности (превыше-
ния рабочего тока над стартовым значением). Так,
в работах [5, 6] было показано, что при определен-
ных условиях в гиротронах могут быть реализова-
ны режимы генерации шумоподобного излучения
с относительной шириной спектра до 10%. Резуль-
таты этих исследований нашли экспериментальное
подтверждение в работе [7], где было получено из-
лучение Ка-диапазона с относительной шириной
спектра 1.5%, что на порядок превышало значе-
ния, полученные в предшествующих эксперимен-

тальных работах [8–10]. В свою очередь, в рабо-
те [11] обсуждалась возможность созданиямощного
источника широкополосного хаотического излуче-
ниянаоснове сильноточного электронногопотока.
Согласно оценкам, ширина спектра такого источ-
ника в Ка-диапазоне может превышать 30 ГГц.

Вместе с тем значительный интерес представ-
ляет увеличение частоты источников хаотическо-
го излучения, что требует увеличения значения ре-
зонансного магнитного поля. Поставленная зада-
ча может быть упрощена, если использовать взаи-
модействие на гармониках гирочастоты.Это позво-
ляет уменьшить рабочее значение магнитного по-
ля пропорционально номеру гармоники. Но се-
лективному возбуждению хаотических колебаний
на гармониках гирочастоты препятствует паразит-
ное возбуждение колебаний на основной гармо-
нике.

В этой связи представляет интерес использо-
вание эффекта умножения частоты в гиротронах.
Впервые эффект умножения был теоретически ис-
следован в работе [12], где было показано, что мак-
симальная мощность излучения на второй гармо-
нике может составлять до нескольких процентов
от мощности излучения на основной гармонике.
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В дальнейшем в специально поставленных экспе-
риментах было зарегистрировано одновременное
излучение на второй, третьей и четвертой гармони-
ках в гиротроне с рабочей частотой 0.13 ТГц [13].
Однако до недавнего времени подобные режимы
не вызывали значительного интереса. Ситуацияиз-
менилась с выходом работ [14, 15], где за счет
фильтрации низкочастотного излучения были сде-
ланы экспериментальные измерения уровня мощ-
ности на второй гармонике гирочастоты в диапа-
зоне 0.5 ТГц. Было показано, что отношение ин-
тенсивности второй гармоники к первой находится
в диапазоне 10−4–10−3, а максимальная мощность
в диапазоне 0.52 ТГц близка к 10 мВт. В дальней-
шемизлучение этого гиротрона былоиспользовано
для проведения спектральных измерений методом
радиоакустического детектирования в диапазонах0.53, 0.79 и 1.06 ТГц, соответствующих генерации
излучения на 2, 3 и 4 гармониках гирочастоты [16]

В недавней работе [17] впервые была исследо-
вана генерация хаотического излучения на второй
гармонике гирочастоты в слаборелятивистском ги-
ротроне. Была показана возможность генерации
излучения диапазона 0.5 ТГц с шириной спектра
около 20 ГГц и уровнем мощности порядка 0.5 мВт.

Данная работа посвящена анализу возможно-
стей получения широкополосного шумоподобно-
го излучения субтерагерцового диапазона в силь-
ноточном гиротроне в режиме умножения частоты.

МОДЕЛЬ И ОСНОВНЫЕ УРАВНЕНИЯ

Уже в первых теоретических работах, в которых
рассматривалась нестационарная динамика гиро-
тронов на основной циклотронной гармонике, бы-
ло показано, что для перехода к нестационарным
режимам генерации необходимо значительное уве-
личение параметра тока [18]:

𝐼0 = 16 𝑒𝐽b𝑚𝑐3 ⋅ 𝐺 ⋅ β∥β6⟂ , (1)

где 𝐽b — ток электронного пучка,𝑚, 𝑒—масса и за-
ряд электрона, 𝐺 — фактор связи пучка с рабочей
модой, β∥, β⟂ — начальные продольная и попереч-
ные скорости электронов, нормированные на ско-
рость света 𝑐. При этом для получения режимов
широкополосной хаотической генерации значение
параметра тока должны быть 𝐼0 ⩾ 1. Для сильно-
точных электронных потоков данное соотношение
достаточно легко обеспечивается при взаимодей-
ствии с низшей модой электродинамической си-
стемы ТЕ1,1.

Известно, что для эффективного умножения
излучения в гармонику с номером 𝑠 необходимо
выполнение двух условий [19, 20]. Если гиротрон
на основнойциклотронной гармонике возбуждает-
ся на моде TEm,n, то азимутальный индекс 𝑀 моды

на 𝑠-й гармонике должен удовлетворять соотноше-
нию:

𝑀 = 𝑠 ⋅ 𝑚. (2)

Одновременно должно выполняться условие
кратности критических частот,Ωc = 𝑠 ⋅ ωc, (3)

которое удобно переписать для значений собствен-
ных чисел мод:

νM = 𝑅0Ωc𝑐 = 𝑠 ⋅ νm = 𝑠𝑅0ωc𝑐 , (4)

где 𝑅0 — радиус однородного участка резонатора
гиротрона.

В гиротронах традиционно используются резо-
наторы в виде отрезка цилиндрического волново-
да круглого сечения, спектр мод которых являет-
ся неэквидистантным, в силу чего одновременное
точное выполнение условий (2) и (4) невозможно.
Однако достаточно точно указанные условия вы-
полняются для комбинации моды ТЕ1,1 на основ-
ной циклотронной гармонике имодыТЕ7,2 на седь-
мой циклотронной гармонике.

Рассмотрим модель гиротрона в виде отрез-
ка слабонерегулярного цилиндрического волново-
да радиусом 𝑅0, в котором винтовой электронный
пучок возбуждает ТЕ1,1 на основной циклотронной
гармонике и моду ТЕ7,2 на седьмой циклотронной
гармонике. Будем полагать, что частота излучения
на первой гармонике близка как к критической ча-
стоте моды в резонаторе ωc1, так и к циклотронной
частоте ωH = 𝑒𝐻0/𝑚c𝑐γ0, где 𝐻0 — величина веду-
щего магнитного поля. В свою очередь, частота из-
лучения на седьмой гармонике близка к критиче-
ской частоте второймодыωc7 и к семикратному зна-
чению циклотронной частоты 7ωH. Электрическое
поле каждой из мод в рабочем пространстве может
быть представлено в виде𝐸1 = Re (𝐴1(𝑧, 𝑡)𝐸1⟂(𝑟) exp[𝑖ωH𝑡 − 𝑖φ]) ,𝐸7 = Re (𝐴7(𝑧, 𝑡)𝐸7⟂(𝑟) exp[7(𝑖ωH𝑡 − 𝑖φ)]) , (5)

где 𝐴1,7(𝑧, 𝑡) — медленно меняющиеся комплекс-
ные амплитуды волн на первой и второй гармони-
ке, соответственно,функции𝐸1,7⟂ (𝑟) описывают ра-
диальную структуру мод, φ — азимутальный угол.
Электронно-волновое взаимодействие может быть
описано следующей системой уравнений:

𝑖𝜕2𝑎1𝜕𝑍2 + 𝜕𝑎1𝜕τ + (𝑖Δ1 + 𝑖δ1(𝑍) + σ1)𝑎1 =
= 𝑖 𝐼14π2

2π
∫0

2π
∫0 𝑝𝑑φ𝑑θ0,

𝑖 𝜕2𝑎7𝜕𝑍2 + 𝜕𝑎7𝜕τ + (𝑖Δ7 + 𝑖δ7(𝑍) + σ7)𝑎7 =

(6)
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= 𝑖 𝐼74π2
2π
∫0

2π
∫0 𝑝7𝑑φ𝑑θ0,

𝜕𝑝𝜕𝑍 + 𝑔2
4 𝜕𝑝𝜕τ + 𝑖𝑝 (∣𝑝∣2 − ∣𝑝0∣2) =
= 𝑖 (𝑎1 + 𝑎7 (𝑝∗)6) ,

где 𝑎1 = 𝑒𝐴1𝐽0 (ν11𝑅b/𝑅0)𝑚𝑐ωH

1γ0β3⟂ 𝑧, 𝑎7 =
=

𝑒𝐴2𝐽0 (ν72𝑅b/𝑅0)𝑚𝑐ωH

β3⟂γ0 — нормированные амплиту-

ды волн, 𝑍 = β2⟂2β∥ ωH𝑐 𝑧, τ = β4⟂8β2∥ωH𝑡 — продольная

координата и время, 𝑝 — нормированный на на-
чальное значение комплексный поперечный
импульс,

Δ1 = 8 β2∥0β4⟂0
ωH − ωc1ωc1 , Δ7 = 392 β2∥0β4⟂0

7ωH − ωc7ωc7 ,
δ1(𝑍) = 8 β2∥0β4⟂0

ωc1 − ωc1(𝑍)ωc1 ,
δ7(𝑍) = 392 β2∥0β4⟂0

ωc7 − ωc7(𝑍)ωc7

(7)

циклотронная и геометрическая расстройки,ωc1(𝑍) = ν11𝑐/𝑅(𝑧), ωc7(𝑍) = ν72𝑐/𝑅(𝑧) — функции,
задающие зависимости критических частот мод
от продольной координаты,

𝐼1 = 16 𝑒𝐼b𝑚𝑒𝑐3
β∥γ0β6⟂

𝐽20 (ν11𝑅b/𝑅0)(ν211 − 1) 𝐽21 (ν11) ,
𝐼2 = 64𝑠3 ( 𝑠s2s𝑠!)2 𝑒𝐼b𝑚𝑒𝑐3

β∥β6⟂γ0
𝐽20 (ν72𝑅b/𝑅0)(ν272 − 𝑠2) 𝐽27 (ν72)

(8)

— параметры возбуждения для пучка с радиусом
инжекции 𝑅b и током 𝐼b, ν11, ν72 — первый и вто-
рой корни уравнений 𝐽′1(ν) = 0 и 𝐽′7(ν) = 0, соответ-
ственно, 𝑠 = 7 — номер циклотронной гармоники,
на которой происходит взаимодействие со второй
модой, σ1 = 4β2∥/𝑄1β4⟂, σ7 = 196β2∥/𝑄7β4⟂ — коэффи-
циенты поглощения, 𝑄1,7 — омические добротно-
сти мод.

Будем считать, что на входе в пространство вза-
имодействия электроны равномерно распределе-
ны по фазам циклотронного вращения 𝑝(𝑍 = 0) =
= exp(𝑖θ0), θ0 = [0, 2π). Для амплитуд каждойизмод
используются безотражательные граничные усло-
вия на левой и правой границах системы:

𝑎1(τ, 0) − 1√𝑖π
τ
∫0

𝑒−𝑖(δ1(0)+Δ1−𝑖σ1)(τ−τ′)√τ − τ′ ×
× 𝜕𝑎1 (τ′, 0)𝜕𝑍 𝑑τ′ = 0,

𝑎1(τ, 0) − 1√𝑖π
τ
∫0

𝑒−𝑖(δ1(0)+Δ1−𝑖σ1)(τ−τ′)√τ − τ′ ×
× 𝜕𝑎1 (τ′, 0)𝜕𝑍 𝑑τ′ = 0,

𝑎7(τ, 0) − 1√2𝑖π
τ
∫0

𝑒−𝑖(δ7(0)+Δ7−𝑖σ7)(τ−τ′)√τ − τ′ × (9)

× 𝜕𝑎7 (τ′, 0)𝜕𝑍 𝑑τ′ = 0,
𝑎1(τ, 𝐿) + 1√𝑖π

τ
∫0

𝑒−𝑖(δ1(𝐿)+Δ1−𝑖σ1)(τ−τ′)√τ − τ′ ×
× 𝜕𝑎1 (τ′, 𝐿)𝜕𝑍 𝑑τ′ = 0,

𝑎7(τ, 𝐿) + 1√2𝑖π
τ
∫0

𝑒−𝑖(δ7(𝐿)+Δ7−𝑖σ7)(τ−τ′)√τ − τ′ ×
× 𝜕𝑎7 (τ′, 𝐿)𝜕𝑍 𝑑τ′ = 0,

где 𝐿 — нормированная длина пространства взаи-
модействия.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ
Исследуем далее динамику сильноточного

гиротрона Ка-диапазона с рабочей модой ТЕ1,1
на первой гармонике гирочастоты, возбуждае-
мом винтовым электронным пучком с энергией500 кэВ, током 0.5 кА и питч-фактором 1.0. Для
указанных параметров величина параметра тока
на первой циклотронной гармонике составляет
величину около 3.5.

На рис. 1 представлены зависимости средней
мощности генерации и ширины спектра на первой
и седьмой циклотронной гармониках гирочастоты
при изменении магнитного поля. Ширина спектра
вычислялась на уровне −10 дБ относительно мак-
симального уровня спектра. При увеличении маг-
нитного поля от 20 до 26 кЭ средняя мощность ге-
нерации на первой гармонике снижается с уровня
около 8 МВт до 1 МВт. При этом средняя ширина
спектра увеличивается со значений порядка 1 ГГц
до значений порядка 10–15 ГГц.

В свою очередь на седьмой циклотронной
гармонике наблюдается несколько иная картина.
Спектр излучения сосредоточен в диапазоне более240 ГГц (рис. 2). Средняя мощность генерации при
увеличении магнитного поля от 20 до 26 кЭ нарас-
тает со значений на уровне сотен киловатт до уров-
ня 1–2 МВт. Уровень мощность более 1 МВт до-
стигается при магнитном поле около 22 кЭ. В свою
очередь ширина спектра хаотической генерации
колеблется относительно уровня 10 ГГц. При уве-
личении магнитного поля выше 25 кЭ ширина
спектра последовательно уменьшается, при этом
в области магнитного поля 26 кЭ происходит его
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Рис. 1. Зависимость средней мощности генерации
иширины спектра на первой и седьмой циклотронных
гармониках от величины магнитного поля.

раздвоение. Таким образом, оптимальным являет-
ся диапазон магнитных полей 22–25 кЭ, в котором
в субтерагерцовом диапазоне наблюдается устой-
чивая генерация со средним уровнеммощности бо-
лее 1 МВт при ширине спектра 10 и более ГГц.

ЗАКЛЮЧЕНИЕ
Недавние экспериментальные исследования

подтвердили перспективность использования
режимов умножения частоты в гиротронах,
возбуждаемых сильноточными электронными
потоками [21]. В таких гиротронах уровень из-
лучения на гармониках гирочастоты оказывается
существенно большим, по сравнению с системами
со слаборелятивистскими электронными пучками.
Проведенное исследование позволяет сделать
аналогичный вывод и для режимов хаотической
генерации.

Исследование выполнено при поддержке Рос-
сийского научного фонда (проект № 23-12-00161).
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It is shown that for a high-current relativistic Ka-band gyrotron operating in the chaotic generation mode
on the lowest mode of a circular waveguide TE1,1, effective radiation is possible at the seventh harmonic of
the gyrofrequency on the TE7,2 mode. The relative width of the spectrum of chaotic sub terahertz radiation
can exceed 5% at a megawatt output power level.
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ВВЕДЕНИЕ
Весьма актуальной задачей остается разработка

и создание мощных широкополосных усилитель-
ных клистронов. В настоящее время клистроны
с полосой от 2 до 15% широко используются в пе-
редатчиках мощных РЛС различного назначения
в дециметровом, сантиметровом и миллиметровом
диапазонах волн. В своей основе клистрон являет-
ся резонансным узкополосным прибором типа «О»
с дискретным взаимодействием электронного
потока с электромагнитными полями резонаторов
и с полосой усиления менее 1%.

Для расширения ширины рабочей полосы ча-
стот клистрона используют низкодобротные про-
межуточные резонаторы, с относительно сильной
отстройкой частоты от центральной частоты рабо-
чего диапазона усилителя. Первые несколько про-
межуточных резонаторов обычно настроены на ча-
стоты внутри рабочей полосы и образуют линей-
ный усилитель, который формирует полосу усили-
ваемых частот и необходимый уровень усиления.
Последующие промежуточные резонаторы настра-
иваются на частоты, выходящие за пределы правой
границы полосы, и образуют нелинейный груп-
пирователь, ответственный за получение высокого
КПД клистрона и коррекцию его полосовой харак-
теристики.

Кроме расширения естественной полосы уси-
ления клистрона за счет отстроек промежуточ-
ных резонаторов, для широкополосных клистро-
нов важно, чтобы выходная система также имела
широкую полосу. Для этого необходимо уменьшать
ее нагруженную добротность, что, в свою очередь,
увеличивает активную составляющую проводимо-
сти выходной резонаторной системы. Для обеспе-
чения эффективного отбора энергии в выходной
системе необходимо, чтобы проводимость элек-
тронного потока примерно равнялась проводимо-
сти выходной системы. Поэтому для увеличения
проводимости электронного потока либо исполь-
зуют высокопервеансные электронные пучки, либо
многолучевые конструкции. Кроме того, для рас-
ширения полосы в качестве выходных систем ши-
рокополосных приборов используют многозазор-
ные резонаторы.

Все эти факторы усложняют физические про-
цессы в клистронах и требует при разработке
их конструкции системного двумерного и трех-
мерного численного анализа. Применение же од-
номерных программ для оптимизации параметров
конструктивных элементов широкополосных кли-
стронов ограничено начальной стадией исследова-
ния процессов в таких приборах. В работах [1, 2]
были показаныпределыприменимости аналитиче-
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ских и одномерных численных моделей для описа-
ния нелинейных процессов в клистронах. Там же
были приведены оценки влияния на эффектив-
ность группирования со стороны поперечного рас-
слоения пучка, вызванного радиальной неодно-
родностью сил пространственного заряда, прови-
санием потенциала, радиальной неоднородностью
полей резонаторов.

В данной работе рассматриваются особенности
влияния данных двумерных факторов на эффек-
тивность группирования в широкополосных кли-
стронах на примере однолучевого и многолучево-
го клистронов. Поскольку воздействие на эффек-
тивность группировки электронного пучка различ-
ных нелинейных факторов происходит одновре-
менно, определить степень влияния каждого фак-
тора в отдельности представляется затруднитель-
ным. Поэтому для исследования их влияния бу-
дем использовать результаты сравнительного ана-
лиза эффективности группирования по различным
физическим моделям.

МЕТОДЫ ИССЛЕДОВАНИЯ
Теория мощных электровакуумных приборов

СВЧ в общем случае строится на принципах клас-
сической электродинамики и сводится к решению
совместной системы уравнений Максвелла и урав-
нений движения заряженных частиц. Прямое ре-
шение данной системыв общейпостановке требует
использования нестационарных трехмерных чис-
ленных моделей электронного потока и электро-
магнитных полей. Такое решение является весьма
трудоемким, требует значительных вычислитель-
ных затрат, и применяется только в таких полных
компьютерных кодах, как CST Studio Suite [3].

При анализе процессов группирования и отбо-
ра энергии в клистронах в двумерномприближении
использовался программный комплекс PARS [4],
разработанный авторами на основе модернизации
программы «Арсенал-МГУ» [5], зарекомендовав-
шей себя в нашей стране и за рубежом как надеж-
ный инструмент для разработки и исследования
многочисленных клистронных усилителей [6–9].
В модели электронный пучок представляется по-
следовательностью заряженных колец, при движе-
нии которых учитываются продольная и радиаль-
ная координаты, а также все три компоненты ско-
рости.

Для проведения сравнительных расчетов в од-
номерном приближении использовалась програм-
ма «Клистрон-МГУ» [10], успешно применявша-
яся при разработке многочисленных клистронов
в СССР. В модели электронный пучок представля-
ется в виде последовательности заряженных дис-
ков, при движении которых учитываются только
продольная координата и продольная компонента
скорости.

Помимо различия в моделях электронного
пучка программы отличаются в подходах к вы-
числению амплитуд напряжений, возникающих
в зазорах резонаторов. В одномерной програм-
ме «Клистрон-МГУ» в эквивалентной схеме
резонатора вводится статическая комплексная
проводимость электронного пучка 𝐺en + 𝑖𝐵en, кото-
рая рассчитывается по аналитическим формулам
в предположении, что влетающий в резонатор
электронный пучок является немодулированным.
Для нахождения амплитуды напряжения на зазоре
резонатора используется линейное приближение,
позволяющее по известному значению первой гар-
моники конвекционного тока 𝐼1n в центре зазора
резонатора вычислить значение наведенного тока:𝐼нав n = 𝑀n𝐼1n, (1)
где 𝑀n — коэффициент электронного взаимодей-
ствия зазора 𝑛-го резонатора. Амплитуда напряже-
ния на зазоре 𝑛-го резонатора в линейном прибли-
жении определяется из следующего выражения:

𝑉n =
𝐼нав n√(𝐺cn + 𝐺en)2 + (𝐵cn + 𝐵en)2 , (2)

где𝐵cn =
1ρn
[1 − (ω0ω )2]—реактивнаяпроводимость

резонатора, 𝐺en =
1ρn𝑄n

— активная проводимость
резонатора, где ωn = 2π𝑓, 𝑄n, ρn, 𝑓n, собственная
добротность, волновое сопротивление и собствен-
ная частота рабочей моды резонатора.

В двумерной программе PARS для вычисления
амплитуды напряжения на зазоре промежуточно-
го резонатора применяется уже нелинейный под-
ход, при котором используется теория Шокли–
Рамо, а напряжение в зазоре резонатора определя-
ется итерационным методом через мощность взаи-
модействия: 𝑃(𝑡) = ∫𝑉gn

𝐸gn ⋅ 𝐽𝑑𝑉gn, (3)

где 𝑉gn — объем области взаимодействия электри-
ческого поля 𝑛-го резонатора 𝐸gn с электронным
пучком, 𝐽— вектор плотности конвекционного то-
ка пучка. При этом на каждом периоде колебаний
поля в резонаторе 𝑇 = 1/𝑓 проводится вычисление
реальной и мнимой части комплексного наведен-
ного тока:

Re 𝐼нав n =
2𝑇𝑑n

𝑇
∫𝑜 𝑑𝑡∭𝑉gn

[𝑗r(𝑟, 𝑧, 𝑡)𝐹rn(𝑟, 𝑧)+
+𝑗z(𝑟, 𝑧, 𝑡)𝐹zn(𝑟, 𝑧)] sin (ω𝑡 + αn) 𝑑𝑉gn, (4)

Im 𝐼нав n =
2𝑇𝑑n

𝑇
∫𝑜 𝑑𝑡∭𝑉gn

[𝑗r(𝑟, 𝑧, 𝑡)𝐹rn(𝑟, 𝑧)+
+𝑗z(𝑟, 𝑧, 𝑡)𝐹zn(𝑟, 𝑧)] cos (ω𝑡 + αn) 𝑑𝑉gn, (5)
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где 𝐹m(𝑟, 𝑧), 𝐹zn(𝑟, 𝑧)—функции распределения ра-
диальной и продольной компонент собственного
электрического поля 𝑛-го резонатора. Амплитуда
и фаза напряжения на 𝑘 + 1 периоде (итерации)
определяется из следующего выражения:

𝑉k+1
n =

¿ÁÁÀ 𝐼нав n𝑉k
n(𝐺cn + 𝑖𝐵cn) . (6)

Итерациипродолжаются до сходимости амплитуды
и фазы напряжения на зазоре резонатора к стаци-
онарному значению. Разработанный нелинейный
метод анализа позволяет учесть в квазистационар-
ном квазитрехмерном приближении нелинейные
эффекты взаимодействия интенсивных электрон-
ных потоков с электромагнитными полями в зазо-
рах резонаторов, в том числе и выходных.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
Исследовались два широкополосных импульс-

ных усилительных клистрона С диапазона, раз-
работанных специалистами Института электро-
ники Китайской Академии Наук (IECAS) с по-
мощью одномерной программы KLY6. Парамет-
ры изготовленных приборов приведены в табл. 1.
Клистрон KC4083A является однолучевым и ис-

пользует электронный пучок с высоким первеан-
сом. Система взаимодействия клистрона состоит
из девяти резонаторов, последний из которых —
двухзазорный выходной резонатор, работающий
на π-виде колебаний. Параметры резонаторов кли-
строна KC4083A указаны в табл. 2. Клистрон
KC4079E — является многолучевым и использует
электронный пучок с низким первеансом. Система
взаимодействия клистрона состоит из семи резона-
торов, последний из которых — двухзазорный вы-
ходной резонатор, работающий на 2π-виде колеба-
ний. Параметры резонаторов клистрона KC4079E
указаны в табл. 3. В обоих клистронах используется
схема с частотной отстройкой второго резонатора
в левой части полосы усиления.

При испытаниях обоих клистронов специ-
алисты IECAS столкнулись с весьма неприят-
ной проблемой. Амплитудно-частотные характе-
ристики (АЧХ) изготовленных приборов имели
весьма существенные провалы недалеко от цен-
тральной частоты полосы усиления (кривые 1
на рис. 1). По просьбе китайских специалистов бы-
ли проведены теоретические исследования рабо-
ты изготовленных клистрона с помощью программ
«Клистрон-МГУ» и «Арсенал-МГУ».

Таблица 1. Параметры клистронов

Параметр KC4083A KC4079E

Ускоряющее напряжение, кВ 68.2 23
Сила тока на луч, А 39.2 1.2
Микропервеанс, мкА/В3/2 2.2 0.344
Радиус трубы, см 0.43 0.175
Число лучей 1 24
Радиус пучка, см 0.32 0.105
КПД 30% 30%
Ширина полосы 7% 5.3%
Коэффициент усиления, дБ 45 35
Выходная мощность, кВт 800 200

Таблица 2. Параметры резонаторов клистрона KC4083A

№ 𝑧, см 𝑓/𝑓𝑜 ρ, Ом 𝑄
1 0 0.9866 100 50
2 3.4 0.9671 110 230
3 7.2 0.9971 110 120
4 10.2 1.0199 110 67
5 13.4 1.0368 110 105
6 16.6 1.046 110 210
7 19.6 1.0575 110 180
8 22 1.0699 110 3000
9 24.3 1 67.5 138
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Таблица 3. Параметры резонаторов клистрона KC4079E

№ 𝑧, см 𝑓/𝑓𝑜 ρ, Ом 𝑄
1 0 0.991935 22 65
2 3.2 0.967742 22 250
3 6.4 1.005376 22 150
4 9.6 1.016129 22 150
5 12.8 1.031362 22 500
6 16.2 1.039427 22 500
7 17.8 1 20 30
Исследования с помощью одномерной про-

граммы «Клистрон-МГУ» (кривые 3 на рис. 1)
не показали наличие провалов. Это соответству-
ет результатам, полученным специалистами IECAS
спомощьюодномернойпрограммыKLY6 (кривая 4
на рис. 1). Результаты же, полученные с помощью
двумерной программы «Арсенал-МГУ» (кривые 2
на рис. 1), очень хорошо совпали с эксперимен-
тальными результатами [11].

Для того, чтобы понять причины такого отли-
чия результатов анализа, полученных по одномер-
ным и двумерной программам, было проведено бо-
лее детальное исследование физических процессов
в клистронах KC4083A и KC4079E с помощью од-
номерной программы «Клистрон-МГУ» и двумер-
ной программы PARS.

На рис. 2а и 2б представлены рассчитанные
по программе PARS для клистрона KC4083A мгно-
венные значения относительных продольных ком-
понент импульсов заряженных частиц и их по-
ложения соответственно. Данные результаты бы-
ли получены для частоты входного сигнала, име-
ющего отстройку от центральной частоты поло-
сы усиления Δ𝑓 = −20 МГц. Как видно из ри-
сунков, электроны пучка модулируются по ско-
рости электромагнитным полем входного резона-

тора. Модуляция по скорости приводит к моду-
ляции по плотности и группированию электро-
нов в сгустки. Электромагнитные поля после-
дующих промежуточных резонаторов, возбужда-
емые сгустками электронов, усиливают модуля-
цию по скорости и по плотности. Степень сжа-
тия электронов в сгустках характеризуется ам-
плитудой первой гармоники конвекционного то-
ка 𝐼1, которая постепенно увеличивается по длине
прибора.

Одной из основных особенностью широкопо-
лосных клистронов является сильная зависимость
характера нарастания 𝐼1(𝑧) от частоты входного
сигнала. На рис. 2в приведены рассчитанные про-
дольные распределения относительной первой гар-
моники конвекционного тока в приборе для раз-
личных значений отстройки частоты входного сиг-
налаΔ𝑓. За счет второго и третьего резонаторов ли-
нейного усилителя клистрона, частоты которых от-
строены влево от центральной частоты, нараста-
ние амплитуды 𝐼1(𝑧) для частот левого края поло-
сы происходит более равномерно, чем на правом
краю. Группирование же на правом краю полосы
является неравномерным по длине прибора и про-
исходит в основном за счет эффективного вза-
имодействия с полями резонаторов нелинейного

1

2

3

1

2

3

4

0

200

400

800

600

1000

1200

1400

0 60 120 180�60�120�180 0 40 80 120 160�40�80�120�160

0

200

100

300

400

50

250

350

150

ба

P
вы

х, 
кВ

т

P
вы

х, 
кВ

т

Δf, МГц Δf, МГц
Рис. 1. АЧХ клистронов KC4083A (a) и KC4079E(б), полученные в эксперименте (кривая 1), с помощью двумерной
программы «Арсенал-МГУ» (кривая 2), с помощью одномерных программ «Клистрон-МГУ» (кривая 3) и KLY6 (кри-
вая 4).
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Рис. 2. Рассчитанные по программе PARS для клистрона KC4083A мгновенные значения относительных продольных
компонент импульсов заряженных частиц (а), их положения (б) и продольные распределения относительной первой
гармоникиконвекционного тока вприборе для различных значенийотстройкичастотывходного сигнала от централь-
ной частоты рабочей полосы прибора Δ𝑓, МГц: −180 (1), −40 (2), −20 (3), 0 (4), 20 (5), 40 (6), 60 (7), 100 (8), 160 (9).

группирователя. При этом на их зазорах возника-
ют значительные амплитуды напряжения.

С помощью двумерной программы PARS были
проведены исследования влияния динамической
расфокусировки электронного пучка на АЧХ
прибора. Было проведено сравнение результатов
для случая использования экспериментальных
данных для фокусирующего магнитного поля
и для случая «замороженного» пучка с бесконеч-
ной величиной магнитного поля, при котором
отсутствуют какие-либо радиальные пульсации
электронов в пучке. Сравнение показало сла-
бое влияние на АЧХ со стороны динамической
расфокусировки в данном клистроне.

На рис. 2в распределение 𝐼1(𝑧), соответ-
ствующее частотной отстройке провала АЧХΔ𝑓 = 40 МГц (рис. 2а), обозначено цифрой 6.
Можно заметить, что низкое значение 𝐼1 в конце
группирователя вызвано слабой группиров-
кой пучка резонаторами линейного усилителя
клистрона КC4083A. Поэтому для детального
сравнительного анализа процесса группирова-
ния был выбран участок клистрона KC4083A,
включающего в себя первые пять резонаторов.

В расчетах по программе PARS использовался
«замороженный» электронный пучок. Результаты
анализа для частоты Δ𝑓 = 40 МГц приведены
на рис. 3. Пунктирными линиями отмечены поло-
жения центров резонаторов. Затемненные области
соответствуют зонам взаимодействия электро-
магнитных полей резонаторов с электронным
потоком. В этих областях проводится вычисление
интегральных значениймощности взаимодействия
в двумерной программе PARS.

На рис. 3а представлены продольные распре-
деления 𝐼1(𝑧), рассчитанные по одномерной моде-
ли (кривая 1) и двумерной (кривая 2). Ход кри-
вых 1 и 2 совпадают вплоть до третьего резона-
тора. Амплитуда напряжения на третьем резона-
торе, полученная с помощью двумерной програм-
мы, совпадает с амплитудой, рассчитанной по од-
номерной модели. Однако фаза напряжения, рас-
считанная по двумерной программе, сильно от-
личаются от фазы, определенной с помощью од-
номерной программы «Клистрон-МГУ». Причины
этого можно понять из рис. 3б, где представлены
продольные распределения продольной компонен-
ты относительной первой гармоники конвекцион-
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Рис. 3. Полученные для клистрона KC4083A продоль-
ные зависимости относительной первой гармоники
конвекционного тока, с помощью одномерной про-
граммы «Клистрон-МГУ» (кривая 1 на рис. 3а) и дву-
мерной программыPARS (кривая 2 на рис. 3а), а также
продольные распределения относительной амплитуда
первой гармоники конвекционного тока, рассчитан-
ные по двумерной программе PARS в различных ради-
альных слоях электронного пучка (рис. 3б).

ного тока для различных радиальных слоев элек-
тронного пучка. Из рисунка следует, что в резуль-
тате расслоения группировка различных слоев за-
метно различается уже во втором резонаторе, в тре-
тий резонатор электроны разных слоев попадают
в различной фазе. Электроны внешних слоев про-
должают демодулироваться после демодулирующе-
го воздействия полей второго резонатора, отстро-
енного ниже частоты сигнала. Электроны внутрен-
них слоев уже закончили демодулироваться и на-
чали опять модулироваться. В результате сдвиг фаз
между нелинейной проводимостью третьего резо-
натора и конвекционным током имеет противопо-
ложный знак относительно сдвига фаз между ли-
нейной проводимостью и конвекционным током.
Это приводит к заметному отличию фазы напря-
жения третьего резонатора и, как следствие, к раз-
личному поведению электронов в пучке. Это хоро-
шо видно на рис. 3а, где кривая 𝐼1(𝑧), рассчитанная
по одномерной программе, начинает опять свой
рост, а кривая, полученная с помощью двумер-
ной программы, продолжает свое падение после
третьего резонатора. Как следствие, амплитуда 𝐼1
на четвертом резонаторе, рассчитанная по двумер-
ной программе, в 4 раза меньше, чем определенная
по одномерной модели. В ходе дальнейшего усиле-
ния, погрешность одномерной программы в опре-
делении напряжения на третьем резонаторе при-
водят к весьма значительной накопленной ошибке
в определении выходной мощности на данной ча-
стоте. Таким образом, отсутствие учета двумерно-
го расслоения высокопервеансного электронного
пучка в одномерных моделях привело к заметным
ошибкам в АЧХ однолучевого клистрона KC4083A.

Для детального сравнительного анализа про-
цесса группирования в многолучевом клистроне
KC4079E был выбран участок клистрона, включа-
ющего в себя первые четыре резонатора. В рас-
четах по программе PARS использовался «заморо-
женный» электронный пучок. Результаты анализа
для центральной частоты (Δ𝑓 = 0 МГц) приведены
на рис. 4.

На рис. 4а представлены продольные распре-
деления 𝐼1(𝑧), рассчитанные по одномерной моде-
ли (кривая 1) и двумерной (кривая 2). Ход кри-
вых 1 и 2 совпадают вплоть до третьего резонатора.
В силу того, что в приборе используется электрон-
ный пучок с низким значением первеанса, в расче-
тах по программе PARS не наблюдался эффект рас-
слоения. Поэтому фаза напряжения на третьем ре-
зонаторе, полученная с помощью двумерной про-
граммы, совпадает с фазой, рассчитанной по од-
номерной модели. Однако амплитуда напряжения,
рассчитанная по двумерной программе, отличается
от амплитуды, определенной с помощью одномер-
ной программы «Клистрон-МГУ» на 40%. Причи-
ны этого можно понять из рис. 4б, где представле-
ны зависимости относительного импеданса третье-
го резонатора, рассчитанные по линейной модели
(кривая 1 на рис. 4б) и по нелинейной модели (кри-
вая 2 на рис. 4б).

Из рисунка следует, что в области резонанса
с собственной частотой третьего резонатора на-
блюдается падение амплитуды импеданса третье-
го резонатора на 40%, что приводит к соответ-
ствующему уменьшению амплитуды напряжения
на третьем резонаторе. В ходе дальнейшего усиле-
ния, погрешность одномерной программы в опре-
делении напряжения на третьем резонаторе при-
водят к весьма значительной накопленной ошибке
в определении выходной мощности на данной ча-
стоте. Таким образом, некорректный учет полной
проводимости резонатора вблизи резонанса в од-
номерных моделях привел к заметным ошибкам
в АЧХ многолучевого клистрона KC4079E с низко-
первеансным электронным пучком.

ЗАКЛЮЧЕНИЕ
В результате исследований было установле-

но, что при моделировании группирования ин-
тенсивных электронных потоков с высоким зна-
чением первеанса в широкополосных клистро-
нах с использованием одномерных компьютерных
программ в некоторых точках полосы может воз-
никать значительная ошибка в определении вы-
ходных параметрах прибора. Ошибка вызывается
отсутствием учета в одномерных моделях эффекта
расслоения электронного пучка.

Проведенный сравнительный анализ груп-
пирования в широкополосном многолучевом
клистроне с помощью одномерной и двумер-
ной программ показал возможность получения
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Рис. 4. Полученные для клистронаKC4079Е продольные зависимости относительной первой гармоники конвекцион-
ного тока, с помощью одномерной программы «Клистрон-МГУ» (кривая 1 на рис. 4а) и двумерной программы PARS
(кривая 2 на рис. 4а), а также зависимости относительного импеданса третьего резонатора, рассчитанные по линей-
ной модели (кривая 1 на рис. 4б) и по нелинейной модели (кривая 2 на рис. 4б).

некорректных характеристик прибора при ис-
пользовании одномерных моделей, вызванных
некорректным учетом электронной проводимости
пучка. В точках полосы усиления вблизи резо-
нансных частот резонаторов линейного усилителя
возможно уменьшение полного импеданса резона-
торов за счет влияния электронных потоков и, как
следствие, уменьшение выходных параметров
усилителя.

При конструировании широкополосных кли-
стронных усилителей необходимо с осторожно-
стью использовать оптимизацию приборов в поло-
се частот с помощью одномерных программ. Фи-
нальные результаты должны проверяться с помо-
щью двумерных и трехмерных моделей.

Работа проведена в рамках выполнения госу-
дарственного задания НИЦ «Курчатовский инсти-
тут».
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ВВЕДЕНИЕ

Проблема генерации сверхкоротких электро-
магнитных импульсов является актуальной уже
на протяжении многих лет. Способы ее решения
постоянно развиваются и зависят, в частности,
от частотного диапазона.

Особо следует отметить задачу генерации элек-
тромагнитных импульсов, длительность которых
составляет доли периода колебаний (см., напри-
мер [1]). В литературе такие импульсы получили
название уни- илимонополярных (МЭМИ) [2]. Де-
тальный обзор работ российских авторов по рас-
сматриваемой тематике представлен в [3].

Теоретические и экспериментальные ис-
следования МЭМИ представляют интерес как
с общефизической, так и с прикладной точек
зрения. Если говорить о фундаментальных про-
блемах генерации МЭМИ, следует упомянуть
работу [4], в которой несколькими способами
проведено доказательство того, что набором
пространственно-ограниченных источников
создать униполярный импульс в трехмерном
пространстве в общем случае невозможно. Следо-
вательно, как отмечалось, в частности, в [3], при
рассмотрении МЭМИ следует указывать ту про-
странственную область и тот временной интервал,
на котором МЭМИ существует. Например, в ра-

боте [5] рассмотрен один из способов генерации
в микроволновом диапазоне пары МЭМИ проти-
воположного знака. В качестве источника выбран
пространственно-короткий электрический ток,
временная зависимость которого имеет вид трапе-
ции. Показано, что пространственно-временное
разделение импульсов пары определяется длитель-
ностью временного интервала, на котором ток
постоянен.

Отдельной задачей является преобразования
характеристик МЭМИ, таких как изменение
направления распространения, их фокусировка
и т. д., которые не приводили бы к разрушению
основного свойства МЭМИ: монополярности.

Так, в работе [6] приведен теоретический ана-
лиз распространения униполярного предвестника,
генерируемого в результате многофотонной иони-
зации в электрооптическом кристалле, индуци-
рованной ультракоротким лазерным импульсом.
В этой же работе обращено внимание, что по ме-
ре распространения указанного электромагнитно-
го образования оно теряет свойства монополяр-
ности, что еще раз подтверждает тот факт, что
говорить о существовании МЭМИ можно только
при рассмотрении какой-то ограниченной области
пространства в ограниченный интервал времени.
Результаты экспериментального наблюдения уни-
полярного предвестника приведены в [7].
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С учетом указанных пространственно-времен-
ных ограничений были рассмотрены задачи ди-
фракции МЭМИ на простейших двумерных объ-
ектах: бесконечных цилиндре, ленте и др. [8–10].
Было указано на существенное отличие динами-
ки поля дифракции для различных поляризаций
электрического поля 𝐸 падающего МЭМИ. Ес-
ли вектор 𝐸 был направлен параллельно объекту,
то в большинстве рассмотренных методами вычис-
лительного эксперимента случаев поле дифракции
было близко к униполярному виду. Если же век-
тор 𝐸 лежал в плоскости поперечного сечения объ-
екта, то поле дифракции было знакопеременным.

Отметим, что в этих работах поперечные ли-
нейные размеры объектов значительно превосхо-
дили пространственную длину падающего импуль-
са 𝐿имп, определяемую как произведение его вре-
менной длительности на скорость света. Исходя
из предложенного в указанных работах механиз-
ма формирования знакопеременного поля (за счет
возбуждения на краях объектов цилиндрических
волн), для задачи дифракциинащелиМЭМИ,име-
ющего плоский фронт, можно сделать следующее
предположение. Если ширина щели будет много
меньше пространственной длины падающего им-
пульса, то следует ожидать формирования поля ди-
фракции, структура которого будет близка к моно-
полярной. Форма же фронта поля дифракции мо-
жет оказаться цилиндрической.

ПОСТАНОВКА ЗАДАЧИ

Для проверки этого предположения рассмот-
рим следующую задачу.

Пусть в двумерной области 𝐺 (рис. 1), элек-
тродинамические характеристики которой совпа-
дают с характеристиками свободного простран-
ства, в положительном направлении оси 𝑥 распро-
страняется монополярный электромагнитный им-
пульс 1, имеющий плоский фронт. Импульс имеет
одну отличную от нуля компоненту электрического
поля, которая на левой границе𝐺 зависит от време-
ни 𝑡 следующим образом:

Рис. 1. К постановке задачи.

𝐸𝑡(𝑡) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑡 < 0,𝐸0 sin2 (π2 𝑡τ1) , 0 ⩽ 𝑡 ⩽ τ1,
𝐸0 exp (− ( 𝑡 − τ1τ2 )

2) , 𝑡 ⩾ τ1,
(1)

где𝐸0 —амплитуда напряженности электрического
поля, τ1 —длительность переднего фронта импуль-
са (время, за которое поле от нулевого значения до-
стигает максимального), τ2 — параметр, определя-
ющий длительность заднего фронта импульса. От-
метим, что 𝐿имп ≈ 𝑐 (τ1 + τ2), где 𝑐— скорость света
в вакууме.

Область содержит бесконечный в направлении
оси 𝑦 идеально проводящий экран 2 со щелью
шириной 𝑑. Экран имеет конечную толщину ℎ
(по оси 𝑥 выбранной системы координат). Края
экрана, образующие щель, имеют скругление, ра-
диус которого равен ℎ/2.

Найдем динамику электромагнитного поля
в области 𝐺. Для этого воспользуемся систе-
мой дифференциальных уравнений Максвелла
в пространственно-временном представлении [11].
Рассмотрим такуюполяризациюполя, при которой
вдоль оси 𝑧, перпендикулярной плоскости распо-
ложения 𝐺, отличной от нуля является только одна
магнитная компонента (TM-поляризация). С уче-
том того, что в свободномпространстве диэлектри-
ческая (ε) и магнитная (μ) проницаемости равны
единице, покомпонентная запись уравнений имеет
следующий вид:𝜕𝐻z(𝑥, 𝑦, 𝑡)𝜕𝑡 = −

1μ0 {
𝜕𝐸y(𝑥, 𝑦, 𝑡)𝜕𝑥 −

𝜕𝐸x(𝑥, 𝑦, 𝑡)𝜕𝑦 } ,
𝜕𝐸x(𝑥, 𝑦, 𝑡)𝜕𝑡 =

1ε0 𝜕𝐻z(𝑥, 𝑦, 𝑡)𝜕𝑦 ,
𝜕𝐸y(𝑥, 𝑦, 𝑡)𝜕𝑡 =

1ε0 𝜕𝐻z(𝑥, 𝑦, 𝑡)𝜕𝑥 ,
(2)

где ε0 иμ0 —электрическаяимагнитнаяпостоянная
соответственно.

Предположим, что до момента 𝑡 = 0 электро-
магнитное поле в 𝐺 отсутствует. При 𝑡 > 0 элек-
трическое поле на левой границе 𝐺 соответству-
ет (1). Отражение электромагнитных волн от ниж-
ней, верхней и правой границ 𝐺 отсутствует. Гра-
ничные условия на поверхности экрана соответ-
ствуют граничным условиям на идеально проводя-
щей поверхности.

Для решения системы уравнений Максвелла
с указанными начальными и граничными услови-
ями воспользуемся численным методом, основан-
ным на конечно-разностной аппроксимации част-
ных производных по пространственнымкоордина-
там и времени [12]. Отсутствие отражения волново-
го поля от границ 𝐺 обеспечим внедрением абсо-
лютно согласованного слоя [13].
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РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Численное моделирование рассматривае-
мой системы было выполнено при следующих
фиксированных параметрах. Длина области 𝐺
(направление 𝑥) была равна 700 см, ширина (на-
правление 𝑦) 400 см. Экран, толщина которого
составляла 5 см, был расположен на удалении352.5 см от левой границы 𝐺. Радиус скругле-
ния краев экрана был равен 2.5 см. Падающий
электромагнитный импульс имел единичную ам-
плитуду 𝐻0 = 1, τ1 = 5 ⋅ 10−10 с, τ2 = 3 ⋅ 10−10 с. Его
пространственная длина 𝐿имп = 24 см.

Изменяемымпараметром вмоделировании бы-
ла ширина щели 𝑑, которая соответствовала рас-
стоянию между скруглениями краев экрана. В ка-
честве контролируемых величин были использова-
ны зависимости значения магнитной компоненты
поля от продольной координаты на прямой, прохо-
дящей через середину щели в фиксированный мо-
мент времени, а также пространственное распреде-
ление этого поля в правой части области𝐺 (за экра-
ном).

Проведенное моделирование динамики поля
показали, что при соотношении 𝐿имп/𝑑 > 5 за экра-
ном формируется монополярный цилиндрический
импульс, амплитуда которого уменьшается с увели-
чением указанного соотношения.

Характерные зависимости поля дифракции
приведены на рис. 2, которые были получены
для 𝐿имп/𝑑 ≈ 5. Для удобства рассмотрения нача-

ло оси 𝑥 совмещено с правой границей экрана.
Ноль вертикальной координаты совпадает с цен-
тром щели. Момент времени 𝑡 = 0 соответствует
появлению МЭМИ на левой границе 𝐺.

На рис. 2а показаны зависимости распределе-
ния Hz от продольной координаты в моменты вре-
мени 𝑡 = 132, 148, 165, 181 и 198 нс (кривые 1,
2, 3, 4 и 5 соответственно). Максимальные зна-
чения сформированного МЭМИ убывают с рас-
стоянием от щели ∼ 1/√𝑟, что соответствует за-
кону убывания амплитуды цилиндрической волны
с расстоянием до ее источника. Амплитуда поля
дифракции 𝐻диф0 , а также величина наблюдаемо-
го перегиба на заднем фронте импульса (обозна-
чен на рис. 2а стрелкой) уменьшается с увеличе-
нием соотношения 𝐿имп/𝑑. Для 𝐿имп/𝑑 = 5 величи-
на𝐻диф0 /𝐻0 ≈ 0.25. Такимобразом, при стремлении
ширины щели к нулю, профиль поля дифракции
будет стремиться к профилю падающего импуль-
са, однако при этом 𝐻диф0 также будет исчезающе
малой.

На рис. 2б показаны изолинии магнитной ком-
поненты поля дифракции, построенные в момент
времени 𝑡 = 135 нс. Отметим, что вблизи прямой𝑦 = 0 наблюдается область максимальных значе-
ний, а большинство изолиний имеют форму полу-
окружностей, что соответствует фазовым поверх-
ностям цилиндрической волны, т. е. можно утвер-
ждать, что плоский фронт исходного МЭМИ был
преобразован в цилиндрический.
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Рис. 2. Зависимость магнитного поля дифракции от продольной координаты (а) и его пространственное распределе-
ние (б).
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ЗАКЛЮЧЕНИЕ
Таким образом, основываясь на результатах

проведенных вычислительных экспериментов,
можно считать, что поле дифракции МЭМИ
с плоским фронтом на идеально проводящем
экране со щелью, ширина которой удовлетворяет
условию 𝐿имп/𝑑 ≫ 1, имеет вид монополярного
импульса с цилиндрическим фронтом. Данное
свойство может быть использовано при прове-
дении экспериментальных работ по воздействию
МЭМИна искусственные и естественные объекты.

Работа выполнена в рамках темы государствен-
ного задания ИРЭ им. В. А. Котельникова РАН.

СПИСОК ЛИТЕРАТУРЫ
1. You D., Jones R.R., Bucksbaum P.H. // Opt. Lett.

1993. V. 18. No 4. P. 290.
2. Архипов Р.М., Архипов М.В., Шимко А.А. и др. //

Письма в ЖЭТФ. 2019. Т. 110. № 1. С. 9;
Arkhipov R.M., Arkhipov M.V., Shimko A.A. et al. //
JETP Lett. 2019. V. 110. No. 1. P. 15.

3. Розанов Н.Н., Архипов М.В., Архипов Р.М. и др. //
Опт. и спектроск. 2023. Т. 131. № 2. С. 212;
Rosanov N.N., Arkhipov M.V., Arkhipov R.M. et al. //
Opt. Spectrosc. 2023. V. 131. No. 2. P. 200.

4. Kwang-Je Kim, McDonald K.T., Stupakov G.V.,
Zolotorev M.S. // arXiv:physics/0003064. 2000.

5. Корниенко В.Н., Румянцев Д.Р., Черепенин В.А. //
Журн. радиоэлектрон. 2017. № 3. С. 1.

6. Sychugin S.A., Novokovskaya A.L., Bakunov M.I. //
Phys. Rev. A. 2022. V. 105. No. 5. P. 053528.

7. Ilyakov I.E., Shishkin B.V., Efimenko E.S. et al. //
Opt. Express. 2022. V. 30. No. 9. P. 14978.

8. Корниенко В.Н., Кулагин В.В. // Изв. РАН. Сер.
физ. 2021. Т. 85.№ 1. С. 64; Kornienko V.N., Kula-
gin V.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85.
No. 1. P. 50.

9. Корниенко В.Н., Кулагин В.В., Гупта Д.Н. // Ра-
диотехн. и электрон. 2021. Т. 66.№7. С. 644; Ko-
rnienko V.N., Kulagin V.V., Gupta D.N. // J. Com-
mun. Technol. Electron. 2021. V. 66. No. 7. P. 818.

10. Корниенко В.Н., Кулагин В.В. // Изв. РАН. Сер.
физ. 2022. Т. 86.№ 1. С. 84; Kornienko V.N., Kula-
gin V.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86.
No. 1. P. 59.

11. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.:
Наука, 1988.

12. Бэдсел Ч., Ленгдон А. Физика плазмы и чис-
ленное моделирование. М.: Энергоатомиздат,
1989. 452 с.

13. Taflove A. Computational electrodynamics. The
finite-difference time-domain method. London:
ArtechHouse, 1995. 188 p.
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The problem of nonstationary diffraction of a monopolar TM-polarized electromagnetic pulse with a flat
front on a thin slit in a perfectly conducting screen is considered. Using computational experimentmethods,
it has been shown that if the slit width is much smaller than the spatial length of the pulse, then a field
is formed behind the screen in the form of a cylindrical monopolar pulse, i. e. there is a transformation
of the shape of the incident field front without changing its character (monopolarity).
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ВВЕДЕНИЕ

Рассмотрим строгое волновое решение об-
ратной задачи акустического рассеяния. Требует-
ся восстановить неоднородные пространственные
распределения скорости звука 𝑐(𝑟) и амплитудно-
го коэффициента поглощения α(𝑟, ωj) на заданной
частоте ωj внутри томографируемого объекта, на-
ходящегося в области ℜ. Вне области ℜ имеется
однородная непоглощающая фоновая среда; ско-
рость звука в ней 𝑐0 и волновое число 𝑘0j = ωj/𝑐0.
Излучатели и приемники, используемые для полу-
чения экспериментальных данных, находятся вне
области ℜ и окружают исследуемый объект со всех
сторон. Объект зондируется фиксированным пада-
ющим полем акустического давления 𝑢0(𝑟). Попа-
дая на объект, это поле 𝑢0(𝑟) рассеивается на аку-
стических неоднородностях внутри ℜ. Тем самым,
создается полное поле 𝑢(𝑟), которое регистриру-
ется всеми приемниками. После этого изменяет-
ся направление падающего поля, и соответствую-
щие поля 𝑢(𝑟) опять принимаются. Полный на-
бор данных получается перебором всевозможных
направлений зондирования и приема. Этот набор
данных обрабатывается, т. е. решается обратная за-
дача. В итоге восстанавливаются искомые функ-
ции 𝑐(𝑟) и α(𝑟, ωj) количественно. Возможность
получения количественных оценок в каждой точ-
ке пространства 𝑟 является принципиальным от-
личием обратных акустических задач томографи-

ческого типа от обратных задач УЗИ-типа. Эта
возможность обеспечивается, во-первых, за счет
наличия экспериментальных данных при самых
разных ракурсах и, во-вторых, за счет достаточ-
но строгого алгоритма обработки таких данных.
Ниже в целях обработки рассматривается двумер-
ный волновой функционально-аналитический ал-
горитм [1–5] в монохроматическом варианте. В ос-
нове этого алгоритма лежат идеи решения обрат-
ных задач рассеяния на квантово-механических
потенциалах [1–3, 6, 7].

Полное поле 𝑢(𝑟) при каждом фиксированном𝑢0(𝑟) подчиняется уравнению Гельмгольца∇2𝑢(𝑟)+
+𝑘2

0j𝑢(𝑟) = 𝑣(𝑟)𝑢(𝑟), где 𝑣(𝑟, ωj) = ω2
j
⎛⎝ 1𝑐20 −

1𝑐2(𝑟)⎞⎠−
− 𝑖2ωj

α(𝑟, ωj)𝑐(𝑟) — функция рассеивателя при вре-

менной зависимости полей ∼ exp(−𝑖ωj𝑡). Сначала
должна быть восстановлена функция 𝑣(𝑟, ωj) [8],
после чего из нее можно выделить отдельныефунк-
ции 𝑐(𝑟) и α(𝑟, ωj) [9]. Входными данными для
функционального алгоритма являются комплекс-
ные значения классической амплитуды рассеяния𝑓(𝑘, 𝑙⃗; ωj). Они полагаются известными для всех
действительных волновых векторов 𝑘, 𝑙⃗ ∈ ℝ2, где𝑘2
= 𝑙⃗2 = 𝑘2

0j. Пусть падающее поле является класси-
ческой плоской волной𝑢0(𝑟, 𝑘; ωj) = exp(𝑖𝑘𝑟) (1)
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с волновым вектором 𝑘, а поле 𝑢(𝑟, 𝑘, ωj) принима-
ется в дальней зоне в направлении, сонаправлен-
ном волновому вектору 𝑙⃗, т. е. 𝑟 ⇈ 𝑙⃗. Тогда значе-
ния 𝑓(𝑘, 𝑙⃗, ωj) пропорциональны рассеянному по-
лю 𝑢(𝑟, 𝑘; ωj) − 𝑢0(𝑟, 𝑘; ωj). В то же время, значения𝑓(𝑘, 𝑙⃗; ωj)могут быть пересчитаны из полей, приня-
тых в ближней зоне вне области томографируемого
объекта [8, 10].

ДВУМЕРНЫЙ ФУНКЦИОНАЛЬНЫЙ
АЛГОРИТМ И АППАРАТ УГЛОВЫХ

ГАРМОНИК

Двумерный функциональный алгоритм вос-
становления функции рассеивателя 𝑣(𝑟, ωj) состо-
ит из нескольких последовательных этапов, кото-
рые приводятся ниже в терминах углов и угловых
гармоник [4, 5]. А именно, угловой спектр 𝑔̃(𝑞)
для произвольной периодической функции 𝑔(φ)
с периодом 2π определяется соотношениями (уг-
ловые гармоники имеют целочисленные номера𝑞 = 0, ±1, ±2, …, т. е. 𝑞 ∈ ℤℤℤ):

𝑔̃(𝑞) = 12π
2π
∫0

𝑔(φ) exp(−𝑖𝑞φ)𝑑φ,
𝑔(φ) = ∞∑𝑞=−∞ 𝑔̃(𝑞) exp(𝑖𝑞φ), 𝑞 ∈ ℤℤℤ. (2)

Для двумерных векторов 𝑘 и 𝑙⃗ в полярной систе-
ме координат имеем:𝑘 = {𝑘0j, φ} , 𝑙⃗ = {𝑘0j, φ′} , (3)

тогда 𝑓 (𝑘, 𝑙⃗; ωj) ≡ 𝑓 (φ, φ′; ωj). Сначала на осно-
ве известных значений классической амплиту-
ды рассеяния 𝑓 (φ, φ′; ωj) находятся две функцииℎ± (φ, φ′; ωj)—так называемая обобщенная ампли-
туда рассеяния. С этой целью при каждом фикси-
рованном значении φ решается линейная система
уравнений, которая получается перебором всех уг-
лов φ′:

ℎ± (φ, φ′; ωj) − π𝑖 2π
∫0

ℎ± (φ, φ″; ωj)×
×θ [± sin (φ″−φ)] 𝑓 (φ″, φ′; ωj) dφ″=𝑓 (φ, φ′; ωj) , (4)

где θ(𝑡) = {1 при 𝑡 > 0; 0 при 𝑡 ⩽ 0}— функция Хе-
висайда. После этого для каждой фиксирован-
ной точки 𝑟 с декартовыми координатами 𝑟 = {𝑥, 𝑦}
строятся вспомогательные функции𝑄± (𝑟, φ, φ′; ωj) ≡ ℎ± (φ, φ′; ωj)×× exp [𝑖𝑘0j {𝑥 (cosφ′−cosφ)+𝑦 (sinφ′−sinφ)}]××θ [± sin (φ′−φ)] . (5)

Вычисляется их двойной угловой спектр фурье-
преобразованием по углам:

̃̃𝑄± (𝑟, 𝑞, 𝑞′; ωj) ≡ 1(2π)2
2π
∫0

𝑑φ 2π
∫0

𝑑φ′×
×𝑄± (𝑟, φ, φ′; ωj) exp(−𝑖𝑞φ) exp (−𝑖𝑞′φ′) , (6)

и для всех 𝑞′ ∈ ℤℤℤ строится функция

̃̃𝐵 (𝑟, 𝑞, 𝑞′; ωj) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑖π̃̃𝑄−(𝑟, 𝑞, 𝑞′; ωj)
при 𝑞 = 0, 1, 2, 3, … ;𝑖π̃̃𝑄+(𝑟, 𝑞, 𝑞′; ωj)
при 𝑞 = −1,−2, … .

(7)

Знание ̃̃𝐵 (𝑟, 𝑞, 𝑞′; ωj) позволяет найти уг-
ловые гармоники μ̃cl (𝑟, 𝑞; ωj) классического
поля со снятой «несущей» волной: μcl (𝑟, 𝑘; ωj) ≡≡ exp(−𝑖𝑘𝑟)𝑢 (𝑟, 𝑘; ωj). Эти угловые гармони-
ки находятся в каждой фиксированной точке 𝑟
из системы линейных уравнений:

μ̃cl (𝑟, 𝑞; ωj) + 2π ∞∑𝑞′=−∞ ̃̃𝐵 (𝑟, 𝑞,−𝑞′; ωj)×
× μ̃cl (𝑟, 𝑞′; ωj) = δ𝑞0, (8)

где δ𝑞0 = {1 при 𝑞 = 0; 0 при 𝑞 ≠ 0}. Наконец, иско-
мая функция рассеивателя вычисляется из соотно-
шения

𝑣 (𝑟, ωj) = 𝑘0j (𝑖 𝜕𝜕𝑥 + 𝜕𝜕𝑦)⎧⎪⎪⎨⎪⎪⎩μ̃cl (𝑟, 𝑞 = −1; ωj) +
+ 2𝑖π2 ∞∑𝑞′=−∞ ̃̃𝑄−(𝑟, 𝑞 = −1,−𝑞′; ωj)μ̃cl (𝑟, 𝑞′; ωj)

⎫⎪⎪⎬⎪⎪⎭ .
(9)

Описанный двумерный функциональный алго-
ритм позволяет практически строго (с точностью
до эффектов, связанных с рассеянием назад) учи-
тывать процессы многократного рассеяния волн
нанеоднородностях среды.При этом все решаемые
системы уравнений (4) и (8) остаются линейными
относительно неизвестных. Тем не менее, числен-
ная реализация алгоритма [4, 5] весьманетривиаль-
на. При численной реализации оказывается удоб-
ным использовать аппарат угловых гармоник, ко-
торый уже применялся ранее для записи соотно-
шений (6)–(9) данного алгоритма [4, 5], а также
для коррекции экспериментальных данных в слу-
чае неидеальных позиций излучателей и приемни-
ков [11].

В предшествующих вариантах численной реа-
лизации [4, 5] обобщенная амплитуда рассеянияℎ± (φ, φ′; ωj) находилась из системы (4) непосред-
ственно в терминах углов φ и φ′. Вспомогатель-
ные функции 𝑄± (𝑟, φ, φ′; ωj) формировались, со-
гласно (5), также в терминах углов, после чего вы-
полнялось двойное фурье-преобразование по уг-
лам (6). Последующие действия (7)–(9) выполня-
лись уже в терминах угловых гармоник [4, 5].

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



ВОССТАНОВЛЕНИЕ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ 109

Ниже предлагается решать систему (4) и рас-
сматривать соотношение (5) сразу с помощью угло-
вых гармоник. Такой прием позволяет, во-первых,
повысить точность численной реализации при пе-
реходе от непрерывных значений углов φ и φ′ к дис-
кретным номерам угловых гармоник 𝑞 и 𝑞′. Во-
вторых, в соотношениях (4) и (5) присутствуют
функции Хевисайдаθ±(φ) ≡ θ(± sinφ), (10)
которые изменяются скачкообразно от 1 до 0
в бесконечно малой окрестности нулевого значе-
ния их аргумента. Поэтому угловой шаг дискре-
тизации для функций θ±(φ) должен быть гораз-
до мельче, чем для 𝑓 (φ, φ′; ωj) и ℎ± (φ, φ′; ωj). Это
взаимосвязано с тем, что угловой спектр θ̃±(𝑞) ≡≡ 12π ∫ 2π0 θ±(φ) exp(−𝑖𝑞φ)𝑑φ функций θ±(φ) спада-
ет медленно:θ̃±(𝑞) = 12 (∓𝑖)𝑞 sinc (π2𝑞) ≡≡ {12 при 𝑞 = 0; ± 𝑖2π𝑞 {(−1)𝑞 − 1} при 𝑞 ≠ 0} , (11)
причем θ̃−(𝑞) = {θ̃+(𝑞)}∗, ∀𝑞. В то же время, в (5)
присутствует функция𝐸 (𝑟, φ, φ′; ωj) ≡ exp [𝑖𝑘0j {𝑥 (cosφ′ − cosφ)+

+ 𝑦 (sinφ′ − sinφ)}] ≡ exp {𝑖(𝑙⃗ − 𝑘)𝑟}, (12)

где учтено (3). Функция 𝐸 (𝑟, φ, φ′; ωj) осциллиру-
ет при изменении φ и φ′ тем сильнее, чем больше
фиксированное значение 𝑘0j∣𝑟∣. Как следствие, уг-
ловой спектр этой функции будет иметь тем более
высокие значимые угловые гармоники, чем больше𝑘0j∣𝑟∣. Таким образом, введение дискретных анало-
гов обеих функций (10) и (12) требует повышенно-
го внимания при численной реализации рассмат-
риваемого функционального алгоритма.

В-третьих, рассмотрение функций в терминах
угловых гармоник делает удобным контроль над
достаточностью объема дискретизованных значе-
ний функций, участвующих на каждом этапе про-
цедуры восстановления. Такой контроль, начи-
ная с объема исходных дискретизованных данных𝑓 (φ, φ′; ωj), принципиален для обеспечения един-
ственности, устойчивости и, в конечном счете,
адекватности решения рассматриваемой обратной
задачи [8]. Об этом кратко будет упомянуто на эта-
пе численного моделирования.

Для преобразования интегрального члена урав-
нений (4)функцииℎ± (φ, φ″; ωj)и𝑓 (φ″, φ′; ωj)мож-
но представить, согласно (2), как

ℎ± (φ, φ″; ωj) = ∞∑𝑞″=−∞ ℎ̃± (φ, 𝑞″; ωj) exp (𝑖𝑞″φ″) ,
𝑓 (φ″, φ′; ωj) = ∞∑𝑞‴=−∞ 𝑓 (𝑞‴, φ′; ωj) exp (𝑖𝑞‴φ″) .

Это приводит уравнения (4) к виду:

ℎ± (φ, φ′; ωj) − π𝑖 ∞∑𝑞″=−∞
∞∑𝑞‴=−∞ ℎ̃± (φ, 𝑞″; ωj)×

×𝑓 (𝑞‴, φ′; ωj) 2π exp [𝑖 (𝑞″ + 𝑞‴)φ]×× θ̃± [− (𝑞″ + 𝑞‴)] = 𝑓 (φ, φ′; ωj) .
Фурье-преобразование данного выражения по уг-
лу φ′ дает:
ℎ̃± (φ, 𝑞′; ωj) − 2𝑖π2 ∞∑𝑞″=−∞

⎧⎪⎪⎨⎪⎪⎩
∞∑𝑞‴=−∞̃θ± (−𝑞″ − 𝑞‴) ×

× ̃̃𝑓 (𝑞‴, 𝑞′; ωj) exp (𝑖𝑞‴φ) ⎫⎪⎪⎬⎪⎪⎭ exp (𝑖𝑞″φ)×× ℎ̃± (φ, 𝑞″; ωj) = 𝑓 (φ, 𝑞′; ωj) ; 𝑞′ ∈ ℤℤℤ.
(13)

Система уравнений (13), получающаяся пере-
бором 𝑞′ ∈ ℤℤℤ, решается относительно одинарных
угловых гармоник ℎ̃± (φ, 𝑞′; ωj) при каждом фикси-
рованном угле φ. В правой части (13) стоит одинар-
ный угловой спектр классической амплитуды рас-
сеяния

𝑓 (φ, 𝑞′; ωj) = 12π
2π
∫0

𝑓 (φ, φ′; ωj) exp (−𝑖𝑞′φ′) 𝑑φ′,
𝑞′ ∈ ℤℤℤ.

(14)
а в левой части — двойной угловой спектр

̃̃𝑓 (𝑞, 𝑞′; ωj) = 1(2π)2
2π
∫0

𝑑φ 2π
∫0

𝑑φ′ ×
×𝑓 (φ, φ′; ωj) exp (−𝑖𝑞φ) exp (−𝑖𝑞′φ′) ,𝑞, 𝑞′ ∈ ℤℤℤ.

(15)

После нахождения ℎ̃± (φ, 𝑞′; ωj) вычисляется
двойной угловой спектр

̃̃ℎ (𝑞, 𝑞′; ωj) = 12π
2π
∫0

ℎ̃± (φ, 𝑞′; ωj) exp(−𝑖𝑞φ)𝑑φ. (16)

С другой стороны, можно находить сразу двой-
ные угловые гармоники ̃̃ℎ± (𝑞, 𝑞′; ωj) из системы,
которая получается фурье-преобразованием урав-
нений (13) по углу φ с последующей заменой пере-
менных:

̃̃ℎ± (𝑞, 𝑞′; ωj)−2𝑖π2 ∞∑𝑞″=−∞
⎧⎪⎪⎨⎪⎪⎩

∞∑𝑞‴=−∞
̃̃𝑓 (−𝑞‴+𝑞−𝑞″, 𝑞′; ωj)×

× θ̃± (𝑞‴ − 𝑞) ⎫⎪⎪⎬⎪⎪⎭ ̃̃ℎ± (𝑞‴, 𝑞″; ωj) = ̃̃𝑓 (𝑞, 𝑞′; ωj) ;
𝑞, 𝑞′ ∈ ℤℤℤ.

(17)

Однако в отличие от системы (13), которая решает-
ся при каждом фиксированном φ, система(17) тре-
бует нахождения ̃̃ℎ± (𝑞, 𝑞′; ω𝑗) сразу для всех зна-
чений (𝑞, 𝑞′), т. е. ни один из аргументов 𝑞 или 𝑞′
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зафиксировать нельзя. Тем самым, переход от (13)
к (17) не всегда целесообразен, поскольку могут
возникнуть трудности из-за матриц огромной раз-
мерности при решении системы (17)—подобно си-
туации, описанной в [12].

Вместо выполнения последовательности
действий (5) и (6), выражение (5) можно преобра-
зовать сразу в терминах угловых гармоник. Учиты-
вая (1), (3) и (12), имеем: 𝐸 (𝑟, φ, φ′; ωj) = exp(−𝑖𝑘𝑟)×× exp(𝑖𝑙⃗𝑟) ≡ 𝑃 (𝑟, φ + π; ωj) 𝑃 (𝑟, φ′; ωj). Здесь для
удобства введено обозначение 𝑢0 (𝑟, 𝑘; ωj) ≡≡ 𝑃 (𝑟, φ; ωj) = exp(𝑖𝑘𝑟), и тогда

−𝑘 = {𝑘0j, φ + π} , 𝑃 (𝑟, φ + π; ωj) ≡ exp(−𝑖𝑘𝑟);𝑙⃗ = {𝑘0j, φ′} , 𝑃 (𝑟, φ′; ωj) ≡ exp(𝑖𝑙⃗𝑟).
Выражение (5) переписывается как𝑄± (𝑟, φ, φ′; ωj) = ℎ± (φ, φ′; ωj) exp {𝑖(𝑙⃗ − 𝑘)𝑟}××θ± (φ′ − φ) ≡ ℎ± (φ, φ′; ωj)××𝑃 (𝑟, φ + π; ωj) 𝑃 (𝑟, φ′; ωj) θ± (φ′ − φ) . (18)

Каждая из функций ℎ± и 𝑃 в (18) представляется
в виде суммы угловых гармоник:

ℎ± (φ, φ′; ωj) = ∞∑𝑞1=−∞
∞∑𝑞2=−∞
̃̃ℎ± (𝑞1, 𝑞2; ωj)×

× exp(𝑖𝑞1φ) exp(𝑖𝑞2φ′),𝑃 (𝑟, φ + π; ωj) = ∞∑𝑞3=−∞ 𝑃 (𝑟, 𝑞3; ωj) exp {𝑖𝑞3(φ + π)} ,
𝑃 (𝑟, φ′; ωj) = ∞∑𝑞4=−∞ 𝑃 (𝑟, 𝑞4; ωj) exp (𝑖𝑞4φ′) , (19)

и выполняется двойное фурье-преобразование вы-
ражения (18) по углам φ и φ′, согласно (6). Это при-
водит (18) к виду:

̃̃𝑄± (𝑟, 𝑞, 𝑞′; ωj) = ∞∑𝑞1=−∞
∞∑𝑞2=−∞
⎧⎪⎪⎨⎪⎪⎩

∞∑𝑞3=−∞(−1)𝑞−𝑞1+𝑞3 ×
× 𝑃 (𝑟, 𝑞 − 𝑞1 + 𝑞3; ωj) 𝑃 (𝑟, 𝑞′ − 𝑞2 − 𝑞3; ωj) θ̃± (𝑞3)

⎫⎪⎪⎬⎪⎪⎭×× ̃̃ℎ± (𝑞1, 𝑞2; ωj) .
(20)

Поскольку в полярной системе координат𝑟 = {∣𝑟∣, φ𝑟}, то𝑃 (𝑟, φ; ωj) ≡ exp(𝑖𝑘𝑟) = exp {𝑖𝑘0j∣𝑟∣ cos (φ𝑟 − φ)} =
=

∞∑𝑞=−∞ 𝑖𝑞𝐽𝑞 (𝑘0j∣𝑟∣) exp [𝑖𝑞 (φ − φ𝑟) ], (21)

где 𝐽𝑞 — функция Бесселя 𝑞-го порядка. Из сравне-
ния (19) и (21) следует, что𝑃 (𝑟, 𝑞; ωj) = 𝑖𝑞 exp (−𝑖𝑞φ𝑟) 𝐽𝑞 (𝑘0j∣𝑟∣) . (22)

Подстановка (22) в (20) приводит к окончательному
выражению:̃̃𝑄± (𝑟, 𝑞, 𝑞′; ωj) = (−𝑖)𝑞−𝑞′ exp { − 𝑖φ𝑟 (𝑞 + 𝑞′) }×× ∞∑𝑞1=−∞

∞∑𝑞2=−∞(−𝑖)𝑞2−𝑞1 exp {𝑖φ𝑟 (𝑞1 + 𝑞2) }×
×κ± (𝑞 − 𝑞1, 𝑞′ − 𝑞2, 𝑘0j∣𝑟∣) ̃̃ℎ± (𝑞1, 𝑞2; ωj) ,

(23)

где

κ± (𝑛, 𝑛′, 𝑘0j∣𝑟∣) ≡ ∞∑𝑞3=−∞(−1)𝑞3𝐽𝑛+𝑞3 (𝑘0j∣𝑟∣)×× 𝐽𝑛′−𝑞3 (𝑘0j∣𝑟∣) ⋅ θ̃± (𝑞3) ; 𝑛, 𝑛′ ∈ ℤℤℤ. (24)

Выражение для θ̃±(𝑞)приведено в (11).Онопоз-
воляет преобразовать выражение (24) с учетом то-
го, что θ̃±(𝑞) = 0 при ∣𝑞∣ = 2, 4, 6, 8, …:

κ± (𝑛, 𝑛′, 𝑘0j∣𝑟∣) = 12𝐽𝑛 (𝑘0j∣𝑟∣) 𝐽𝑛′ (𝑘0j∣𝑟∣)±± 𝑖π ∞∑𝑚=−∞ 12𝑚 + 1𝐽𝑛+2𝑚+1 (𝑘0j∣𝑟∣)×× 𝐽𝑛′−2𝑚−1 (𝑘0j∣𝑟∣) ; 𝑛, 𝑛′, 𝑚 ∈ ℤℤℤ.
(25)

Из (25) непосредственно видно, чтоκ− (𝑛, 𝑛′, 𝑘0j∣𝑟∣) = {κ+ (𝑛, 𝑛′, 𝑘0j∣𝑟∣)}∗, ∀𝑛, 𝑛′ ∈ ℤℤℤ.
Таким образом, последовательность действий

при восстановлениифункциирассеивателя с помо-
щью аппарата угловых гармоник имеет вид, пред-
ставленный на схеме 1.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ
Проверка эффективности предложенного но-

вого варианта численной реализации двумерно-
го функционального алгоритма выполнялась пу-
тем восстановлениямодельного акустического рас-
сеивателя. Для задания модели рассеивателя бы-
ли взяты два МРТ-изображения двумерных сече-
ний молочной железы [13]. Одно из изображе-
ний стало условно интерпретироваться как зна-
чения скорости звука 𝑐(𝑟) (рис. 1а), другое изоб-
ражение — значения коэффициента поглощенияα (𝑟, ωj) (рис. 1б). В фоновой непоглощающей сре-
де (воде), окружающей молочную железу, полага-
лось 𝑐0 = 1500 м/с; тогда длина волны λ0 ≡ 2π/𝑘0 =
= 10−3 м при выбранной частоте 1.5 МГц. Шаг дис-
кретизации рассматриваемых изображений зада-
вался равным 0.5λ0. При этом вся область томогра-
фирования составляла 106λ0 вдоль каждой декар-
товой оси, а линейный размер собственно сечения
молочной железы составлял ≈ 80λ0. Количествен-
ные значениянаизображениях задавались на осно-
ве характерных диапазонов 𝑐(𝑟) и α (𝑟, ωj) [14, 15]:
полагалось 1460–1535 м/с для 𝑐 и 15–34 Нп/м, т. е.1.3–3.0 Дб/см, для α. Значения 𝑐 и α наибольшие
в коже, а в подкожнойжировой ткани— значитель-
но меньше.
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𝑓 (φ, φ′; ωj)
(14), (15)

𝑓 (φ, 𝑞′; ωj), ̃̃𝑓 (𝑞, 𝑞′; ωj)
(13)

ℎ̃± (φ, 𝑞′; ωj)
(17)

̃̃ℎ± (𝑞, 𝑞′; ωj)
(16)

(25), (23)
̃̃𝑄± (𝑟, 𝑞, 𝑞′; ωj)

(7), (8)
μ̃cl (𝑟, 𝑞; ωj)

(9)
𝑣 (𝑟, ωj)

Схема 1.
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Рис. 1. Исходная модель акустического рассеивателя: пространственные распределения скорости звука (а) и коэффи-
циента поглощения (б) в двумерном сечении молочной железы.

При прохождении волны вдоль траекторий,
параллельных оси абсцисс и оси ординат, наи-
больший положительный дополнительный набег
фазы волны Δψ > 0 приобретается на участ-
ках с 𝑐(𝑟) > 𝑐0 [4, 8, 12] вдоль сечения 𝑦 = −λ0
и составляет Δψ ≈ 1.25π. Наибольший (по моду-
лю) отрицательный набег Δψ < 0 приобретается
на участках с 𝑐(𝑟) < 𝑐0 [4, 8, 12] вдоль сечения𝑦 = −31λ0 и составляет Δψ ≈ −1.27π. Максималь-
ное поглощение наблюдается вдоль сечения𝑥 = −16.5λ0, при этом амплитуда волны уменьша-
ется в ≈8 раз. Таким образом, эффекты много-
кратного рассеяния волн выражены достаточно
сильно.

Приемоизлучающие квазиточечные преобра-
зователи в количестве 800 располагались равномер-
но на окружности радиуса 0.1536 м вокруг области
томографирования. Из таких данных пересчиты-
валась амплитуда рассеяния 𝑓 (φ, φ′; ωj) с угловым
шагом дискретизации 2π/800. Надо отметить, что
количество преобразователей в современных уль-
тразвуковых томографах, которые предназначены,
в первую очередь, для послойной диагностики мо-
лочной железы, может достигать полторы-две ты-
сячи [16, 17]. Более того, дополнительное враще-
ние антенной решетки позволяет, в принципе, су-
щественно увеличить эффективный объем экспе-
риментальной информации [8].

Двойной угловой спектр амплитуды рассеяния̃̃𝑓 (𝑞, 𝑞′; ωj) сконцентрирован около антидиагонали𝑞′ = −𝑞. Угловой спектр спадает с высокой точно-
стью к практически нулевым значениям при наи-
больших ∣𝑞∣ и ∣𝑞′∣ (рис. 2а). Это означает, что упомя-
нутый объем дискретизованных данных 𝑓 (φ, φ′; ωj)
заключает в себе практически всю информацию
об объекте, которую можно получить за счет из-
мерений поля вне объекта при заданной частотеωj. Такого объема данныхоказывается достаточным
для восстановления с хорошим качеством слож-
нойпространственной структурырассматриваемо-
го рассеивателя, а также значений скорости зву-
ка (рис. 2б) и коэффициента поглощения (рис. 2в).
Одномерное сечение молочной железы приведено
на рис. 2б и 2в для наглядной иллюстрации высо-
кой точности восстановления.

ЗАКЛЮЧЕНИЕ
Такимобразом, численнаяреализацияфункци-

онального алгоритма с помощью аппарата угловых
гармоник оказалась эффективной. В то же время,
на практике линейный размер рассеивателя может
быть еще больше, а контраст скорости звука и ко-
эффициента поглощения еще сильнее, чем в рас-
смотренной модели. В свою очередь, это еще боль-
ше усиливает эффекты многократного рассеяния
волн. Тогда для обеспечения устойчивого восста-
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Рис. 2. Двойной угловой спектр амплитуды рассея-
ния (а) и результат восстановления (толстая пунктир-
ная линия) скорости звука (б) и коэффициента погло-
щения (в) при 𝑥 = 0 в сравнении с истинными значе-
ниями (сплошная тонкая линия).

новления рассеивателя требуется, в общем случае,
многочастотный режим [5].

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 24-22-00192, https://
rscf.ru/project/24-22-00192/.
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ВВЕДЕНИЕ

Проблема распространения акустических волн
в случайно-неоднородных средах и необходимость
расчета статистических характеристик таких волн
возникает во многих случаях [1, 2], в частности
при распространении звука в турбулентной атмо-
сфере [2–7]. В этом случае параметры среды из-
меняются со временем, так что небольшой набор
реализаций не дает полного представления о воз-
можном характере эволюции волны. Полноценное
описание возможно только на основе статистиче-
ских характеристик типа распределений вероятно-
сти или, по крайней мере, средних величин, дис-
персий и т. д. Отметим также задачи зондирования
и восстановления параметров неоднородных сред,
при реализации которых присутствующие шумы
и флуктуации могут оказаться полезными [8, 9].
В настоящее время актуальными становятся во-
просы распространения нелинейных волн и пуч-
ков [10] в случайно-неоднородных средах, в том
числе акустических ударных волн с узким фрон-
том от перспективных гражданских сверхзвуковых
самолетов [11, 12], а также в медицинских прило-
жениях [13]. Поэтому необходимо развитие мето-
дов расчета статистических характеристик ударных
и разрывных волн в случайно-неоднородной среде.

Построение точных динамических решений
для нелинейных уравнений представляет большие
трудности, тем более это относится к стохастиче-

ским уравнениям со случайными функциями. Од-
ним из эффективных подходов к расчету стати-
стических характеристик волновых полей является
усреднение стохастических уравнений с целью по-
лучения уравнений для моментов— среднего поля,
дисперсии и т. д.

Данная статья посвящена дальнейшему уточне-
нию проведения процедуры усреднения для аку-
стических ударных и разрывных волн с узкими
ударными фронтами. Как известно [14–16], усред-
нение в целом приводит к появлению так назы-
ваемого турбулентного затухания и, соответствен-
но, сглаживанию ударных фронтов. Следователь-
но, можно было бы ожидать, что усреднение раз-
рывных профилей не будет иметь особенностей
по сравнению с усреднением гладких профилей.
Однако, оказывается, что это не так, и наличие
разрыва необходимо учитывать перед процедурой
усреднения.

МЕТОД СРЕДНЕГО ПОЛЯ
Одним из распространенных методов получе-

ния замкнутых уравнений для усредненных ха-
рактеристик является метод среднего поля, име-
ющий давнюю историю [17]. Он достаточно хо-
рошо зарекомендовал себя при решении линей-
ных задач. При рассмотрении нелинейных задач
возникает проблема замыкания нелинейных сла-
гаемых. Согласно методу среднего поля среднее
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значение квадрата акустического поля (например,
давления), заменяется на произведение средних
значений.Фактически это означает пренебрежение
средним квадратом флуктуаций давления, что при-
водит к определенным ошибкам [14, 18]. Кроме то-
го, необходимо определить, насколько корректно
он учитывает ударные фронты и разрывы в профи-
ле волны.

В качестве исходного уравнения рассмот-
рим уравнение типа простых волн, включа-
ющее случайную расстройку скорости звука𝜍(𝑧) = 𝑐202 (𝑐−2(𝑧) − 𝑐−20 ), вызванную флуктуациями
параметров среды распространения:𝜕𝑝𝜕𝑧 − 𝜍(𝑧)𝑐0

𝜕𝑝𝜕τ − ερ𝑐30𝑝𝜕𝑝𝜕τ = 0, (1)

где 𝑝 — акустическое давление, 𝑧 — координата,τ = 𝑡− 𝑧𝑐0 —время в сопровождающей системе коор-

динат, 𝑐(𝑧)— случайная локальная скорость звука,𝑐0 — характерная средняя скорость звука, ε—нели-
нейный параметр, ρ— плотность среды.

Применяя к уравнению (1) метод среднего по-
ля, получим уравнение Бюргерса для среднего дав-
ления: 𝜕⟨𝑝⟩𝜕𝑧 − ερ𝑐30 ⟨𝑝⟩𝜕⟨𝑝⟩𝜕τ = σ2

2𝑐20
𝜕2⟨𝑝⟩𝜕τ2 . (2)

Здесь угловые скобки означают усреднение по ан-
самблю, σ2 имеет смысл дисперсии флуктуаций
расстройки скорости (конкретно задается корреля-
ционная функция ⟨𝜍(𝑧1)𝜍(𝑧2)⟩ = σ2δ(𝑧2 − 𝑧1)). Как
видно, усреднение привело к появлению так на-
зываемого турбулентного затухания, т. е. в среднем
поле затухает. Уравнение (2) замечательно тем, что
заменой Хопфа–Коула 𝑉 = 2Γ 𝜕𝜕θ ln𝑈 оно сводится
к линейному уравнению:𝜕𝑈𝜕𝑥 = Γ𝜕2𝑈𝜕θ2 .

Здесь введены безразмерные переменные

𝑉= ⟨𝑝⟩𝑝0 , θ= ττ0 , 𝑥= 𝑧𝑧nl , 𝑧nl= ρ𝑐
30τ0ε𝑝0 , Γ= σ2

2𝑐20
𝑧nlτ20 , (3)

где𝑝0 и τ0 —характерные амплитуда и длительность
импульса.

В качестве исходного сигнала будем рассматри-
вать 𝑁-волну,

𝑝(𝑧 = 0, τ) = 𝐹(τ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

𝑝0ττ0 , ∣τ∣ < τ0,0, ∣τ∣ > τ0, (4)

представляющую модельный вариант характерных
профилей, зарегистрированных от сверхзвуковых
самолетов [3, 5]. Для начального профиля (4) полу-

чим решение уравнения Бюргерса в безразмерных
переменных:

⟨𝑝⟩𝑝0 = 2Γ 𝜕𝜕θ ln{1 + 12Φ ( θ − 12√Γ𝑥) − 12Φ ( θ + 12√Γ𝑥)+
+

12√𝑥 + 1 exp (𝑥 + 1 − θ24Γ(𝑥 + 1))×
×[Φ ( 𝑥 + 1 + θ2√Γ𝑥√𝑥 + 1) − Φ ( θ − 𝑥 − 12√Γ𝑥√𝑥 + 1)]} ,

(5)

где Φ(𝑡) = 2√π
𝑡
∫0

𝑒−𝑡2𝑑𝑡— интеграл ошибок.

Из формулы (5) можно увидеть динамику полу-
ченного фронта — происходит расплывание удар-
ных фронтов, пропорциональное как дисперсии
флуктуаций фазы, так и пройденному расстоя-
нию. В частности, даже разрывные профили в рам-
ках этой модели сглаживаются и не содержат осо-
бенностей, на чем и основывается предположение
о применимости стандартных подходов к усредне-
нию волн с разрывами. Характерные профили ре-
шения (5) представлены на рис. 1 для значенияΓ = 0.05. Происходит расплывание фронта волны,
причем как за счет диффузионного расплывания
ширины начального фронта, так и за счет опреде-
ленного среднеквадратичного сноса среднего по-
ложения ударного фронта. Хотя в решении (5) и со-
держится значительная информация о нелинейно-
сти среды, оно всё равнонеудовлетворительно опи-
сывает среднее поле, поскольку основано на при-
ближенной модели усреднения [14, 18].

УСРЕДНЕНИЕ ТОЧНОГО ДИНАМИЧЕСКОГО
РЕШЕНИЯ

Чтобы оценить точность описанных выше ме-
тодов, вернемся к уравнению (1). Оно удобно для
анализа тем, что удается построить его точное ана-
литическое решение даже при наличии флуктуа-
ций. Усреднение этого решения покажет точность
и близость к верному результату решений, полу-
ченных приближенными методами.

Сделаем замену переменных

τ1 = τ + 1𝑐0
𝑧
∫0

𝜍 (𝑧′) 𝑑𝑧′
и приведем уравнение (1) к стандартному уравне-
нию простых волн:𝜕𝑝𝜕𝑧 − ερ𝑐30𝑝 𝜕𝑝𝜕τ1 = 0. (6)

Решение уравнения (6) с произвольнымначальным
профилем задается в неявном виде:

𝑝 = 𝐹⎛⎝τ1 + ερ𝑐30𝑝𝑧⎞⎠ . (7)
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Рис. 1. Временные профили среднего давления, полученные методом среднего поля для значения дисперсии фазыΓ = 0.05 на расстояниях 𝑥 = 0.0001, 0.15, 0.7, 2, 5 (кривые 1–5).

Введя обозначение η = 1𝑐0
𝑧
∫0

𝜍 (𝑧′) 𝑑𝑧′, решение

уравнения (1), содержащего флуктуации, запишем
в следующем виде:

𝑝 = 𝐹⎛⎝τ + η + ερ𝑐30𝑝𝑧⎞⎠ . (8)

Решение (8) задано в неявном виде и не поз-
воляет непосредственно его усреднить. Поэтому
перейдем к спектру волны и усредним его, а за-
тем найдем профиль усредненной волны. Из-
вестно, что до образования разрыва спектр про-
стой волны (7) описывается разложениемБесселя–
Фубини [19].Проведя аналогичные расчеты для ре-
шения (8), получим выражение для его спектра:

𝑆(ω) = 1𝑖ω (ε/ρ𝑐3) 𝑧
∞
∫
−∞ 𝑒−𝑖ω(𝑇+η) (𝑒𝑖ω ερ𝑐3 𝑧𝐹

− 1) 𝑑𝑇.
Учтем, что дисперсия величины η равна ⟨η2⟩ =

=
2𝑐20

𝑧
∫0
(𝑧 − 𝑠)𝐾𝜎(𝑠)𝑑𝑠, и при δ-коррелированности

флуктуаций 𝐾𝜎(𝑠) = 𝐷δ(𝑠), ⟨η2⟩ = 𝐷𝑧𝑐20 . Среднее зна-

чение ⟨η⟩ = 0, если среднее значение флуктуаций
скорости равно нулю. Если флуктуации 𝜍 являют-
ся гауссовским процессом, то η также будет гаус-
совским процессом. Тогда можно записать выра-
жение для характеристической функции ⟨𝑒−𝑖ωη⟩ =

= 𝑒−ω2
2 ⟨η2⟩

= 𝑒−ω2
2 𝐷𝑧𝑐20 . Теперь усредненный спектр ра-

вен:

⟨𝑆(ω)⟩= 1𝑖ω (ε/ρ𝑐3) 𝑧
∞
∫
−∞ 𝑒−𝑖ω𝑇−

ω2
2 ⟨η2⟩ (𝑒𝑖ω ερ𝑐3 𝑧𝐹

−1) 𝑑𝑇. (9)
Применяя обратное преобразование Фурье,

находим среднее поле:

⟨𝑝⟩ = 12π
∞
∫
−∞ ⟨𝑆(ω)⟩𝑒−𝑖ωτ𝑑ω =

=

∞
∫
−∞

12π𝑖ω (ε/ρ𝑐3) 𝑧𝑒−ω2
2 ⟨η2⟩×

× ∞
∫
−∞ 𝑒𝑖ω(τ−𝑇) (𝑒𝑖ω ερ𝑐3 𝑧𝐹

− 1) 𝑑𝑇𝑑ω.
(10)

В (10) удобно сначала вычислить производную
от среднего поля

𝜕⟨𝑝⟩𝜕τ = 12π (ε/ρ𝑐3) 𝑧
¿ÁÁÀ 2π⟨η2⟩×

× ∞
∫
−∞ {exp (−

12⟨η2⟩ (τ − 𝑇 + ερ𝑐3 𝑧𝐹(𝑇))2)−
− exp (−(τ − 𝑇)22⟨η2⟩ )} 𝑑𝑇.

(11)
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Для 𝑁-волны (4) решение (10) в безразмерных
переменных (3) имеет вид:

⟨𝑝⟩𝑝0 =
β2𝑥 { 11 + 𝑥 [θ + (1 + 𝑥)β Φ (θ + (1 + 𝑥)β )−
−

θ − (1 + 𝑥)β Φ (θ − (1 + 𝑥)β )+
+

1√π exp (−(θ + (1 + 𝑥))2β2 )− (12)

−
1√π exp (−(θ − (1 + 𝑥))2β2 )]+

+
θ − 1β Φ (θ − 1β ) − θ + 1β Φ (θ + 1β )+
+

1√π𝑒− (θ−1)2β2
−

1√π𝑒− (θ+1)2β2 } ,
где β = β(𝑧) = √2⟨η2⟩τ0 =

√2𝐷𝑧𝑐0τ0 ≡ 𝐷0√𝑥.
Однако полученное решение (10) неверно опи-

сывает эволюцию 𝑁-волны (4). В этом легко убе-
диться, рассмотрев в (12) предельный переход к от-
сутствию флуктуаций при β → 0 (𝐷 → 0):
⟨𝑝⟩𝑝0 =

12𝑥{ 11 + 𝑥 [∣θ + 1 + 𝑥∣ − ∣θ − 1 − 𝑥∣]+
+∣θ − 1∣ − ∣θ + 1∣}. (13)

Временные профили решения (13) построены
на рис. 2 для различных расстояний. Видно, что по-
лученное решениеописывает расплывание ударно-
го фронта, что не соответствует динамике ударно-
го импульса N-образной формы в нелинейной сре-
де. Таким образом, при усреднении волн с разры-
вами необходимо предварительно получить явное
разрывное решение для профиля.

УРАВНЕНИЕ ДВИЖЕНИЯ РАЗРЫВА В СРЕДЕ
С ФЛУКТУАЦИЯМИ

Проанализируем динамику движения разры-
ва в волне, описываемой уравнением (1). Для𝑁-волны решение (8) можно записать в явном виде
для обратной функции:

τ = − τ0𝑝0𝑝 − ερ𝑐3𝑝𝑧 − η + τ0.
Определим положение переднего фронта при

распространении волны. Введем обозначения:𝑝1 — минимальное значение давления в разрыве,𝑝2 — максимальное. Тогда для переднего фронта
можно записать:

𝑝1 = 0, τ2 = − τ0𝑝0𝑝2 − ερ𝑐3𝑝2𝑧 − η + τ0. (14)

0.5
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Рис. 2. Предельные профили при исчезающе малых флуктуациях среды, полученные при усреднении спектрального
разложения. Кривые 1–6 соответствуют расстояниям 𝑥 = 0.001, 0.3, 0.54, 0.8, 1.2, 2.
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Уравнение движения координаты разрыва τp
можно получить из закона сохранения импульса:𝑑𝑑𝑧

𝑝2
∫𝑝1
(τ(𝑝) − τp) 𝑑𝑝 = 0, ⇒

⇒ 𝑝2
∫𝑝1

𝑑τ𝑑𝑧𝑑𝑝 = (𝑝2 − 𝑝1)𝑑τp𝑑𝑧 .
(15)

Вычисляем:𝑑τ𝑑𝑧 = − 𝑑τ𝑑𝑝 𝑑𝑝𝑑𝑧 = − 𝑑τ𝑑𝑝 ( ερ𝑐3𝑝𝑑𝑝𝑑τ + ς𝑑𝑝𝑑τ ) = − ερ𝑐3𝑝 − ς,
и из (15) получаем:𝑑τp𝑑𝑧 = − ε2ρ𝑐3 (𝑝2 + 𝑝1) − ς. (16)

Уравнения (14) и (16) полностью описывают
движение разрыва. Решая их совместно, получаем
выражения для амплитуды и положения разрыва:

𝑝2 = 𝑝0√1 + ε𝑝0ρ𝑐3τ0
, τp = −τ0

¿ÁÁÀ1 + ε𝑝0ρ𝑐3τ0 − η + τ0.
Окончательно, получаем явное решение для

профиля N-волны:

𝑝 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

𝑝0τ0
τ + η1 + 𝑥, −𝑇(𝑥) − η < τ < 𝑇(𝑥) − η,0, −𝑇(𝑥) − η > τ, τ > 𝑇(𝑥) − η, (17)

где 𝑇(𝑥) = τ0√1 + 𝑥, расстояние 𝑥 определено в (3).
Выражение (17) позволяет правильно усреднить ре-
шение для волны с разрывом. Используя спек-
тральное представление решения (17), получим вы-
ражение для среднего поля:

⟨𝑝⟩ = 12π
𝑇(𝑧)
∫
−𝑇(𝑧) 𝑝(τ′)𝑑τ′

∞
∫
−∞ 𝑒− ⟨η2⟩2 ω2

+𝑖ω(τ−τ′)𝑑ω =
=

1√2π⟨η2⟩
𝑇(𝑧)
∫
−𝑇(𝑧) 𝑝(τ′) exp (−(τ − τ

′)22⟨η2⟩ ) 𝑑τ′.
(18)

Для 𝑁-волны в безразмерных переменных
окончательно получаем:

⟨𝑝⟩𝑝0 = −
12 11 + 𝑥

⎡⎢⎢⎢⎢⎢⎢⎣
θ (Φ (θ +√1 + 𝑥𝐷0√𝑥 )−

− Φ (θ −√1 + 𝑥𝐷0√𝑥 )) + 𝐷0√𝑥√π ×
×⎛⎜⎜⎝exp

⎛⎜⎜⎝−
(θ−√1+𝑥)2

𝐷20𝑥
⎞⎟⎟⎠−exp

⎛⎜⎜⎝−
(θ−√1+𝑥)2

𝐷20𝑥
⎞⎟⎟⎠
⎞⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
.
(19)

При 𝐷0 → 0 получаем следующее решение:⟨𝑝⟩𝑝0 =−
12 θ1+𝑥 [sgn (θ+√1+𝑥)−sgn (θ−√1+𝑥)] . (20)

Выражение (20) правильно описывает эволю-
цию 𝑁-волны в однородной нелинейной среде.

Таким образом, наличие разрыва в профиле
волны необходимо учитывать до проведения про-
цедуры усреднения несмотря на то, что она са-
ма по себе вносит турбулентное затухание и сгла-
живает ударные фронты. Однако это сглажива-
ние не учитывает уширение длительности импуль-
са за счет нелинейных эффектов, а приводит толь-
ко к расплыванию ударного фронта в области его
начального положения. На самом деле происходит
конкуренция двух процессов — нелинейного уши-
рения и турбулентного затухания.

ЭВОЛЮЦИЯ ИСХОДНОГО ТРЕУГОЛЬНОГО
ИМПУЛЬСА

Интересно также проследить динамику исход-
ного треугольного импульса, в котором разрыв еще
отсутствует:

𝐹(τ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑝0 τ + τ0τ0 , −τ0 ⩽ τ ⩽ 0,
𝑝0−τ + τ0τ0 , 0 < τ ⩽ τ0,0, ∣τ∣ > τ0.

(21)

Воспользуемся формулами (10) и (11), получен-
ными на основе усреднения спектрального пред-
ставления. Подставляя в них профиль (21), найдем:

⟨𝑝⟩𝑝0 =
12𝑥 ⎧⎪⎪⎨⎪⎪⎩−𝐷0

√𝑥π exp
⎛⎝−(θ + 1)2𝐷20𝑥 ⎞⎠ −

−(θ + 1)Φ ( θ + 1𝐷0√𝑥) + 𝐷0
√𝑥π exp

⎛⎝−(θ − 1)2𝐷20𝑥 ⎞⎠+
+(θ − 1)Φ ( θ − 1𝐷0√𝑥) + [ 1𝑥 − 1 + 1𝑥 + 1]×

×⎡⎢⎢⎢⎢⎣𝐷0
√𝑥π exp

⎛⎝−(θ + 𝑥)2𝐷20𝑥 ⎞⎠ + (θ + 𝑥)Φ ( θ + 𝑥𝐷0√𝑥)
⎤⎥⎥⎥⎥⎦+

+
1𝑥 − 1
⎡⎢⎢⎢⎢⎣(θ + 1)Φ ( θ + 1𝐷0√𝑥) − 𝐷0

√𝑥π exp
⎛⎝−(θ + 1)2𝐷20𝑥 ⎞⎠

⎤⎥⎥⎥⎥⎦+
+

1𝑥 + 1
⎡⎢⎢⎢⎢⎣(θ − 1)Φ ( θ − 1𝐷0√𝑥) − 𝐷0

√𝑥π exp
⎛⎝−(θ − 1)2𝐷20𝑥 ⎞⎠

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

(22)

Профиль решения (22) (22), рассчитанный при
исчезающей вязкости, имеет вид:⟨𝑝⟩𝑝0 =

12𝑥{(θ − 1)sgn(θ − 1) − (θ + 1)sgn(θ + 1)+
+

(𝑥 + θ)sgn(𝑥 + θ) − (θ + 1)sgn(θ + 1)𝑥 − 1 +

+

(𝑥 + θ)sgn(𝑥 + θ) − (θ − 1)sgn(θ − 1)𝑥 + 1 }.
(23)

Профиль (23) изображен на рис. 3 для раз-
личных расстояний. Как видно, на расстояниях до
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Рис. 3.Предельныепрофилиисходного треугольногоимпульса приисчезающемалыхфлуктуациях среды, полученные
при усреднении спектрального разложения для расстояний 𝑥 = 0.001, 0.3, 0.54, 0.8, 1.2, 2 (кривые 1–6).

образования разрыва искажение профиля соответ-
ствует законамнелинейной акустики (кривые 1–3).
После образования разрыва расчет профиля на ос-
нове спектрального представленияневерно описы-
вает динамику ударного фронта— он расплывается
вместо того, чтобы сдвигаться.

Усредненные профили для треугольного
импульса после образования разрыва на основе
выражения для правильно усредненного поля
приведены на рис. 4. Здесь нужно обратить также
внимание на форму импульса. При относитель-
но небольшой дисперсии флуктуаций (рис. 4а)
импульс имеет характерную форму с укручением
и явно заметным ударнымфронтом, соответствую-
щую его уширению за счет нелинейных эффектов.
На эту форму накладывается сглаживающее воз-
действие турбулентного затухания. Таким образом,
мы действительно получаем усредненные профили
волны с разрывом. При увеличении дисперсии
(рис. 4б) это укручение пропадает и профиль
оказывается сглаженным. Если вернуться к рис. 1
для профилей, получаемых методом среднего
поля, то можно заметить, что укручение на удар-
ных фронтах выражено слабо при сравнимых
значениях дисперсии с графиками на рис. 4а.

Таким образом, можно заключить, что метод
среднего поля неточно описывает самую суще-
ственную часть усредненного профиля — ударный
фронт и степень его крутизны, занижая данные
величины. Тем самым, оценки на его основе мо-

гут дать заниженные значения ожидаемых акусти-
ческих полей в турбулентной атмосфере, что мо-
жетнегативно сказатьсяна состоянииокружающей
среды.

ЗАКЛЮЧЕНИЕ
Таким образом, рассмотрены методы получе-

ния замкнутых уравнений для средних полей аку-
стических волн в случайно-неоднородных средах
и результаты расчетов для волновых профилей
с разрывами. Показано, что метод среднего по-
ля неточно описывает трансформацию ударного
фронта в условиях сильной нелинейности. При
этом усреднение точного динамического решения
также требует аккуратности, вначале необходимо
определить положение разрыва в профиле.
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Mean field of acoustic waves with discontinuities in randomly inhomogeneous media
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The features of the construction of closed equations for the mean field of acoustic waves with discontinuous
profiles in a randomly inhomogeneous medium are considered. Different approaches to obtaining such
equations are compared. It is shown that, despite the smoothing of profiles in the average, the presence of
a discontinuity in the profile should be considered before the averaging operation. An exact expression for
the mean field of the initial 𝑁-wave is obtained.
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ВВЕДЕНИЕ

Уравнение состояния Ван-дер-Ваальса (ВдВ),
написанное в 1873 г. [1], укоренилось в курсах мо-
лекулярной физики, физической химии, термоди-
намики и статистической физики как базовое для
изучения газов и жидкостей [2–5]. Оно постулиру-
ет связьмежду величинами, характеризующимире-
альный газ: внешним и внутренним давлениями 𝑃
и 𝑃i, объемом 𝑉 и температурой 𝑇. Простое урав-
нение предсказывает важное явление — возникно-
вение в веществе фазового перехода жидкость —
газ. Эффект возникает вследствие кубичности изо-
терм Ван-дер-Ваальса: кубическая парабола 𝑃(𝑉)
имеет петлю, положение которой на фазовой диа-
грамме по давлению 𝑃и развертка по температуре𝑇
определяют кривую испарения. Кривая обрывает-
ся в так называемой критической точке, за которой
переход жидкость — газ перестает существовать.

Кубическое поведение изотерм 𝑃(𝑉) оказалось
удачным для описания процесса конденсации в са-
мых разных веществах: от простых газов до слож-
ных углеводородов. Кубические уравнения как усо-
вершенствования уравнения ВдВ образуют боль-
шой класс [6–10]. В силу простоты они допускают
физический анализ параметров и развитие молеку-
лярной теории жидкостей и газов в парадигме ВдВ.
Попытки расширить область применения уравне-
ния ВдВ и повысить точность описания данных
продолжаются третье столетие [11]. По теме кон-
денсациинаписаныдесятки и сотни более сложных
уравнений состояния: вириальных, полиномиаль-
ных, многопараметрических— с устоявшимся обо-

значением EoS (equation of state), которые в кон-
кретных приложениях имеют свои преимущества
и недостатки. Они используются применительно
к большим базам данных и имеют широкий спектр
приложений, связанных с балансом вещества в со-
стоянии жидкость – газ [11–17]. Темы разнообраз-
ны: от вязкости нефтепродуктов [18] до формиро-
вания морских облаков [19, 20] и ударных волн при
взрыве [21, 22].Некоторые из прикладных задач ре-
шаются с помощью сравнительно простого уравне-
ния Тейта [22, 23]. Оно носит чисто эмпирический
характер и на базовом физическом уровне не ин-
терпретируется.

Самый известный баланс жидкость – газ при-
сущ воде. Он лежит в основе множества природ-
ных и технологических процессов и в значитель-
ной степени определяет картину окружающего ми-
ра. Казалось бы, как жизненно важное и про-
стое по химическому составу соединение, вода мог-
ла бы стать излюбленным объектом применения
модели ВдВ и источником информации о строе-
нии вещества. Однако этого не произошло. Опыт
показывает, что уравнение ВдВ плохо примени-
мо к воде. Проходящая через критическую точ-
ку парабола ВдВ в жидкой фазе очень далека
от реальности [24, 25]. Этот факт — давно при-
вычный, в литературе детально не анализирует-
ся. Редкий разбор по теме проводится в рабо-
те [25]. По инерции в учебниках предлагается боль-
шое количество задач, связанных с приложения-
ми уравнения ВдВ к воде, но все они рассматри-
ваются для частных случаев и ограниченных усло-
вий [26]. Полного и физически ясного уравнения
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состояния для воды не существует [24], его поиски
продолжаются [9].

Отсутствие удовлетворительного описания
термодинамических свойств жидкой воды сопро-
вождается непониманием ее микроскопических
свойств. Молекулярный механизм фазового пе-
рехода жидкость – газ остается спорным. Какие
микроскопические механизмы скрываются за кри-
тическим поведением? Является ли жидкость
реальным газом? Приходится спорить об одних
и тех же вещах, которые на первый взгляд кажутся
простыми и обыденными [27, 28].

В настоящей работе мы актуализируем вопрос
о применимости модели ВдВ к жидкой воде в свя-
зи с неожиданным выводом, следующим из анали-
за ее широкодиапазонных диэлектрических спек-
тров [29, 30]. Описание спектров оказывается бо-
лее успешным в представлении о воде, связанной
кулоновскими полями однозарядных ионов H3O

+

и OH– , чем, как принято считать [31, 32], водо-
родными связями. В нашей ион-молекулярной мо-
дели (ИМ модели) молекулы и ионы свободны,
совершают тепловое столкновительное движение
и образуют среду, представляющую собой реаль-
ный газ ВдВ. Мы видим возможным описать свой-
ства такой среды максимально простым, специ-
фичным для воды уравнением состояния.Методом
проб (сравнением результатов расчета со справоч-
ными данными) мы находим модификацию урав-
нения ВдВ, которая с удовлетворительной точно-
стью позволяет рассчитать термодинамические па-
раметры жидкой воды. Из согласия расчетных дан-
ных со справочными данными мы делаем вывод,
что газовый подход для жидкой воды корректен,
а ИМ модель перспективна для дальнейшего изу-
чения.

ТЕПЛОВОЕ УРАВНЕНИЕ СОСТОЯНИЯ
Мыстартуем от уравненияВдВ висходнойфор-

ме— для давления 𝑃, температуры 𝑇 и объема 𝑉 для
одного моля молекул газа:𝑃 = 𝑅𝑇𝑉 − 𝑏 − 𝑎𝑉2 , (1)

где𝑅 = 8.314Дж/(моль⋅К)—универсальная газовая
постоянная, 𝑘Б = 1.38 ⋅ 10−23 Дж/К — постоянная
Больцмана, 𝑏—исключенныйобъем (недоступный
для движения молекул) и 𝑎 — коэффициент при-
тяжения (межмолекулярных сил и сил со стороны
молекул пограничного слоя среды). Расчеты про-
водим для массы𝑀 = 1000 кг (55.5 кмоль) в систе-
ме СИ.

Коэффициенты 𝑎 и 𝑏 — визитная карточка
уравнения ВдВ. Они выводятся из критической
температуры и давления так, что по определению
от температуры не зависят. Для воды приняты𝑎 = 5.53 бар⋅(м3/кмоль2) и 𝑏 = 0.03 м3/кмоль [33],
одинаковые во всех книгах и обзорах. Расчетные

изотермы ВдВ с этими параметрами представлены
на рис. 1а. Они показаны тонкими линиями спра-
ва и, как видно, располагаются далеко от находя-
щихся слева опорных точек, взятых из базы данных
IAPWS [12]

Задаемся целью совместить модельные линии
с опорными точками. Для этого внутреннее дав-
ление 𝑃i (второе слагаемое в формуле (1)) пред-
полагаем зависящим от температуры. Задаем вто-
рой числитель в биномиальной форме относитель-
но 𝑇 и изменяем показатель степени знаменателя
с 2 на 1.4. Этот вариант модификации не един-
ственный, но простейший из опробованных. Ме-
тодом последовательных приближений аппрокси-
мируем новое уравнение к справочным данным
из базы данных IAPWS [12] и приходимк оптималь-
ной формуле

𝑃 = 𝑅𝑇𝑉 − 𝑏 − 𝐶𝑇 − 𝐵𝑇2𝑉1.4 [МПа], (2)

где 𝑏, 𝐶 и 𝐵 — оптимальные параметры, представ-
ленные в табл. 1. Работа формулы (2) для изо-
терм и изохор показана на рис. 1. Зависимости𝑃(𝑉) и 𝑃(𝑇) рассчитаныметодом последовательных
фиксаций 𝑇 и𝑉 в уравнении (2). Как видно, кривые
хорошо ложатся на массив опорных точек, огром-
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Рис. 1. Изотермы (а) и изохоры (б) жидкой воды. Тон-
кие линии вверху справа — расчет по модели ВдВ (1).
Точки — справочные данные IAPWS [12], линии по-
верх точек—расчет помодифицированноймодели (2).
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Таблица 1. Параметры исходного уравнения ВдВ (1) [26] и модифицированной версии (2).

Параметр ВдВ [26] Модифицированная
версия𝑅, Дж/(кг⋅К) 460 460 (const)𝑏, дм3/кг 1.7 0.74 (const)𝑎, МПа⋅м6/кг2 1700 −

Показатель степени 2 1.4 (const)𝐵, Дж/(кг⋅К2)⋅(дм3/кг)0.4
− 2.5 ± 0.3𝐶, Дж/(кг⋅К)⋅(дм3/кг)0.4
− 2500 ± 300

ный по количеству и разбросу абсолютных вели-
чин. Изобары 𝑉(𝑇) также хорошо передаются фор-
мулой (2) (графически не показаны) с той особен-
ностью, что в силу присущей жидкой воде слабой
сжимаемости при температурах от тройной до кри-
тической точки они лежат на одной общей кри-
вой. Для удобства расчетов задаем эту зависимость
упрощенной формулой

𝑉(𝑇) = 73700 − 𝑇 + 0.82 [м3], (3)

передающей поведение изобар с отклонениями
от справочных данных в пределах 5% для давлений
до 25 МПа (см. рис. 3a в работе [34]).

КАЛОРИЧЕСКИЕ УРАВНЕНИЯ СОСТОЯНИЯ
Тепловое уравнение (2), как и исходное урав-

нение ВдВ (1), с учетом первого и второго законов
термодинамики допускает хрестоматийный пере-
ход к термодинамике [4, 5]. Он предполагает прове-
дение серии дифференциально-интегральных опе-
раций с термическим уравнением состояния ви-
да 𝑃(𝑉, 𝑇) (выражение для давления) для полу-
чения энергетических (калорических) уравнений
состояния вида 𝐸(𝑉, 𝑇) (выражения для свобод-
ной 𝐹 и внутренней 𝑈 энергий).

Проводим с уравнением (2) процедуру по схеме
из учебников [4, 5]:

1) принимаем давление 𝑃 как сумму теплового
и внутреннего давлений

𝑃 = 𝑇 (𝜕𝑃𝜕𝑇)V − (𝜕𝑈𝜕𝑉 )T (4)

и как частную производную свободной энергии

𝑃 = − (𝜕𝐹𝜕𝑉)T ; (5)

2) учитываем связь между внутренней энерги-
ей 𝑈 и теплоемкостью 𝐶V𝐶V = (𝜕𝑈𝜕𝑇 )V , (6)

связь между свободной энергией 𝐹 и энтропией 𝑆
𝑆 = − (𝜕𝐹𝜕𝑇)P (7)

и связь между свободной 𝐹 и внутренней 𝑈 энерги-
ями: 𝑈 = 𝐹 + 𝑇𝑆. (8)

Получаем систему уравнений (4)–(8), в отно-
шении которой ставим задачу выразить термодина-
мические величины 𝑈, 𝐹, 𝐶V и 𝑆 через найденные
для уравнения (2) параметры 𝑏, 𝐵 и 𝐶.

Транспонирование зависимостей 𝑉(𝑇) и 𝑇(𝑉)
в уравнении (3) позволяет манипулировать уравне-
ниями (4)–(8) (интегрировать, дифференцировать
и строить графики) в двух вариантах по отдельно-
сти: когда величины 𝑈, 𝐹, 𝐶V и 𝑆 зависят только
от давления 𝑃 и когда они зависят только от тем-
пературы 𝑇. В этих условиях из теплового уравне-
ния (2) прямо следуют три калорических уравнения
состояния для 𝑈, 𝐹 и 𝑇𝑆 с константами интегриро-
вания 𝑐U(𝑉, 𝑇) и 𝑐F(𝑉, 𝑇):𝑈 = −2.5𝐵𝑇2𝑉0.4 + 𝑐U, (9)

𝐹 = −𝑅𝑇 ln(𝑉 − 𝐵) + 2.5𝐵𝑇2
− 𝐶𝑇𝑉0.4 + 𝑐F, (10)

𝑇𝑆 = 𝑅𝑇 ln(𝑉 − 𝑏) − 2.52𝐵𝑇2
− 𝐶𝑇𝑉0.4 + 𝑐U − 𝑐F, (11)

а также выражения для теплоемкости 𝐶V и энтро-
пии 𝑆: 𝐶V = −

5𝐵𝑇𝑉0.4 + 𝜕𝑐U𝜕𝑇 , (12)

𝑆 = 𝑅 ln(𝑉 − 𝑏) − 2.52𝐵𝑇 − 𝐶𝑉0.4 +

𝑐U − 𝑐F𝑇 . (13)

Подгонка уравнений (9–13) к справочным дан-
нымиз базы данных IAPWS [12] дает константыин-
тегрирования, которые в биномиальном выраже-
нии представлены в табл. 2 и 3. Иллюстративный
материал подгонки представлен на рис. 2 и 3. Рас-
четные зависимости находятся в хорошем согласии
со справочными данными.

Наличие в константах интегрирования 𝑐U(𝑉, 𝑇)
и 𝑐F(𝑉, 𝑇) сдвигового параметра 𝑍 дает возмож-
ность расчета энергетического спектра жидкой во-
ды в абсолютном выражении путем распределения
энергетических кривых, привязанных к тройной
точке 0 ○C на рис. 2а, по вертикали относительно

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



МОДИФИКАЦИЯ УРАВНЕНИЯ ВАН-ДЕР-ВААЛЬСА 125

Таблица 2. Константы интегрирования 𝑐U и 𝑐F для зависимостей𝑈(𝑇) и 𝐹(𝑇): 1) привязанных к тройной точке 0 ○C; 2) от-
калиброванных по уравнению (15).

1. Отн. 0 ○C 2. Абс. из уравнения (15)𝑐U, кДж/кг 𝑋𝑇2
+ 𝑌𝑇 − 𝑍 𝑋𝑇2

+ 𝑌𝑇 + 1050𝑐F, кДж/кг −3.7𝑋𝑇2
+ 𝑌𝑇 −3.7𝑋𝑇2

+ 𝑌𝑇 + 1250𝑐U − 𝑐F, кДж/кг 4.7𝑋𝑇2
− 𝑍 4.7𝑋𝑇2

− 200
Таблица 3. Коэффициенты констант интегрирования 𝑐U и 𝑐F, представленных в табл. 2.𝑋, кДж/(кг⋅К2) 0.0027 ± 0.0002𝑌, кДж/(кг⋅К) 6.5 ± 0.2𝑍, кДж/кг 1450 ± 100
абсолютной температуры 0К на рис. 2б. Исполь-
зуем факт, обнаруженный нами ранее, что энер-
гия испарения 𝐸ИСП однозначно связана с плотно-
стью ρ [34, 36]:

𝐸ИСП =
𝑞𝑝ρ5/3

24/3πε0𝑚5/3 [кДж ⋅ кг−1] , (14)
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Рис. 2. Температурные зависимости внутренней энер-
гии жидкой воды 𝑈, энтропийной части 𝑇𝑆, энергии
испарения 𝐸ИСП и свободной энергии 𝐹: a) привязан-
ных к тройной точке 0 ○C и б) в абсолютном выра-
жении (распределенные в спектр по вертикали). Точ-
ки — справочные данные IAPWS [12], линии — расчет
по формулам (9–11).

где 𝑚 = 3.1 ⋅ 10−26 кг и 𝑝 = 6.14 ⋅ 10−30 Кл⋅м —
масса и дипольный момент молекулы H2O,𝑞 = 1.6 ⋅ 10−19 Кл — элементарный заряд, ε0 =
= 8.85 ⋅ 10−12 Ф⋅м−1 — диэлектрическая прони-
цаемость вакуума. На рис. 2а видно, что зави-
симость 𝐹(𝑇), сдвинутая вверх на 1250 кДж/кг
хорошо, в пределах погрешности ±5%, ложит-
ся на кривую 1/2𝐸ИСП(𝑇). На этом основании
устанавливаем

𝐹 = 𝐸ИСП2 , (15)
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Рис. 3. Температурные зависимости плотности ρ (а),
изохорной теплоемкости 𝐶V (б) и энтропии 𝑆 (в) жид-
кой воды. Точки — справочные данные [12, 35], ли-
нии — расчет по формулам (16), (12) и (13) соответ-
ственно. Для полноты картина также приведена изо-
барная теплоемкость 𝐶P (б).
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а энергию 1250 кДж/кг назначаем нулевым уров-
нем для всех энергетических кривых. Соответ-
ственно, пересчитываем константы 𝑐U и 𝑐F пер-
вого столбца табл. 2, содержащие параметр 𝑍,
в константы второго столбца. Кривые с новыми 𝑐U
и 𝑐F, выраженные в абсолютных единицах, пред-
ставлены на рис. 2б. Пересчитанная энтропийная
кривая 𝑆(𝑇) в абсолютном выражении показана
на рис. 3в.

Из уравнений (10), (14) и (15) следует выраже-
ние для плотности ρ жидкой воды:

ρ = 4𝑚⎛⎝106πε0𝐹𝑞𝑝 ⎞⎠
3/5 [кг ⋅ м−3] . (16)

В графическом представлении оно с учетом
уравнения (3) показано на рис. 3а. Как видно, рас-
четная кривая с высокой точностью соответствует
опорным точкам.

Преобразование уравнения (1) в уравнения (2)
дает новое аналитическое выражение для внут-
реннего давления 𝑃i (второе слагаемое). Сравне-
ние нового 𝑃i с общепринятым [37] представлено
на рис. 4. Как видно, кривые 𝑃i(𝑇) близки в диапа-
зоне промежуточных температур 400–600 К, но за-
висимость 𝑃i(𝑇) уравнения (2) уходит далее впра-
во за критическую точку и предоставляет возмож-
ность расчета изохор уже в газовой фазе. Расчетная
фазовая диаграмма качественно близка к эталон-
ной и полностью совпадает с ней при низких дав-
лениях.

ОБСУЖДЕНИЕ
Центральный результат настоящей работы за-

ключается в том, что использованный газовый под-
ход, простой на фоне других методов исследова-
ния, дает определенно положительный результат —
возможность прогнозировать тепловые и калори-
ческие характеристики жидкой воды простыми ал-
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Рис. 4. Фазовая диаграмма воды в изохорном пред-
ставлении. Пунктиры — внутреннее давление 𝑃i(𝑇)
по формуле (2) и из работы [37]. Сплошные темные
линии — справочные данные IAPWS [12], светлые ли-
нии — расчет по формуле (2).

гебраическими выражениями, исходящими из од-
ной общейформулы (2). Уравнение (2) оказывается
простым и всеобъемлющим.

Впервые для описания свойств жидкой воды
применена гипотеза (15), исходящая из теоремы
вириала [38]. Повод для применения этой теоре-
мымыполучили из анализа диэлектрических спек-
тров жидкой воды [30, 34]. Мы обнаружили, что
жидкую воды можно считать состоящей из свобод-
ных частиц (молекул и ионов), совершающих теп-
ловое столкновительное движение и стягивающих-
ся в объем 𝑉 электростатическим ион-дипольным
взаимодействием. Картина отвечает требованиям
вириальной теоремы, согласно которой при внут-
ренней связи частиц в ограниченном пространстве
средняя кинетическая энергия частиц 𝐸КИН соот-
носится со средней потенциальной энергией 𝐸ПОТ
как 𝐸КИН = 𝑛/2 ⋅ 𝐸ПОТ, где 𝑛— степень потенциаль-
нойэнергиикакоднородной алгебраическойфунк-
ции координат [39]. Когда, например, 𝑛 = 2, сред-
няя кинетическая энергия равна средней потенци-
альной энергии, а каждая из них равна половине
полной энергии,— это результат для линейного ос-
циллятора.

Для жидкой воды потенциальную энергию
ее частиц 𝐸ПОТ надежно демонстрирует тем-
пературная кривая испарения (разложения)
воды 𝐸ИСП [2]. Функциональное выражение𝐸ИСП(𝑇) в виде уравнения (14) мы установили
ранее в работах [34, 36]. Теперь половину энергии
распада 𝐸ИСП мыпринимаем за энергию взаимного
притяжения молекул. Эта энергия, конкурируя
с энергией термического расширения молекул∼ 𝑘Б𝑇, обеспечивает устойчивое состояние жидкой
воды: свободная энергия 𝐹(𝑇) в форме (10) имеет
фундаментально требуемый минимум (графически
его не демонстрируем). В пользу правомерности
использования вириальной теоремы в приложении
к воде свидетельствует точное описание (без допол-
нительной подгонки) плотности жидкой воды ρ(𝑇)
посредством модельной кривой (16), как показано
на рис. 3а. Уравнение (16) особенно ценно тем,
что связывает плотность жидкой воды ρ(𝑇) с мик-
роскопическими параметрами частиц: массой 𝑚,
зарядом 𝑞 и дипольным моментом 𝑝.

Совпадение расчетной кривой ρ(𝑇) на рис. 3а
со справочными данными распространяется
на широкий диапазон температур 300–630 К,
но знаменитую аномалию плотности в районе 4 ○C
модель не передает. К этому следует сказать, что
хотя аномалия благодаря своей жизненной важно-
сти хрестоматийна [40–42], она разворачивается
в очень узком температурном интервале (менее±1 K) и может быть правильно интерпретирована
только при понимании широкомасштабного хода
всей зависимости ρ(𝑇).

Гипотеза (15) позволяет построить энерге-
тический спектр жидкой воды в абсолютном
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выражении, как показано на рис. 2б. Модельные
кривые естественным образом ведут себя в пределе
низких температур: энтропийная часть свободной
энергии 𝑇𝑆 стремится к нулю, а значения𝑈 и 𝐹 вы-
равниваются [4]. Сдвиг Δ𝐹 = 1250 кДж/кг дает
два пересечения кривых, оба при 0 ○C. Темпе-
ратура 0 ○C оказывается точкой равенства двух
частей внутренней энергии. Эта же температура
становится точкой равенства кинетической и по-
тенциальной энергий, а также начала их изменения
с повышением температуры.

В модифицированном уравнении (2) внутрен-
нее давление 𝑃i (второе слагаемое) по сравнению
с 𝑃i в исходном уравнении (1) принимает новую
аналитическую форму. Величина 𝑃i имеет самосто-
ятельное важное значение, поскольку непосред-
ственно связана с другими свойствами воды: изо-
барной расширяемостью, изотермической сжимае-
мостью, поверхностным натяжением [4]. На рис. 4
найденная зависимость 𝑃i(𝑇) сравнивается с об-
щепринятой [37]. Две зависимости близки в про-
межуточном температурном интервале 400–600 К,
но новая проходит на фазовой диаграмме даль-
ше вправо за критическую точку. Это позволя-
ет по уравнению (2) рассчитать картину изохор,
которая, как видно, качественно схожа с эталон-
ной. Интересно, что, хотя моделирование выхо-
дит за рамки исходных предположений (наруша-
ется уравнение (3)), предсказательная способность
уравнения (2) сохраняется.

На рис. 1б в области высоких давлений кри-
вые заметно отклоняются от опорных точек. Со-
гласие можно улучшить увеличением констан-
ты 𝑅 в уравнении (2), но мы этого не делаем,
оставляя первое слагаемое чисто «газовым», ван-
дер-ваальсовым, чтобы уйти от известной пробле-
мы различия газовой константы 𝑅 для критиче-
ской и комнатной температур [26, 43]. Вторая для
воды в полтора раза больше первой. Это интер-
претируют следующим образом: поскольку вели-
чина 𝑅 по определению пропорциональна числу
«структурных единиц» в моле вещества, то в кри-
тическом состоянии (в сильно сжатом газе при вы-
сокой температуре)молекулыводычастично связа-
ны в комплексы [43]. Проблема надмолекулярного
структурирования жидкой воды — кластеризации,
льдо-подобности, сосуществования фаз высокой–
низкой плотности и т. п. — обширна и остро дис-
куссионна [44–49]. Она самостоятельна, и в насто-
ящей работе мы ее не обсуждаем.

ЗАКЛЮЧЕНИЕ
Настоящей работой мы продолжили дискус-

сиюоцелесообразности применения газового ион-
молекулярного подхода к изучению свойств жид-
кой воды. Центральным результатом работы стал
сам факт успешного предсказания справочных
данных моделью реального газа. Газовый под-

ход в отношении жидкой воды принципиально
нов. Он открывает простой алгебраический доступ
к термодинамике, возможность быстрого и систем-
ного обращения с мириадами табличных данных,
возможность слежения за зашифрованными в них
параметрами. Нами предложены алгебраические
соотношения, которые последовательно и адекват-
но передают термодинамические параметры жид-
кой воды. Формулы удобны для дальнейшего мо-
делированияиподробного анализа выявленных за-
кономерностей.
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Modification of the Van der Waals equation for describing the thermodynamic
properties of liquid water
A. A. Volkov, S. V. Chuchupal∗

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991 Russia
∗e-mail: MirrorMan@yandex.ru

In the point of view of liquid water as a real gas, the Van derWaals equation of state ismodified for describing
isotherms, isochores, and isobars of liquid water in a wide range of pressures and temperatures. The new
thermal equation provides a standard transition to thermodynamics with the reproduction of internal
energy 𝑈, free energy 𝐹, heat capacity 𝐶V and entropy 𝑆.
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ВВЕДЕНИЕ
Человечество на протяжении довольно дли-

тельного времени привлекает исследование волн
на поверхности жидкости. Еще Леонардо да Вин-
чи в пятнадцатом веке в своих трудах упоминал по-
верхностные волны. С появлениемматематическо-
го аппарата исследования от простых наблюдений
переходят к аналитическому описанию, а разви-
тие техники эксперимента привело к качественно
новым экспериментальным описаниям разнооб-
разнейших явлений, возникающих на поверхности
жидкости. Исследования поверхностных волн на-
ходят свое место и в классических трактатах и учеб-
никах [1–4] и в специализированных монографи-
ях, посвященных волновым движениям жидкости
[5–8].

В современных работах часто решается линеа-
ризованная задача о расчете характеристик инфи-
нитезимальных поверхностных периодических те-
чений в жидкости в различных постановках [9–11].
Наряду с линеаризованными задачами в теоре-
тических работах объектом исследования стано-
вятся нелинейные волны, и исследователи в са-
мых разнообразных постановках задачи получают
точные решения нелинейных уравнений Эйлера,
Кортевега–де Фриза, Шредингера, Хопфа [12–16].
Интерес к изучению поверхностных волн не угас
до сих пор, и они становятся предметом как тео-
ретического [12, 13, 16] так и экспериментально-
го [17–21] изучения. Интерес связан с необходимо-

стью изучения параметров морских волн, описан-
ных в учебных пособиях по океанографии [22, 23]
для подробного описания и предсказания поведе-
ния волновых и многих смежных явлений в океане.
Несмотря на давнюю историю вопроса до сих пор
не разработана полная теория, позволяющая по из-
меренным характеристикам предсказывать пове-
дение волн. В последние годы активизировалась
работа по теоретическому и экспериментальному
описанию. Также происходит развитие экспери-
ментальныхметодов контроляповерхностных волн
(см. например, [24]).

Для изучения и предсказания поведения волн
на поверхности моря необходима регистрация эле-
ментов, характеристик и параметров волн. В на-
стоящей работе предлагается структуризация эле-
ментов волн на поверхности глубокого океана,
описываемых функциями Ламберта. Решение за-
дачи в виде функций Ламберта впервые получе-
но и обсуждалось в [16]. Настоящая работа на-
правлена на исследование влияния амплитуды вол-
ны на ее различные характеристики и измеряемые
в эксперименте параметры.

ПОСТАНОВКА ЗАДАЧИ
Рассмотрим распространение периодических

потенциальных волновых движений вдоль свобод-
ной поверхности идеальной глубокой жидкости,
занимающей нижнее полупространство 𝑧 < 0 в де-
картовой системе координат. В простейшем слу-
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чае в приближениипостояннойплотности ρ = 𝑐𝑜𝑛𝑠𝑡
без учета поверхностного натяжения в двумерной
постановке математическая формулировка задачи
включает в себя уравнения Эйлера и неразрыв-
ности и дополняется стандартными граничными
условиями на свободной поверхности. При пере-
ходе в систему координат 𝑂ξ𝑧, движущуюся вместе
с волной со скоростью 𝑐, учитывая связь между го-
ризонтальными координатами ξ = 𝑥 − 𝑐𝑡, математи-
ческаяформулировка задачи записывается следую-
щим образом:𝑧 < ζ ∶ ρ (−𝑐𝜕ξ𝑢 + (𝑢∇)𝑢) = −∇𝑃 + ρ𝑔, (1)𝜕𝑖ρ + 𝑢 ⋅ ∇ρ + ρ div 𝑢 = 0, (2)𝑧 = ζ ∶ 𝑃 = 𝑃0, 𝑤 − 𝑢𝜕ξζ = −𝑐𝜕ξζ. (3)

Здесь функция ζ = ζ(ξ) описывает откло-
нение свободной поверхности от равновесного
положения 𝑧 = 0, ускорение свободного падения𝑔 = (0,−ℎ) направлено вертикально вниз против
направления оси 𝑂𝑧, переменными 𝑢 и 𝑤 обозна-
чены горизонтальная и вертикальная компоненты
скорости 𝑢, а давление 𝑃 складывается из атмо-
сферного 𝑃0, гидростатического и динамического
давления ̃𝑃:𝑃(ξ, 𝑧) = 𝑃0 + ρ𝑔(ζ − 𝑧 + ̃𝑃(ξ, 𝑧)). (4)

Для жидкости с постоянной плотностью урав-
нение неразрывности сводится к условию несжи-
маемости, и в двумерной постановке можно ввести
функцию тока ψ такую, что 𝑢 = (𝑢, 𝑤) = (𝜕zψ − 𝜕xψ).
Решение дляфункции тока ищется в виде представ-
ления, определяющего экспоненциальное затуха-
ние волнового движения с удалением от свободной
поверхности и обобщенное для волнового пакета
представление, выглядит следующим образом:

ψ(ξ, 𝑧) = ∞
∫0 exp (𝑘(𝑧 − ζ(ξ))) ϕ(𝑘, ξ) 𝑑𝑘, (5)

Из кинематического граничного условия (3)
и (5) получим для функции тока:

ψ(ξ, 𝑧) = 𝑐(ζ + 𝑎) ∞
∫0 exp (𝑘(𝑧 − ζ(ξ))) 𝑓(𝑘) 𝑑𝑘,
∞
∫0 𝑓(𝑘) 𝑑𝑘 = 1. (6)

Не вдаваясь в особенности решения, которое
не является основным интересом настоящего рас-
смотрения и подробно рассмотрено, и описано
в работе [13], отметим, что для функции, описыва-
ющей отклонение свободной поверхности от рав-
новесного значения получается выражение:ζ(ξ, 𝐴) = −1𝑘 (𝑊 (−𝑘𝐴2 exp(𝑖𝑘ξ))+

+ 𝑊 (−𝑘𝐴2 exp(−𝑖𝑘ξ))) . (7)

Здесь символом 𝐴 обозначена амплитуда вол-
нового движения, а𝑊(𝑥)−𝑊—функция Ламберта.

В [16] показано, что функция 𝑓(𝑘) в выраже-
нии (6) является дельта-функцией Дирака δ(𝑘 − 𝑘

∗
)

и в таком случае, применяя свойствофункцииЛам-
берта 𝑊(𝑥) exp(𝑊(𝑥)) можно записать для функ-
ции тока:ψ±(ξ, 𝑧) = − 𝑐𝑘

∗

𝑊 (−𝑘
∗
𝐴𝑒±𝑖𝑘∗ξ)×

× exp (𝑊 (−𝑘
∗
𝐴𝑒±𝑖𝑘∗ξ)) 𝑒𝑘∗𝑧 = 𝑐𝐴𝑒±𝑖𝑘∗ξ𝑒𝑘∗𝑧. (8)

Настоящая работа посвящена анализу формы
и некоторых характеристик свободной поверхно-
сти, в задаче о распространении поверхностных
волн, точное решениекоторойопределяется волна-
ми Ламберта.

АНАЛИЗ ФОРМЫ СВОБОДНОЙ
ПОВЕРХНОСТИ

Проанализируем поведение формы свободной
поверхности (7). Для инфинитезимальных волн𝑘𝐴 ≪ 1 и выражение, описывающее форму свобод-
ной поверхности (), принимая во внимание раз-
ложение функции Ламберта по малому параметру𝑊(𝑥) = 𝑥 − 𝑥2

+
32𝑥3
+ 𝑜 (𝑥3) при ∣𝑥∣ ≪ 1, принимает

вид: ζ(ξ, 𝐴) = −1𝑘 (𝑊 (−𝑘𝐴2 exp(𝑖𝑘ξ))+
+𝑊 (−𝑘𝐴2 exp(−𝑖𝑘ξ))) = (9)

= −
1𝑘 (−𝑘𝐴2 exp(𝑖𝑘ξ) − 𝑘𝐴2 exp(−𝑖𝑘ξ)) = 𝐴 cos(𝑘ξ).

Таким образом, при малых амплитудах форма
свободной поверхности близка к гармонической.
Выполним построение формы свободной поверх-
ности для различных параметров нелинейностиε = 𝐴ω2/𝑔, характеризующего отношение амплиту-
ды волнового движения 𝐴 к длине волны. С ро-
стом параметра нелинейности гребень волны вы-
тягивается и при некотором критическом значенииεcr = 2/𝑒 на вершине волны возникает сингуляр-
ность и форма поверхности перестает быть глад-
кой. Волны, удовлетворяющие условию ε < εcr бу-
дем называть гладкими или докритическими вол-
нами, а волны, удовлетворяющие ε ⩾ εcr будем на-
зывать острыми или закритическими. На рис. 1а
представлены типичные формы поверхности для
докритических и закритических волн.Поверхност-
ные волны характеризуются большим набором па-
раметров, которые можно отслеживать в экспери-
ментальных исследованиях. На рис. 1б и 1в пред-
ставленыформы поверхности для гладкой и острой
волны с указанием характеристик поверхностно-
го волнового движения, оценка которых может
быть получена при обработке оптических данных
волн на поверхности жидкости. В табл. 1 пере-
числены характеристики и приведено их описание.
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Рис. 1. Профилиповерхностных волн: общий вид для различных параметров нелинейности докритического, критиче-
ского и закритического (а); волна с докритическим параметром нелинейности с указанием характеристик волнового
движения (б); волна с закритическим параметром нелинейности с указанием характеристик волнового движения (в).

Таблица 1. Характеристики поверхностного волнового возмущения

Обозначение Характеристикаλ Длина волны𝐴 Амплитуда волныℎ
+
, ℎ
−

Возвышение и заглубление волныζs Серединныйуровень волны, уровень, отсекающийравныеплощадии характеризующийпо-
ложение центра массζm Средний уровень, определяющий положение, равноудаленное от вершины и подошвыλsh, λcr Длительность ложбины и гребня волныλd, λu Длительность участка ниже и выше среднего уровня волны ξmλ

−
, λ
+

Длительность участка волны ниже и выше равновесного положения 𝑧 = 0α Угол при подошве волныβ Угол при вершине волныγ Угол между линиями с максимальной крутизной фронта и срезаφ Уголмежду линиями, соединяющими вершину и соседние подошвы, характеризующий кру-
тизну волны𝑥max, 𝑥min Значения абсцисс, при которых достигается максимальная крутизна фронта и среза волны
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Интересно, что некоторые параметры при перехо-
де от докритической к закритической области те-
ряют свой смысл, а некоторые наоборот — про-
являются явственнее. В качестве примера можно
выделить угол между линиями наибольшей крутиз-
ны среза и фронта волны γ и уровень серединной
линии ζs, определяющий положение выше и ниже
которого площади, заметаемые волной одинаковы.
Угол γ для закритических волн совпадает с углом β
при вершине гребня волны, а для докритических
волн эти углы различны. Положение серединной
линии ζs для докритических волн близко к поло-
жению равновесия 𝑧 = 0, однако, для закритиче-
ских волн этот уровень заметно превышает равно-
весный.

Рассмотрим, как влияет увеличение ампли-
туды волны на некоторые характеристики по-
верхностных волн. На рис. 2 построены зави-
симости длительности участка волны, отнесен-
ные к ее длине, превышающих равновесный уро-
вень (имеющих положительные значения абсцисс)λλ
+

= λ
+
/λ, не превышающих (имеющих отрица-

тельные значения абсцисс) λλ− = λ−/λ и их раз-
ность Δλλ = λλ

−

− λλ
+

= (λ
−
− λ
+
) /λ. Для удобства

построения выполнены в величинах, отнесенных
к длине волны для различных параметров нели-
нейности ε. При малых амплитудах длительности
волны над и под равновесным уровнем практиче-
ски совпадают, однако, с увеличением амплитуды
участок над равновесным уровнем укорачивается
по сравнению с участком под равновесным уров-
нем. Несмотря на то, что длительность λλ

+

умень-
шается с увеличением амплитуды, длина свобод-
ной поверхности волны ведет себя нелинейнымоб-
разом. Длина свободной поверхности вместе с по-
ложением уровня ζs характеризует потенциальную
энергию: увеличение этих величин приводит к уве-
личению потенциальной энергии волнового дви-
жения.

На рис. 3 изображены зависимости от пара-
метра нелинейности длины поверхностей участков
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Рис. 2. Отнесенная к длине волны длительность участ-
ка волны в зависимости от параметра нелинейности
над равновеснымуровнемλλ

+

, под равновеснымуров-
нем λλ

+

и разница длительности под равновесным
уровнем и над равновесным уровнем Δλλ = λλ

−
−λλ+ .

волны, отнесенные к длине волны для участка пре-
вышающей равновесный уровень 𝐿

+
/λ (рис. 3а),

не превышающей равновесный уровень 𝐿
−
/λ

(рис. 3б) и общая длина свободной поверхности𝐿/λ = (𝐿
+
+ 𝐿

−
) /λ. Видно, что для докритических

гладких волн с увеличением амплитуды про-
исходит плавный незначительный рост длины
поверхности участка волны, находящегося под
равновесным уровнем и относительно резкий
рост длины поверхности участка над равновесным
уровнем. С превышением критического значения
параметра нелинейности происходит менее резкое
уменьшение длины свободной поверхности этого
участка. Вблизи критического значения параметра
нелинейности существует область параметров, для
которых длина свободной поверхности верхней
части волны превышает длину свободной по-
верхности в нижней части волны. Эта же область
характеризуется наибольшей длиной поверхности
волны (см. рис. 3в) и, следовательно, наиболь-
шей доступной поверхностной потенциальной
энергией.

Рассмотрим углы, характеризующие свободную
поверхность волны. На рис. 4 представлены зави-
симости углов, характеризующих различные участ-
ки волны в зависимости от параметра нелиней-
ности. На рис. 4а представлена зависимость угла
при подошве волны α. С увеличением амплитуды
волны угол при подошве практически не меняет-
ся и близок к 180○. Для угла при вершине вол-
ны β (см. рис. 4б) похожая тенденция наблюдает-
ся только для гладких докритических волн, однако
с приближением параметра нелинейности к кри-
тическому значению происходит резкое уменьше-
ние значения угла и последующий плавный рост
с увеличением амплитуды для закритических волн.
Угол между линиями с максимальной крутизной
фронта и среза γ для закритических волн совпада-
ет с углом при вершине β, а в области докритиче-
ских значений параметра нелинейности происхо-
дит более плавное по сравнению с углом β умень-
шение значения. Угол, образованный линиями, со-
единяющими вершину волны с двумя соседними
подошвами φ (или между линиями, соединяющи-
ми подошву с двумя соседними вершинами) так-
же уменьшается с увеличением амплитуды в об-
ласти докритических значений параметра нели-
нейности, при критическом значении достигает
минимального значения (около 100○) и для за-
критических волн плавно растет с увеличением
амплитуды.

Описанные характеристики, а также другие ве-
личины, изображенные на рис. 1б,в можно отсле-
живать при постановке экспериментов для опре-
деления параметров волнового движения, точное
решение которого описывается функциями Лам-
берта.
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равновесным уровнем 𝐿

+
/λ (а); под равновесным уровнем 𝐿

−
/λ (б). Суммарная длина участка поверхности 𝐿/λ (в);

относительное удлинение свободной поверхности (𝐿 − λ)/λ (г).
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α
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ра
д
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εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0

γ, 
гр

ад

ϕ
, г

ра
д

в г

εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0

Рис. 4. Характерные углы волны в зависимости от параметра нелинейности: угол при подошве α (а), угол при вер-
шинеβ (б), угол между линиями смаксимальной крутизнойфронта и среза γ (в), угол между линиями, соединяющими
вершину и соседние подошвы φ (г).

ЗАКЛЮЧЕНИЕ

Получено решение нелинейной задачи о рас-
пространении гравитационных волн вдоль свобод-
ной поверхности идеальной глубокой несжимае-
мой жидкости. Построены параметры волн, кото-

рые возможно использовать в эксперименте, что-
бы характеризовать волны. С увеличением ампли-
туды волнового движения происходит заострение
вершин волн и при некотором критическом значе-
нии амплитуды на вершине возникает особая точ-
ка. Критическое значение амплитуды разграничи-
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вает плавные докритические волны от заострен-
ных закритических. Исследовано влияние измене-
ния амплитуды волнового движения на длитель-
ность и длину поверхности участков волн Лам-
берта для докритических и закритических ампли-
туд.Исследованы углы, образующиеся касательны-
ми к свободной поверхности на вершине, подошве
волны, а также в точках на срезе и фронте волны,
характеризующимисямаксимальными значениями
крутизны. Получены координаты этих положений
и показано, что для закритических волн эти коор-
динаты совпадают с координатами вершины вол-
ны. Предложенное описание приведено в наблю-
даемых и возможных для фиксирования в экспери-
менте величинах.

Работа выполнена по теме государственного за-
дания (№ 124012500442-3).
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ВВЕДЕНИЕ
В последнее время в мире активно развиваются

новые отрасли электроники такие как спинтрони-
ка [1] и магноника [2]. В рамках спинтроники рас-
сматривают все возможные устройства электрони-
ки, связанные с управлением магнитным момен-
том.Это управлениеможет приниматьформу пере-
носа спина за счет создания спин-поляризованных
токов, или форму переключения магнитного мо-
мента за счет спин-поляризованного тока или
электрического поля. В области магноники основ-
ным предметом исследования являются спиновые
волны, т. е. волны прецессии магнитного момента.
Такие волны в качестве переносчика информации
обладают рядом преимуществ: для спиновых волн
как коллективных возбуждений магнитной под-
решетки невозможна утечка в окружающее про-
странство, не обладающее упорядоченной магнит-
ной структурой; короткие спиновые волны могут
способствовать миниатюризации устройств вплоть
до размера элементарной ячейки; дажеприкомнат-
ной температуре спиновые волны в ферритах гра-
натах могут проходить тысячи своих длин [2].

Управление магнитным моментом с помощью
электрического поля в ферримагнетиках может
быть осуществлено за счет неоднородного маг-

нитоэлектрического взаимодействия. Это взаимо-
действие, на микроскопическом уровне обеспечи-
ваемое взаимодействием Дзялошинского–Мория
[3–5], способствует появлению у микромагнитных
структур в среде с неоднородным распределени-
ем намагниченности (например, у доменных сте-
нок) электрической поляризации [6, 7]. Поскольку
взаимодействие Дзялошинского–Мория является
анизотропной поправкой к изотропному обменно-
му взаимодействию, возникающей за счет спин-
орбитального взаимодействия, неоднородное маг-
нитоэлектрическое взаимодействие может прояв-
ляться в ферро-, ферри-, антиферромагнетиках.
Таким образом, доменная стенка — переходная
область между двумя магнитными доменами, где
вектор намагниченности претерпевает разворот, —
может реагировать на внешнее электрическое по-
ле [8]. Неоднородное магнитоэлектрическое взаи-
модействие позволяет также зарождать цилиндри-
ческие магнитные домены со 180○ и 90○ ориен-
тацией доменных стенок [9, 10]. Важным аспек-
том является то, что в работах [7–9] для анали-
за эффектов не применяются динамические мо-
дели. Моделирование движения доменной стен-
ки во внешнем электрическом поле представля-
ет интерес, так как, с одной стороны, относится
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к области спинтроники и магнитоэлектрического
эффекта, а с другой стороны, движение доменной
стенки во внешнем электрическом поле может рас-
сматриваться в рамках магноники как способ воз-
буждения спиновых волн по аналогии с обсуждае-
мым способом возбуждения спиновых волн за счет
продвижения доменной стенки во внешнем маг-
нитном поле [11]. Кроме того, из классической ли-
тературы известно, что теоретический анализ ди-
намики движения доменной стенки является от-
дельной и сложной задачей [12, 13]. В данной рабо-
те теоретически и численно исследуется простей-
ший случай динамики движения ферромагнитной
доменной стенки во внешнем электрическом поле,
приводящий к возбуждению спиновых волн.

ТЕОРИЯ
Для расчета динамики намагниченности в мик-

ромагнитном приближении использовалось урав-
нение Ландау–Лифшица–Гильберта:𝜕𝑚⃗𝜕𝑡 = −γ [𝑚⃗ × 𝐻⃗eff] + α [𝑚⃗ × 𝜕𝑚⃗𝜕𝑡 ] , (1)

где 𝑚⃗—безразмерное векторное поле намагничен-
ности, имеющее в каждой точке модуль, равный
единице, 𝐻⃗eff — эффективное магнитное поле, γ—
гиромагнитное отношение, α— показатель затуха-
ния для данногоматериала. В дальнейшемподразу-
мевается, что уравнение (1) используется для опи-
сания динамики намагниченности в ферромагнит-
номматериале, характеризуемомпараметрамипле-
нок феррита граната, которые являются популяр-
ными элементами в возможных устройствах маг-
ноники [14, 15], поэтому все параметры задачи
(например, намагниченность насыщения 𝑀s) ха-
рактеризуют (по порядку величины) именно плен-
ки феррита граната. Ферриты граната являются
ферримагнетиками, но наиболее сильное обмен-
ное взаимодействие связывает в них две магнитные
подрешетки [12] и делает магнитные моменты под-
решеток коллинеарными в статике. Поэтому для
наглядности мы используем статические парамет-
ры пленок ферритов граната. Эффективное маг-
нитное поле определяется как отрицательная вари-
ационная производная свободной энергии по век-
тору намагниченности:

𝐻⃗eff
= −

1𝑀s

δ𝐹(𝑚⃗)δ𝑚⃗ . (2)

Свободная энергия неоднородного электриче-
ского взаимодействия описывается следующимвы-
ражением [5, 6]:𝐹me = −γme (𝐸 ⋅ (𝑚⃗(∇ ⋅ 𝑚⃗) + [𝑚⃗ × [∇ × 𝑚⃗]])) , (3)

где γme — магнитоэлектрическая постоянная, 𝐸 —
электрическое поле внутри материала, задаваемое
внешним источником. В выражении (3) сомножи-
тель, скалярно умножаемый на вектор электриче-
ского поля, играет роль электрической поляриза-

ции, наведенной неоднородным распределением
намагниченности. Энергии 𝐹me соответствует в со-
гласии с выражением (2) эффективное магнитное
поле со следующими компонентами в декартовой
системе координат [6]:

(𝐻eff
me)i = γme (2𝐸i𝜕β𝑚β − 2𝐸β𝜕i𝑚β +
+ 𝑚β𝜕β𝐸i −𝑚β𝜕i𝐸β) . (4)

Поскольку речь идет о влиянии электрическо-
го поля на намагниченность 𝑚⃗, которая характер-
на для доменной стенки, нужно задать энергию
обменного взаимодействия и энергию магнитной
анизотропии. Для анализа была выбрана простей-
шаямодель, в которой справедливы следующие вы-
ражения для плотности энергии обменного вза-
имодействия и магнитной анизотропии соответ-
ственно: 𝐹ex = 𝐴 ∑𝑖=1,3 (∇𝑚i ⋅ ∇𝑚i) (5)

𝐹an = −𝐾u𝑚2
z , (6)

где 𝐴 = 1 ⋅ 10−7 эрг/см — константа обменного вза-
имодействия, 𝐾u = 1000 эрг/см3 — константа од-
ноосной магнитной анизотропии. Геометрия зада-
чи приведена на рис. 1а. Для суммы энергий (5), (6)
известно классическое одномерное решение𝑚x = sin (θw(𝑦)) cos (φw) , (7)𝑚y = sin (θw(𝑦)) sin (φw) , (8)𝑚z = cos (θw(𝑦)) , (9)

θw(𝑦) = 2 arctg (exp ( 𝑦Δw
)) , (10)

описывающее доменную стенку Блоха [12, 16]
при φw = 0, φw = π и доменную стенку Нее-
ля при φw = π/2, φw = 3π/2. Здесь Δw =

=

√𝐴 ⁄ (𝐾u + 2π𝑀2
s (sinφw)2) — параметр, опре-

деляющий ширину доменной стенки, φw — угол,
определяющий положение намагниченности
в плоскости пленки. Заметим, во-первых, что
в классической доменной стенке Блоха с энер-
гетической точки зрения различные состояния
с φw = 0 и φw = π неразличимы и, во-вторых, что
доменная стенка Блоха в статике не дает вклада
в неоднородный магнитоэлектрический эффект,
так как выражение (3) для структуры (7) при φw = 0
и φw = π равно нулю.

Прежде чем обращаться к численному модели-
рованию, следует провести аналитические выклад-
ки, насколько это возможно. Будем рассматривать
аналитически одномерную доменную стенку, к ко-
торой прикладывается однородное электрическое
поле. Важно отметить, что выражение (3) содержит
вектор электрического поля, которое может быть
какнеоднородным, такиоднородным. Здесь, в ана-
литическом рассмотрении, используется однород-
ное электрическое поле с целью сохранить возмож-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



138 МЯСНИКОВ, ПЯТАКОВ

y, Δ

mz

mx

mz

vEx

vEx

vEz

vEz

vEz

mx

my

m
i

Ex
Ez

m

z

z

O

x

y

→

θ

ϕ

0.6

0.8

0.2

0

1

0.4

�0.6

�0.8

�0.2

�1

�0.4

y

mz

mx
my

ба

2 4 8631 5 7 109�2�4�8 �6 �3 �1�5�7�10 �9 0

Рис. 1. Геометрия задачи и структура доменной стенки Блоха: геометрия задачи с отмеченными компонентами намаг-
ниченности𝑚x,𝑚y,𝑚z и углами θ,φ, задающими нормированный вектор намагниченности (а); структура доменной
стенки Блоха (б): линиями отмечены зависимости компонент вектора намагниченности от координаты; стрелками
отмечены скорости, сообщаемые однородным электрическим полем (𝐸x или 𝐸z) доменной стенке в первый момент
динамики. Координата отсчитывается в единицах ширины доменной стенки Δ = √𝐴/𝐾u = 100 нм.

ность сделать простые выводы и сравнить их с ре-
зультатами численного эксперимента. В состоянии
равновесия доменной стенки, которое описывает-
ся выражениями (7–10), перед приложением элек-
трического поля суммарное эффективное магнит-
ное поле обменного взаимодействия и магнитной
анизотропии равно нулю, поэтому в первый мо-
мент времени после приложения электрического
поля доменная стенка находится в эффективном
поле 𝐻⃗eff

me. Уравнение (1) может быть записано для
угла θ [12, 13], который определяет положение на-
магниченности относительно оси 𝑂𝑧 (здесь и да-
лее она совпадает с нормалью к поверхности маг-
нитной пленки). Эффективное поле (4) приводит
к следующему дифференциальному уравнению для
угла θ, описывающего намагниченность в произ-
вольной доменной стенке, при однородном элек-
трическом поле 𝐸x, направленном по оси 𝑂𝑥:𝜕θ𝜕𝑡 = −𝑣𝐸x

𝜕θ𝜕𝑦 , (11)

где 𝑣𝐸x
= 2γγme𝐸x cos ⁡(θ)/𝑀s. Для случая однородно-

го поля 𝐸z справедливо следующее уравнение:𝜕θ𝜕𝑡 = 𝑣𝐸x

𝜕θ𝜕𝑦 , (12)

где 𝑣𝐸z
= 2γγme𝐸z sin ⁡(θ) cos(φ)/𝑀s, φ — азимуталь-

ный угол, задающий положение намагниченно-
сти в плоскости пленки (см. рис. 1а). Уравне-
ния (11), (12) относятся к классу уравнений пе-
реноса с известным решением вида 𝑓 (𝑡 − 𝑦/𝑣(θ)),
где 𝑣(θ)— коэффициент при производной по про-
странственной координате, имеющий размерность
скорости. Важно отметить, что из уравнения (12)
следует важный вывод о том, что неоднородное
магнитоэлектрическое взаимодействие приводит
к различной динамике доменной стенки Блоха
с положительной и отрицательной компонента-
ми 𝑚x, поскольку скорость сдвига 𝑣𝐸z

пропорцио-
нальна cos(φ), который при φ = 0, π задает струк-

туру разворота намагниченности. Другими слова-
ми, две доменные стенки Блоха с различным зна-
ком 𝑚x в однородном электрическом поле 𝐸z бу-
дут двигаться в противоположных направлениях.
На рис. 1б приведена зависимость компонент век-
тора намагниченности от координаты в доменной
стенке Блоха, описываемой выражениями (7–10),
и соответствующие направления скоростей из вы-
ражений (11) и (12), сообщаемых доменной стен-
ке электрическим полем в начальный момент вре-
мени после включения электрического поля. В со-
ответствии с (7–10) 𝑣𝐸z

∼ 𝑚x и имеет постоянный
знак по ширине доменной стенки Блоха, в то вре-
мя как 𝑣𝐸x

∼ 𝑚z и меняет знак по ширине домен-
ной стенки Блоха. Отсюда следует, что однородное
электрическое поле 𝐸x не сдвигает доменную стен-
ку как целое, но приводит на ранних этапах ди-
намики к сжатию или уширению доменной стен-
ки — в зависимости от знака 𝐸x. При этом одно-
родное электрическое поле 𝐸z приводит в дина-
мике к сдвигу доменной стенки Блоха как цело-
го. Также из уравнения (12) следует, что домен-
ная стенка Нееля (φ = π/2, 3π/2) не будет реагиро-
вать на электрическое поле, направленное по нор-
мали к пленке, но будет изменять свою шири-
ну в электрическом поле 𝐸x подобно доменной
стенке Блоха. Строго говоря, уравнения (11), (12)
являются применимыми только в начальный мо-
мент времени после приложения электрического
поля ступенькой, поскольку баланс между энер-
гиями магнитной анизотропии и обменного вза-
имодействия нарушается в последующие момен-
ты времени. Поэтому нужно решать уравнение (1)
численно.

Для возможного сравнения следует также при-
вести закон дисперсии для обменных спиновых
волн с малой амплитудой, распространяющихся
в ферромагнитном материале без доменных сте-
нок [17]:
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ω2
= (ωa + ωex) ⎛⎝ωa + ωex + ωM

𝑘2
x + 𝑘2

y𝑘2 ⎞⎠ ,
ωan = γ2𝐾u𝑀s

,
ωex = γ2𝐴𝑀s

𝑘2,
ωM = 4πγ𝑀s,

(13)

где 𝑘2
= 𝑘2

x+𝑘2
y+𝑘2

z —квадрат модуля волнового век-
тора, ωan, ωex, ωM — частоты, задаваемые соответ-
ственномагнитной анизотропией, изотропнымоб-
менным взаимодействием, полями размагничива-
ния. Таким образом, частота прецессии пропорци-
ональна квадрату волнового вектора. Следует от-
метить, что выражения (13) получены в приближе-
нии малой и неизменной со временем амплитуды
прецессии. В случае 𝑘 = 0 магнитные моменты пре-
цессируют синхронно в эффективном магнитном
поле магнитной анизотропии. Это поле при задан-
ных параметрах задачи имеет величину 500 Э, что
соответствует частоте ферромагнитного резонансаωan/(2π) = 1.4 ГГц.

МЕТОД ЧИСЛЕННОГО РАСЧЕТА
Численное решение уравнения Ландау–

Лифшица–Гильберта проводилось с помощью
метода конечных элементов на основе библиотеки
FEniCS [18, 19]. В одномерной модели на отрезок,
соответствующий одной ширине доменной стенкиΔ = √𝐴 ⁄ 𝐾u, приходилось 30 узлов вычислительной
сетки, в двумерной — 7 узлов. Расчет выполнялся
с учетом размагничивающих полей: в случае одно-
мерной модели использовалось дополнительное
энергетическое слагаемое 𝐹M = 2π𝑀2

s𝑚2
y, в случае

двумерной модели структура размагничиваю-
щих полей вычислялась из уравнения Пуассона
для скалярного потенциала Δ𝑢 = 4π𝑀sdiv 𝑚⃗.
Вычисления проводились при коэффициенте
затухания γ = 0.0001, 𝑀s = 4 Гс, напряженности
электрического поля 3 МВ/см. Электрическое
поле подавалось в систему ступенькой во времени.
Такая величина электрического поля необходи-
ма для наглядности результатов и возможности
рассматривать свойства спиновых волн.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

В этом разделе обсуждаются результаты
численного моделирования. На протяжении
всего раздела они сравниваются с выводами,
следующими из уравнений (11), (12), но речь
идет о численном решении уравнения Ландау–
Лифшица–Гильберта (1) и графическом пред-
ставлении этого решения. В одномерной модели
на основе уравнения (1) с начальным условием
(7–10) была получена зависимость вектора намаг-

ниченности в доменной стенке Блоха от времени.
Результаты расчета для различного направления
однородного электрического поля приведены
на рис. 2. При приложении электрического по-
ля 𝐸z доменная стенка за время 565 пс из своего
начального состояния (рис. 2а) сдвигается вправо
(рис. 2б) в соответствии с выводом, следующим
из уравнения (12), при этом по ходу движения
доменной стенки возникают спиновые волны.
Кроме того, при изменении в начальном состо-
янии доменной стенки знака компоненты 𝑚x
на противоположный за тот же период времени
доменная стенка Блоха смещается в противопо-
ложном направлении (рис. 2в) При приложении
электрического поля −𝐸x за время 847.5 пс до-
менная стенка как целое не испытывает сдвига
(рис. 2г), как и следует из уравнения (11), но слева
и справа от доменной стенки возникают спиновые
волны. Доменная стенка Нееля, стабилизирован-
ная внешним магнитным полем, превышающим
поле размагничивания в два раза, при приложении
электрического поля −𝐸x испытывает схожую
динамику — она как целое остается на месте,
но на периферии возникают спиновые волны
(рис. 3а,б). При этом численный расчет пока-
зывает, что доменная стенка Нееля не реагирует
на однородное электрическое поле 𝑒z (рис. 3в),
как и утверждалось в предыдущем разделе.

Для того, чтобы проанализировать свойства
возбуждаемых таким образом спиновых волн для
каждого направления электрического поля был вы-
бран фрагмент зависимости 𝑚y (для стенки Блоха)
и 𝑚x (для стенки Нееля) от координат и времени,
содержащий несколько длин волн. Для доменной
стенки Нееля такой фрагмент приведен на рис. 3г.
На рис. 3д приведена зависимость модуля амплиту-
ды спектра функции𝑚x(𝑡, 𝑦) по времени от частоты
и координаты фрагмента. Данная зависимость по-
казывает, что характерная частота спиновых волн
в случае доменной стенки Нееля и электрическо-
го поля −𝐸x составляет 7.5 ГГц. Также на рис. 3д
видно, что с ростом координаты частота прецессии
увеличивается. Это может быть объяснено тем, что
нелинейность динамики приводит к тому, что пре-
цессия намагниченности не является изохронной,
т. е. частота прецессии зависит от ее амплитуды.
Можно выделить как минимум один фактор, зада-
ющий характер этой связи. На данном участке наи-
более сильное эффективное магнитное поле, зада-
ющее свойства прецессии плоскостных компонент
намагниченности, создаетмагнитная анизотропия.
Это эффективное поле, как следует из (2) и (6),
пропорционально𝑚z. Поскольку на рис. 3д с отда-
лением от доменной стенки амплитуда плоскост-
ных компонент 𝑚x, 𝑚y естественным образом па-
дает, компонента 𝑚z растет, а следовательно боль-
шее по величине эффективное магнитное поле за-
дает более высокую частоту прецессии. Конечно,
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Рис. 2. Результат численного моделирования доменной стенки Блоха: начальное состояние (а); с изначально отрица-
тельной компонентой𝑚x через 𝑡 = 565 пс при однородном поле𝐸z (б); с изначально положительной компонентой𝑚x
через 𝑡 = 565 пс при однородном поле 𝐸z (в); через 𝑡 = 847.5 пс при однородном поле −𝐸x (г). Координата отсчитыва-
ется в единицах ширины доменной стенки Δ = √𝐴/𝐾u = 100 нм. Cиней заливкой показаны области, выбранные для
вычисления спектральных характеристик.
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Рис. 3. Результат численного моделирования доменной стенки Нееля: начальное состояние (а); структура в момент
времени 𝑡 = 565 пс после приложения однородного электрического поля −𝐸x (б), синей заливкой показана область,
выбранная для вычисления спектральных характеристик; структура, которая не реагирует на однородное электри-
ческое поле 𝐸z (численный расчет) (в), верхними индексами отмечено начальное и конечное состояния; компо-
нента намагниченности 𝑚x в момент времени 𝑡 = 565 пс в выбранной области (г); зависимость спектра функции𝑚x(𝑡, 𝑦) по времени для каждой координаты фрагмента (д); спектр функции𝑚x(𝑦) по координате в момент времени𝑡 = 565 пс (е).

для рассматриваемой модели такое соображение
является очень простым, но оно показывает, что
рост частоты спиновых волн с отдалением от до-
менной стенки не является неожиданным. Более
строгое рассмотрение в перспективе можно полу-
чить на основе анализа влияния всех взаимодей-
ствий на дисперсионное соотношения для спино-
вых волн.На рис. 3е приведена зависимость модуля
спектра функции𝑚x(𝑡, 𝑦) по пространственной ко-
ординате от пространственной частоты для момен-
та времени 𝑡 = 565 пс. Эта зависимость показыва-
ет, что характерная длина спиновой волны состав-
ляет 500 нм. Аналогичным образом, для доменной
стенки Блоха были выбраныфрагменты рис. 1, вы-

деленные синей заливкой. Для случаев однородно-
го электрического поля 𝐸z и −𝐸x, прикладываемо-
го к доменной стенке Блоха, характерные частоты
и длины волн составляют 15 ГГц, 200 нм и 7.5 ГГц,500 нм соответственно.

В двумерной модели также происходит возбуж-
дение спиновых волн при воздействии электриче-
ского поля точечного заряда. На рис. 4а приве-
дено начальное состояние доменной стенки Бло-
ха и положение точечного заряда. За время 170 пс
после приложения электрического поля ступень-
кой доменная стенка искривляется и сдвигается
(рис. 4б). В данном случае компонента электриче-
ского поля по оси 𝑂𝑧 имеет отрицательный знак,
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а компонента𝑚x положительный знак (cos ⁡(φ) > 0).
При такой конфигурации уравнение (12) описы-
вает направление смещения доменной стенки, со-
ответствующее рис. 4б. Электрическое поле вызы-
вает помимо сдвига доменной стенки возбужде-
ние спиновых волн, которые отражены в распре-
делении компоненты 𝑚x на рис. 4б и в распределе-
ниикомпонент𝑚x,𝑚y (рис. 4в), построенных вдоль
конкретного направления, отмеченного на рис. 4б.
На рис. 4г приведен спектр компоненты𝑚y по вре-
мени для каждой точки фрагмента. Отсюда следу-
ет, что характерная частота возбуждаемых спино-
вых волн составляет 12.5ГГц.Из пространственно-
го спектра на рис. 4д следует, что характерная дли-
на спиновой волны в двумерной модели составляет300 нм.

ЗАКЛЮЧЕНИЕ
Таким образом, с помощью микромагнитного

моделирования на основе уравнения Ландау–
Лифшица–Гильберта для ферромагнитного
материала показано, что в пленках с неоднород-
ным магнитоэлектрическим взаимодействием
приложение как однородного, так и неоднород-
ного электрического поля к доменным стенкам
Блоха и Нееля приводит к возбуждению спиновых
волн с характерными частотами около 10 ГГц
и длинами волн порядка 100 нм. Полученный
набор пар частот и длин волн (15 ГГц, 200 нм),
(7.5 ГГц, 500 нм), (12.5 ГГц, 300 нм) качественно

удовлетворяет дисперсионному соотношению (13):
чем меньше длина волны, тем больше частота.
Также показано, что на основе приближенных
уравнений переноса (11), (12) оказывается возмож-
ным делать вывод о наличии или отсутствии сдвига
доменной стенки, о связи его знака с полярно-
стью электрического поля и структурой доменной
стенки. Здесь важно отметить, что в отличие
от статической модели динамическая модель до-
пускает возможность воздействия электрического
поля на доменную стенку Блоха. Данные выводы
предполагают дальнейшую экспериментальною
работу по детектированию спиновых волн, про-
верке связи направления электрического поля
со свойствами сдвига доменной стенки. С теоре-
тической точки зрения, важным является вопрос
о влиянии электрического поля на дисперсионное
соотношение для возбуждаемых спиновых волн,
а также вопрос о зависимости свойств спиновых
волн от амплитуды электрического поля. Также
возникает вопрос о применимости результатов
работы к случаю ферримагнитных материалов.
Известно [12], что в ферримагнетиках возможны
два типа прецессии магнитных моментов двух
подрешеток: низкочастотная (характерные часто-
ты сравнимы с частотами для ферромагнетика),
когда магнитные моменты подрешеток остают-
ся коллинеарными, и высокочастотная, когда
коллинеарность нарушается. Второй тип пре-
цессии позволяет использовать ферримагнетики
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Рис. 4. Двумерное численное моделирование возбуждения спиновых волн электрическим полем: зависимость компо-
ненты𝑚x в доменной стенке Блоха от координат в начальный момент времени и положение точечного электрическо-
го заряда, показанное затемненным кругом (а); зависимость компоненты𝑚x в доменной стенке Блоха от координат
в момент времени 𝑡 = 170 пс (б); зависимость плоскостных компонент намагниченности от координаты вдоль линии,
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для возбуждения спиновых волн в терагерцовом
диапазоне [2]. В случае пленок ферритов граната
обменное взаимодействие между подрешетка-
ми является наиболее сильным, в то время как
взаимодействие Дзялошинского–Мория носит
поправочный характер из-за малости константы
спин-орбитального взаимодействия. Поэтому при
невысоких прикладываемых электрических полях
неоднородное магнитоэлектрическое взаимодей-
ствие не будет способно нарушить коллинеарность
магнитных подрешеток и возбудить высокочастот-
ные волны. Для оценки малости электрического
поля можно указать, что при величине электри-
ческого поля 1 МВ/см величина неоднородного
магнитоэлектрического взаимодействия составля-
ет несколько десятков процентов от поверхностной
энергии доменной стенки [10], и соответственно,
еще меньший процент от обменной энергии.
Поэтому при величинах электрического поля,
меньших 1 МВ/см, не стоит ожидать наруше-
ния коллинеарности магнитных подрешеток
в ферримагнетике. Для определения конкретных
параметров прецессии и проверки высказанной
гипотезы необходимо провести соответствующее
моделирование. В случае антиферромагнетиков
с числом магнитных подрешеток больше двух
требуется отдельный расчет.

Работа была выполнена при финансовой под-
держке Министерства науки и высшего образова-
ния РФ (грант № 075-15-2022-1131). Авторы выра-
жают признательность Фонду развития теоретиче-
ской физики и математики «БАЗИС» (грант № 22-
1-2-49 «Молодой ведущий ученый (Теоретическая
физика)»).
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Simulation of spin waves excitation by the impact of an electric field on the domain
wall in magnetic films with inhomogeneous magnetoelectric interaction
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We simulated the dynamics of electric field impact on the domain wall in magnetic films with
inhomogeneousmagnetoelectric interaction. The result of the simulation is the fact that both homogeneous
electric field and inhomogeneous electric field induce excitation of spin waves.

Keywords: micromagnetism, inhomogeneous magnetoelectric interaction, spin waves

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025

mailto: miasnikov.nv16@physics.msu.ru


ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2025, том 89, № 1, с. 145–149

УДК 621.385.69

РАСЧЕТ РЕЛЯТИВИСТСКОГО ГИРОТРОНА ДИАПАЗОНА 300 ГГЦ
С УЧЕТОМ РЕАЛЬНОЙ ФОРМЫ ИМПУЛЬСА УСКОРЯЮЩЕГО

НАПРЯЖЕНИЯ
© 2025 г. А. Н. Леонтьев∗, Р. М. Розенталь, О. П. Планкин, Е. С. Семенов

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт
прикладной физики имени А. В. Гапонова–Грехова Российской академии наук», Нижний Новгород, Россия

∗e-mail: leontiev@ipfran.ru

Поступила в редакцию 06.09.2024 г.
После доработки 16.09.2024 г.
Принята в печать 30.09.2024 г.

Выполнены расчеты релятивистского гиротрона диапазона 300 ГГц с мощностью до 8 МВт.
Для экспериментально измеренной формы импульса ускоряющего напряжения сделаны расчеты
формы импульса выходной мощности с помощью трехмерного моделирования методом крупных
частиц. Показано, что полная энергия излучения с рабочей частотой может превышать значение4 Дж.

Ключевые слова: релятивистский гиротрон, терагерцовое излучение

DOI: 10.31857/S0367676525010232, EDN: CYVWED

ВВЕДЕНИЕ

Мощное импульсное излучение терагерцового
диапазона представляет интерес для многих при-
ложений. В свою очередь, такое излучение может
быть получено на основе тех или иных схем ва-
куумных генераторов с электронными потоками.
В частности, в настоящее время интенсивно разви-
вается проект генерации излучения субгигаваттно-
го уровня мощности в диапазоне 0.3–1 ТГц на ос-
нове лазеров на свободных электронах [1–4]. При
этом, согласно оценкам, энергетика импульсов ге-
нерируемого излучения будет находиться в диа-
пазоне 10–100 Дж. Сравнимые уровни мощности
могут быть получены и при использовании ре-
лятивистских гиротронов. Так, в работе [5] бы-
ло показано, что на основе сильноточных реля-
тивистских электронных потоков может быть до-
стигнута мощность порядка 80 МВт в диапазоне0.3 ТГц. Однако сильноточные электронные по-
токи, как правило формируемые взрывоэмисси-
онными катодами, обладают существенным недо-
статком, связанным с малой длительностью им-
пульсов. В этой связи представляет интерес ис-
пользование термоэмиссионных катодов, способ-
ных формировать электронные потоки со ста-
бильными параметрами с микросекундной дли-
тельностью. В работе [6] было выполнены расче-
ты электронно-оптической системы релятивист-
ского гиротрона диапазона 300 ГГц на основе

магнетронно-инжекторнойпушки с термокатодом.
Было показано, что для указанного диапазона ча-
стот возможноформирование винтового электрон-
ного потока с током 100 и более ампер, энергией250 кэВ и значением питч-фактора 1.1.

На новом этапе исследований выполнены рас-
четы электронно-волнового взаимодействия гиро-
трона с рабочей модой ТЕ33,2.

МОДЕЛИРОВАНИЕ НА ОСНОВЕ
УСРЕДНЕННЫХ УРАВНЕНИЙ

При разработке длинноимпульсных гиротро-
нов терагерцового диапазона основной задачей
является решение проблемы конкуренции мод.
В этой связи привлекательным является использо-
вание мод шепчущей галереи, поля которых лока-
лизованы вблизи стенок резонатора [7]. Вследствие
этого, при транспортировке электронного потока
вблизи стенки резонатора, условия самовозбужде-
ния будут выполнены только для модшепчущей га-
лереи.Однакоприпроведенииэкспериментальных
исследований стало понятно, что селективное воз-
буждение мод вида 𝑇𝐸m,1 уже при значении чис-
ла азимутальных вариаций 𝑚 ⩾ 9 возможно толь-
ко прииспользовании дополнительныхметодов се-
лекции, например — введение в резонатор коак-
сиального металлического стержня [8, 9]. В свою
очередь, для мод вида 𝑇𝐸m,2 ситуация значитель-
но лучше. В частности, на моде 𝑇𝐸22,2 были успеш-
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но реализован гиротрон диапазона 303 ГГц [10].
Одновременно, существует верхний предел азиму-
тального индекса рабочей моды. В работе [11] бы-
ли сделаны оценки, согласно которым устойчи-
вая генерация на модах шепчущей галереи может
быть достаточно просто реализована при значени-
ях азимутальных индексов 𝑚 ⩽ 30. Оценки пока-
зывают, что для исследуемой конфигурации гиро-
трона оптимальным является несколько большее
значение азимутального индекса 𝑚 = 33, что соот-
ветствует рабочей моде ТЕ33,2. Это связано с необ-
ходимостью обеспечения максимума коэффициен-
та электронно-волнового взаимодействия. Данный
коэффициент определяется радиусом встрела элек-
тронного потока, который, в свою очередь, опреде-
ляется конфигурацией электронно-оптической си-
стемы. Радиус однородного участка резонатора был
выбран равным 6.65 мм, что соответствует значе-
нию критической частоты около 300.7 ГГц. Опти-
мизация геометрии резонатора проводилась на ос-
нове расчетов электронно-волнового взаимодей-
ствия в рамках стационарных одномодовых урав-
нений гиротрона с нефиксированной структурой
поля.

В рамках данного подхода нормированный
комплексный поперечный импульс 𝑝c каждого
электрона при движении вдоль продольной оси𝑧 ∈ [𝑧in, 𝑧out] описывается уравнением𝑑𝑝c𝑑𝑧 +𝑖 𝑝c𝑝∥ (γκ𝑛 −ωHo𝑐 )=κ⟂Jm,p,n

Nm,p ⋅ {( 𝑖γ𝐹𝑝∥ + 1κ 𝑑𝐹𝑑𝑧) ×
× (𝑝∗c )n−1 ⋅ B−+( 𝑖γ𝐹∗𝑝∥ + 1κ 𝑑𝐹∗𝑑𝑧 ) ⋅ (𝑝∗c )n+1 ⋅ B+−
− 𝑖𝑝c ⋅ Re ( 𝐹𝑝∥ ⋅ (𝑝∗c )n) ⋅ κ⟂κ ⋅ B0} + 𝑝c ⋅M′,

(1)

где γ — релятивистский масс-фактор, 𝑛 — но-
мер циклотронной гармоники, 𝑐 — скорость све-
та, J(m,p,n)(𝑟, 𝑧) = 𝑠n ⋅ 𝐽s⋅(m−n) (𝜈m,p ⋅ 𝑟𝑅r(𝑧)) —
фактор связи моды ТЕm,p с электронным пуч-
ком с радиусом ведущих центров 𝑟 на 𝑛-ной
гармонике, N 2

m,p = (ν2
m,p −𝑚2) ⋅ 𝐽2

m(νm,p) — норма
волны TEm,p, где 𝑠 = +1 для 𝑚 ⩾ 0, либо 𝑠 = −1
для 𝑚 < 0, т. е. в случае противоположного вра-
щения поля относительно ларморовского враще-
ния электронов. B

−
=

𝐽n−1(ξ)2𝑝n−1⟂ , B
+
=

𝐽n+1(ξ)2𝑝n+1⟂ , B0 = 𝐽n(ξ)𝑝n⟂ ,

B1 = 𝐽′n(ξ)𝑝n−1⟂ – коэффициенты силового взаимодей-

ствия. 𝐽′l ≡ 𝑑𝐽l(ξ)𝑑ξ , ξ = κ⟂ ⋅ 𝑟L, 𝑟L = 𝑝⟂ ⋅ 𝑐ωHo
— лармо-

ровский радиус электронной орбиты, 𝑝2⟂ = 𝑝c ⋅ 𝑝∗c .
M′(𝑧) ≡ 12M(𝑧) ⋅ 𝑑M𝑑𝑧 — нормированная производ-
ная магнитного поля. В случае однородного маг-
нитного поля полагаетсяM = 1,M′

= 0 ∀𝑧.
Нерелятивистская круговая гирочастота (лар-

моровская, циклотронная частота) электрона про-

порциональна магнитному полю в любой точке его
траектории: ωHo = M(𝑧) ⋅ 𝐵0 ⋅ 𝑒0/𝑚0, где 𝑒0 и 𝑚0 —
заряд (по модулю) и масса покоя электрона.

Продольная компонента нормированного им-
пульса 𝑝∥ описывается уравнением:𝑑𝑝∥𝑑𝑧 = −Re (1κ 𝑑𝐹𝑑𝑧 ⋅ (𝑝∗c )2)×

×B1 ⋅ κ⟂𝑝∥ ⋅ Jm,p,n
Nm,p −

𝑝2⟂𝑝∥ ⋅M′, (2)

где последнее слагаемое описывает влияние неод-
нородного статического магнитного поля.

Уравнение, описывающее продольную струк-
туру амплитуды высокочастотного поля 𝐹, имеет
вид [12]:𝑑2𝐹𝑑𝑧2 + κ2∥𝐹 = 1

Nm,p ⋅ κ ⋅ κ⟂ ⋅ ⟨⟨Jm,p,n ⋅ 𝑝n
c𝑝∥ ⋅ B1⟩⟩. (3)

Начальные значения импульсов для различных
фракций электронного пучка:𝑝c(𝑧in) = 𝑝c,in, 𝑝∥(𝑧in) = 𝑝∥,in (4)
определяются исходя из заданных величин напря-
жения𝑈0, питч-фактора 𝑔 и с учетом неоднородно-
сти магнитного поля.

Комплексная амплитуда поля 𝐹(𝑧) удовлетво-
ряет граничным условиям излучения на концах ин-
тервала интегрирования 𝑧 ∈ [𝑧in, 𝑧out]:𝑑𝐹(𝑧)𝑑𝑧 = 𝑖κ∥𝐹(𝑧) при 𝑧 = 𝑧in, (5)

𝑑𝐹(𝑧)𝑑𝑧 = −𝑖κ∥𝐹(𝑧) при 𝑧 = 𝑧out. (6)

Профиль резонатора и примыкающих к нему
волноводных переходов 𝑅r(𝑧) должен быть доста-
точно гладким: предельные углы α наклона образу-
ющей боковой поверхности волновода по крайней
мере должны удовлетворять условию tg α ≪ 1. Вол-
новое число κ = ω/𝑐 наравне с 𝐹in является одним
из собственных чисел задачи. Продольное волно-
вое число κ∥ с учетом омических потерь запишем
в виде κ2∥(𝑧) = κ2

− κ2⟂(𝑧) ⋅ Ω(𝑧), (7)

где κ⟂(𝑧) = νm,p/𝑅r(𝑧) — поперечное волновое
число в данном поперечном сечении 𝑧, 𝑐 — ско-
рость света, νm,p — 𝑝-й корень производной функ-
ции Бесселя 𝐽m.

Комплексный множительΩ(𝑧) = 1 + 1𝑄ohm
⋅ 𝑅reg𝑅r(𝑧) (8)

позволяет учесть потери энергии на нагрев резона-
тора. Здесь 𝑅reg — радиус однородного участка ре-
зонатора,

𝑂ohm =
⎛⎝1 − 𝑚2ν2

m,p
⎞⎠ ⋅ 𝑅regδskin , (9)
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— омическая добротность, δskin = 𝑘skin ⋅ δidl — тол-
щина скин-слоя, δidl = √(2 ⁄ (𝑍0σμrω) — толщина
скин-слоя гладкого металла (без шероховатостей),𝑍0 = √μ0/ε0 ≈ 376.73 Ом — волновое сопротивле-
ние вакуума, μr ≈ 1 — относительная магнитная
проницаемость металла, σ — его удельная прово-
димость (обратное сопротивление) по постоянно-
му току, зависящая от температуры; 𝑘skin ≈ 1.5–3 —
коэффициент потерь, учитывающий влияние мик-
ронеровностей на поверхности резонатора [13];
в общем случае этот коэффициент зависит от ча-
стоты и температуры.

На рис. 1 показан оптимизированный профиль
резонатора, длина однородного участка резонатора
составляет около 10 мм. Максимальная мощность
генерации в резонаторе с таким профилем дости-
гается при магнитном поле 14.7 Тл и составляет8 МВт, что соответствует КПД около 32%.

ТРЕХМЕРНОЕ МОДЕЛИРОВАНИЕ МЕТОДОМ
КРУПНЫХ ЧАСТИЦ

Моделирование процессов на фронте импульса
ускоряющего напряжения осуществлялось на ба-
зе трехмерного PIC-кода KARAT [14]. На рис. 2
показана геометрия пространства взаимодействия
и мгновенное положение макрочастиц. С левой
границыв системуинжектировался винтовой элек-
тронный пучок с питч-фактором 1.1 и величи-
ной начального разброса по поперечным скоро-
стям около 30%.Магнитное поле задавалось посто-
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Рис. 1.Результатырасчетовпо усредненнымуравнени-
ям: оптимальный профиль резонатора и зависимость
КПД от продольной координаты.
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Рис. 2. Геометрия пространства взаимодействия
и мгновенное положение макрочастиц в продольном
и поперечном сечениях системы.

янным на протяжении однородного участка резо-
натора. Далее задавалось постепенное уменьшение
величиныпродольнойкомпонентымагнитного по-
ля, в результате чего электронный пучок осаждался
на стенку электродинамической системы. На пра-
вой границе системы устанавливался поглощаю-
щий слой с переменной проводимостью, коэф-
фициент отражения от которого не превышал 1%
по мощности. Электрическая проводимость сте-
нок задавалась равной электрической проводимо-
сти меди.

На рис. 3 представлена экспериментально из-
меренная осциллограмма зависимости ускоряю-
щего напряжения от времени. Видно, что в пред-
ставленном импульсе присутствует нарастающий
фронт длительностью около 1 мкс. Однако на дан-
ный момент трехмерное PIC-моделирование дина-
мики гиротронов на таких временах будет зани-
мать очень много реального времени. Для умень-
шения времени расчетов в моделировании исполь-
зовалась форма импульса ускоряющего напряже-
ния, близкая по форме к экспериментально из-
меренной, но с суммарной длительностью около350 нс.
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Рис. 3. Экспериментальная осциллограмма ускоря-
ющего напряжения (а), временной масштаб одной
клетки равен 500 нс; зависимость энергии электро-
нов (б) и выходной мощности (в) в оптимальном ре-
жиме в трехмерном моделировании методом крупных
частиц.
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Длительность фронта ускоряющего напряже-
ния при этом составила около 150 нс. Такое со-
кращение длительности фронта не должно приво-
дить к существенному изменению динамики систе-
мы, поскольку длительность фронта значительно
превышает характерные времена установления ко-
лебаний, около 𝑄/(2π𝑓), где 𝑄 и 𝑓 — добротность
и собственная частота моды.

В силу некоторых ограничений кода KARAT,
в моделировании можно было задать только дис-
кретное изменение начального питч-фактора ча-
стиц с количеством значений не более четырех.
Вследствие этого использовался следующий алго-
ритм моделирования сценария включения: элек-
тронный пучок представлялся в виде последова-
тельности четырех электронных импульсов дли-
тельностью 20, 40, 40 и 60 нс. Переход между им-
пульсами осуществлялся путем уменьшения до ну-
левого значения тока и энергии электронов на зад-
нем фронте импульса и одновременного увеличе-
ния от нуля до необходимого значения тока и энер-
гии электронов на переднем фронте следующе-
го импульса. На протяжении каждого из импуль-
сов питч-фактор оставался постоянным. Его зна-
чение задавалось равным среднему значениюпитч-
фактора на данном временном интервале, вычис-
ленное на основе расчета электронно-оптической
системы. Размер счетной сетки в моделировании
задавался равным 175 × 175 × 231 узлов, число
макрочастиц составляло около 100000.

Моделирование показало, что селективное
возбуждение колебаний на моде ТЕ33.2 происходит
в диапазоне магнитных полей от 14.6 до 15.1 Тл.
Максимальная мощность генерации состави-
ла около 7 МВт, что очень близко к значению,
рассчитанному на основе усредненных уравне-
ний. Отличие частоты генерации, полученной
в PIC-моделировании, от частоты генерации,
рассчитанной на основе усредненных уравнений,
составляет менее 2%. Это является приемлемой
величиной, учитывая используемую размерность
счетной сетки.

Моделирование показало, что в оптимальном
режиме генерации общая длительность генерации
колебаний на рабочей моде в диапазоне 300 ГГц
составляет около 100 нс (рис. 3), что соответству-
ет примерно 600 нс времени в реальной системе.
Таким образом, с учетом максимальной мощно-
сти генерации порядка 7 МВт, полная энергия им-
пульсного терагерцового излучения может превы-
шать 4 Дж.

ЗАКЛЮЧЕНИЕ
Гиротронына основе релятивистских винтовых

электронных потоков представляются перспектив-
ными источниками мощного излучения терагерцо-
вого диапазона. Прежде всего, следует отметить от-
носительно высокую эффективность электронно-

волнового взаимодействия по сравнению с ис-
точниками других типов. Подтверждения возмож-
ности создания высокоэффективных релятивист-
ских гиротронов были получены в предшествую-
щих экспериментальных исследованиях. В част-
ности, в гиротроне Ка-диапазона было получено
излучение с микросекундной длительностью им-
пульса с мощностью около 10 МВт и КПД око-
ло 50% [15], а в гиротроне W-диапазона излучение
длительностью около 0.5 мкс с мощностью более5 МВт и КПД около 20% [16].

В представленной работе продемонстрирова-
но, что возможно дальнейшее увеличение рабо-
чей частоты релятивистского гиротрона вплоть
до терагерцового диапазона с сохранением эффек-
тивности электронно-волнового взаимодействия
на уровне 30%. Важно отметить, что требуемые для
этого значения ведущего магнитного поля (около15 Тл), достижимы в настоящее время не только
в импульсных соленоидах, но и в криомагнитах.
С учетом возможности работы высоковольтных ис-
точников питания с высокой частотой повторения
это открывает перспективы применения таких ис-
точников в ряде плазменных приложений [18, 18].

Исследование выполнено в рамках темы госу-
дарственного задания FFUF-2022-0007.
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Calculation of a relativistic 300 GHz range gyrotron, considering the real shape
of the accelerating voltage pulse
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Calculations have been performed for a relativistic gyrotron in the 300 GHz range with a power of up
to 8 MW. For the experimentally measured accelerating voltage pulse shape, calculations of the output
power pulse shapeweremade using three-dimensionalmodeling using the large particlemethod. It has been
shown that the total radiation energy at the operating frequency can exceed 4 J.
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Предложена методика локальной оценки акустических свойств губчатых полимерных образцов,
основанная на визуализации микроструктуры, измерении затухания и скорости звука.
Предложенный подход является актуальным для изучения биополимерных композитных
материалов и конструкций на их основе, поскольку дает возможность in situ наблюдать
деградацию структуры под воздействием внешних факторов, а также при необходимости
исследовать накопление биологических соединений.

Ключевые слова: акустическая микроскопия, губчатые материалы, биокомпозиты, хитозан,
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ВВЕДЕНИЕ

Загрязнение окружающей среды из-за попада-
ния в воду тяжелых металлов, молекул красите-
лей, пестицидов, гербицидов, остатков антибио-
тиков и других фармацевтических препаратов мо-
гут приводить к различным опасным заболевани-
ям[1]. В настоящее время для очистки воды раз-
рабатываются новые методы очистки [2], в том
числе экологически безопасные пористые мате-
риалы на основе природного полимера хитоза-
на с уникальными адсорбционными свойствами
[1, 3–6]. Этот класс материалов привлекает значи-
тельное внимание благодаря нетоксичности, био-
совместимости и способности к биологическому
разложению. Важнейшим функциональным свой-
ством губчатых композитов является их пористая
архитектура, которая увеличивает площадь сорби-
рующей поверхности и обеспечивает свободную
диффузию по системе микропор. Иммобилизация
микроорганизмов, в том числе микроводорослей

(МВ), способных к биодеградации опасных пол-
лютантов [7], на хитозановых композитах, позво-
ляет увеличивать эффективность процесса очист-
ки сточных вод. Для повышения функциональных
свойств, эффективности и экономичности в струк-
туру сорбента вводят разнообразные природные
наполнители [8–10], что оказывает влияние на ме-
ханические и сорбционные характеристики итого-
вого продукта. Поскольку разрабатываемый ком-
позит с иммобилизованными клетками МВ дол-
жен сохранять свою целостность при продолжи-
тельном инкубировании в водной среде, изучение
его физико-химических и механических свойств
является первостепенной задачей.

Самым эффективным неразрушающим мето-
дом для исследования объемной микрострукту-
ры и упруго-механических свойств биополимер-
ных композитов является сканирующая импульс-
ная акустическая микроскопия (СИАМ). Метод
достаточно давно и успешно применяется в мате-
риаловедении для изучения структуры и упругих
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свойств неоднородных сред [11–18]. Неинвазив-
ность метода является особенно ценной для био-
медицинских исследований [18, 19], поскольку поз-
воляет наблюдать динамику развития биообъектов
in vivo и анализировать влияние внешних воздей-
ствий на эволюцию тканеинженерных или компо-
зитных конструкций [20–23]. Ультразвуковой кон-
такт осуществляется с применением иммерсион-
ной жидкости, что дает преимущества при обес-
печении необходимых условий сохранения интакт-
ных биообразцов.

В данной работе метод СИАМ применялся
для изучения пористых губчатых образцов на ос-
нове хитозана, сшитого глутаровым альдегидом,
с функциональным наполнителем из мицелия
и иммобилизованных на них клеток МВ. По-
мимо акустической визуализации и наблюдения
микроструктуры пористого губчатого материала,
исследовались скорости звука и затухание в образ-
цах интактно и непосредственно под нагрузкой.
Такой подход позволяет оценивать динамику
эволюции композитных образцов с иммобили-
зованными на них клетками МВ, в зависимости
от концентрации функциональных добавок в со-
ставе композита.

МЕТОДЫ
В акустических системах визуализации высоко-

го разрешения применяются импульсы фокусиро-
ванного ультразвука. Объемная визуализация осу-
ществляется короткими импульсами в 1–2 периода
на основной частоте 50–200 МГц [13]. Фокусиров-
ка ультразвукового зондирующего пучка определя-
ется его угловой апертурой [25]. Для объемной уль-
тразвуковой визуализации используют линзы с уз-
кой апертурой, что обеспечивает оптимальное со-
отношение длины и диаметра фокальной перетяж-
ки, минимизирует аберрации, деформацию фоку-

са внутри образца и позволяет избежать возбужде-
ния поверхностных упругих волн. В данной рабо-
те использовался сканирующий акустическиймик-
роскоп, разработанный в ИБХФ РАН [13]. Номи-
нальная частота фокусирующего преобразователя
соответствовала 50 МГц. Отраженный от грани-
цыподложки с объектом эхо-сигнал оцифровывал-
ся аналого-цифровым преобразователем с часто-
той дискретизации 500 МГц. Напряжение на вхо-
де акустического преобразователя соответствова-
ло 20 В. Максимум амплитуды регистрируемого
эхо-сигнала определялся по его огибающей. В об-
водненных образцах визуализация микрострукту-
ры осуществлялась акустической линзой с углом
апертуры 30○.

Количественную оценку скорости звука и зату-
хания, а также измерение толщины образцов вы-
полняли акустической линзой с апертурным уг-
лом 8○. Для линзы с частотой 50 МГц диаметр фо-
кальной области составлял 0.13 мм, а ее длина —6 мм. В этом случае волновой фронт внутри фо-
кальной области оказывается близок к плоскому.
В изотропном образце распространяются продоль-
ные упругие волны вдоль направления оси зон-
дирующего пучка. Каустика ультразвукового пуч-
ка трансформируется слабо при переходе из кон-
тактной среды (вода) в образец (обводненная губ-
ка из хитозана), благодаря несущественной раз-
нице в акустических импедансах контактирующих
сред.

На рис. 1 показана акустическая ячейка для из-
мерения скорости звука и затухания, которая также
позволяет измерять акустические параметры для
нагруженных образцов. Нагрузка и плоскопарал-
лельность границ обеспечиваются с помощью тон-
кой пластинки из полистирола, который являет-
ся максимально прозрачным для ультразвука: его
акустический импеданс близок к иммерсии (воде).

Рис. 1. Схема и акустическое изображение экспериментальной акустической ячейки: 1 и 4 — пластинка из полисти-
рола, 2 — образец, 3 — среда для образца, 5 — излучатель, 𝑃— давление на образец.
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Интактные образцы измеряются без нагрузочной
пластинки.

Принимаемый акустический сигнал 𝑠(𝑡)
от нижней границы акустической ячейки между
образцом и подложкой описывается выражением:𝑠(𝑡) = 𝐴 ⋅ 𝑅 ⋅ exp(−𝑖ω) (𝑡 − 2𝑑𝑐 ) ⋅ exp(−2𝑑 ⋅ α), (1)

где 𝐴—приемопередаточная характеристика изме-
рительной системы; 𝑑 — расстояние внутри ячей-
ки; 𝑐 — скорость звука, α — коэффициент затуха-
ния в биокомпозитном образце. Амплитудный ко-
эффициент𝑅обусловлен эффективностьюотраже-
ния и прохождения зондирующего ультразвукового
импульса в слоях экспериментальной ячейки и за-
висит от соотношения акустических импедансов
контактирующих сред [26, 27]. Из выражения (1)
видно, что скорость звука в образце определяет-
ся по временипрохождения эхо-импульса продоль-
ных волн в образце Δ𝑡 = 2𝑑/𝑐 (рис. 1). Точность из-
мерения задержки эхо-импульсным методом зави-
сит от выбора референсных точек внутри измеряе-
мых сигналов. Нужно принимать во внимание, что
форма эхоимпульсов может деформироваться при
дефокусировании границы раздела [28, 29], а так-
же в результате зависимости коэффициента затуха-
ния от частоты используемого звука. В нашем слу-
чае половинная частота дискретизации (250 МГц)
в несколько раз превышает максимальную часто-
ту в спектре сигнала, что позволяет выбрать бо-
лее точно референтные точки внутри эхоимпульсов
для увеличения разрешения сигнала.

Коэффициент затухания ультразвука в компо-
зитном образце определяется соотношением ам-
плитуд сигналов, регистрируемых от дна акусти-
ческой ячейки с образцом и без него: α = 12𝑑 ⋅ 20×× lg 𝑠𝑠0 [26] (рис. 1a). При этом область фокуса по-
зиционируется на нижнюю границу образца с под-
ложкой, длина фокуса превышает толщину образ-
ца, а его структурные неоднородности малы по от-
ношению к его диаметру.

МАТЕРИАЛЫ
Композит изготавливался из хитозана

(𝑀w = 500 кДа, Биопрогресс, Россия) в водном
растворе уксусной кислоты (ООО «Компонент-
Реактив», Россия) и сшиванием глутаровым
альдегидом (50% водный раствор, Hubei Jinghong
Chemical Co. Ltd, Китай). В качестве наполнителя
использовался грибной мицелий вешенок. Им-
мерсионную бидистиллированную воду получали
на аппарате Millipore Milli-Q Synthesis (Merck,
Германия).

Исходные образцы губки были приготовлены
из2%(масс.) раствора хитозана в2%(масс.) водном
растворе уксусной кислоты (УК). Для этого к 96 г
бидистиллированной воды добавляли 1.96 г УК
и 2 г хитозана, и перемешивали на магнитной ме-

шалкеHeidolphMRHei-Tec в течение 48 ч при ком-
натной температуре.

Водно-кислую суспензию мицелия готовили,
добавляя 2 г сухого порошка к 98 мл 2% (масс.)
раствора уксусной кислоты. Для получения сор-
бентов раствор хитозана и измельченной биомас-
сы наполнителя соединяли в пропорции 1 ∶1, 1 ∶3,3 ∶1 и размешивали в течение 1 ч. Смесь помеща-
ли в ячейки 24-луночного планшета, заморажива-
ли в морозильной камере в течение 24 ч при темпе-
ратуре −24 ○C, и подвергали сублимационной суш-
ке на установке Martin Christ Alpha 2-4LSC (Martin
Christ Gefriertrocknungsanlagen GmbH, Германия)48 ч в режиме с глубиной вакуума 0.25 Мбар, за-
тем 2 ч в режиме с глубиной вакуума 0.010 Мбар
(температура конденсора −75 ○C). Дисперсия ми-
целия в хитозановом растворе имела низкую сус-
пензионную устойчивость, что приводило к седи-
ментации дисперсной фазы в процессе заморозки
суспензии и образованию сорбентов с градиентом
концентрации наполнителя от нижней поверхно-
сти губки к верхней. В качестве контрольных об-
разцов по описанной методике были получены ма-
териалы без наполнителя.

В работе использовали альгологическую моно-
культуру микроводоросли (МВ) Lobosphaera IPPAS
С-2047 (далее в тексте Lobosphaera) с ассоции-
рованными гетеротрофными бактериями. Клетки
Lobosphaera иммобилизовали на сорбентах и куль-
тивировали как описано ранее [30] в течение 30 сут.

Механические испытания набухших сорбентов
проводили на универсальной разрывной машине
Instron 5965 (Instron, США) при одноосном сжатии
с постоянной скоростью деформации 50% в ми-
нуту при комнатной температуре. Давление осу-
ществлялось с помощью цилиндрической плиты
диаметром 25 мм. Измерения проводилось на воз-
духе на набухших образцах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Для анализа градиента концентрации напол-

нителя были изготовлены продольные срезы сор-
бентов толщиной 1 мм, включающий все слои.
В верхней части образцов, с противоположной сто-
роны от скопления мицелия отмечали более вы-
сокую концентрацию иммобилизованных клеток
Lobosphaera и ассоциированных с ней бактерий.
Были выделены три гетерогенные области на срезе:
верхняя часть с МВ, средняя гомогенная (большая
часть объема образца), и нижняя часть с мицелием.

При измерении механических свойств компо-
зита применялось одноосное сжатие, образец сжи-
мался целиком, невозможно было учесть разни-
цу в механических свойствах отдельных зон. Аку-
стическая микроскопия высокого разрешения поз-
воляет успешно дифференцировать эти области
и определить их упругие свойства бесконтактным
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методом, а также визуализировать их микрострук-
туру (рис. 2).

В табл. 1 представлены количественные дан-
ные для образца 50% мицелия + 50% хитоза-
на. Было установлено, что скорость звука и зату-
хание варьируются в диапазоне 1496–1499 м⋅с−1
и 0.85–2.3 дБ⋅мм−1, соответственно. При этом цен-
тральная область (зона 2) занимает больший объ-
ем, является наиболее гомогеннойи определяет ме-
ханические свойства композита в целом. Для даль-
нейших ультразвуковых исследований использова-
лась эта область.

Количественные оценки упруго-механических
характеристик были получены для композитов
с разной пропорцией наполнителя в матрице: 25,50, 75 масс. % мицелия. На рис. 3 показаны эхо-
импульсы продольных волн, отраженных от ниж-
ней границы “образец-подложка”. Для сравнения
приведен импульс, отраженный от подложки в им-
мерсии (вода) без образца. Хорошо видно, что вре-

мя задержки импульса растет, а скорость звука
соответственно уменьшается, с увеличением ко-
личества наполнителя (рис. 3а). Установлено, что
при набухании структура композита, содержаще-
го 75% наполнителя, по акустическим свойствам
приближается к гидрогелю. Рост амплитуды эхо-
сигнала с увеличением концентрации наполните-
ля также свидетельствует о том, что стенки губки
становятся акустически более прозрачными. Пред-
положительно, тонкие волокна мицелия интегри-
руются в губчатую матрицу, повышают ее гидро-
фильность и способствуют дополнительному набу-
ханию. Полученные значения скорости звука и за-
тухания в образцах разной концентрациипредстав-
лены в табл. 2.

Анализ спектра полученных эхоимпульсов по-
казывает, что ширина спектра коррелирует с коли-
чеством наполнителя в хитозане: с ростом концен-
трации спектр становится болееширокими смеща-
ется в сторону более высоких частот (табл. 2).

Рис. 2. Изображения структуры биокомпозита на основе хитозановой губки с мицелием (50% + 50%) и водорослями:
фото поверхности (а), акустическое изображение поверхности (б), распределение амплитуды сигнала прошедшего
через образец толщиной 1 мм (в). 1 — зона максимальной концентрации водорослей, 2 — однородная центральная
часть губки, 3 — неоднородная зона с макровключениями мицелия.

Таблица 1. Локальные акустические параметры композита на основе хитозана с наполнителем из мицелия (50%+50%) и во-
дорослей

Область наблюдения Скорость звука, м/с Затухание, дБ/мм
1. Водоросли и бактерии 1498 ± 0.6 1.50 ± 0.13
2. Гомогенная губка с мицелием и водорослями 1496 ± 0.3 0.85 ± 0.08
3. Крупные включения мицелия 1499 ± 0.6 2.30 ± 0.2
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Рис. 3. Акустические измерения хитозановой губки с разным количеством наполнителя (мицелия) — 25, 50 и 75%:
эхоимпульсы от нижней границы «образец-подложка» (а), соответствующие спектры принятых сигналов (б).

Таблица 2. Параметры принимаемого акустического сигнала для композита на основе хитозана с наполнителем из мицелия
и водорослей

Количество
наполнителя Скорость, м/с Затухание, дБ/мм Максимум спектра,

МГц

Полоса Δ𝑓
по уровню −3 дБ,

МГц25% 1498 ± 0.6 0.94 ± 0.06 18.5 ± 0.1 16.1 ± 0.150% 1496 ± 1.0 0.85 ± 0.06 19.5 ± 0.1 16.4 ± 0.175% 1494 ± 0.6 0.60 ± 0.06 21.5 ± 0.1 18.1 ± 0.1
вода 1490 ± 0.5 0.01 ± 0.01 22.4 ± 0.1 21.8 ± 0.1

Испытания губчатых образцов на сжатие, вы-
полненные классическим методом c помощью
универсальной разрывной машины показали, что
наличие добавки из мицелия существенно вли-
яет на механические характеристики компози-
та (рис. 4). Измеренный модуль Юнга для об-
разца с 50% содержанием наполнителя составил1.6 ± 0.2 кПа по сравнению с 9.3 ± 3.0 кПа для чи-
стого хитозана. Поскольку сорбенты данного типа
будут применяться для иммобилизации МВ и по-
следующей очистки водоемов, представляется це-
лесообразным исследовать изменения механиче-
ских свойств образцов при длительном инкубиро-
вании (30 дней). Получен, что после инкубации
упругий модуль снизился в 4 раза (0.4 ± 0.1 кПа).
На рисунке 4б приведены значения механического
напряжения для деформации композитов 45%.По-

лученные результаты свидетельствуют, что компо-
зит после биодеградации в присутствии иммобили-
зованныхМВпри одинаковой деформации требует
меньшего напряжения (0.17± 0.02 кПа) по сравне-
нию с чистым хитозаном (1.30± 0.1 кПа) и интакт-
ным композитом (0.27 ± 0.06 кПа).

Под нагрузкой также были измерены значе-
ния скорости звука и затухания в образцах с раз-
ной концентрацией мицелия после биодеградации.
Установлено, что величины скорости звука и зату-
хания растут с увеличением приложенной нагруз-
ки. В отличие от более хрупких образцов с низким
содержанием наполнителя (25 и 50%) для компо-
зита с высоким содержанием (75%) мицелия, зату-
хание почти не изменяется с ростом нагрузки, что
может быть связано с высокой обводненностью его
структуры.
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Рис. 4. Механические характеристики композита с 50% содержанием наполнителя: модульЮнга при одноосном сжа-
тии (а), напряжение при деформации 45% (б).
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ЗАКЛЮЧЕНИЕ
Таким образом, представлены акустические

изображения структуры высокопористых компо-
зитных образцов на основе хитозана с разным
содержанием наполнителя из грибного мицелия,
описана методика измерения скорости звука и за-
тухания для таких образцов с помощью СИАМ ме-
тода, в том числе под нагрузкой в иммерсии.

Механические испытания позволили уста-
новить влияние концентрации наполнителя
на упруго-механических характеристики хитоза-
новой губчатой матрицы. Существенное снижение
упругого модуля композита при наличии напол-
нителя вероятно обусловлено разной степенью
набухания хитозана и мицелия. Это приводит
к возникновению дополнительных напряжений
на стенках пор, приводящих к ускоренной потере
ими устойчивости и необратимой деформации
образца при более низких нагрузках.

Акустическая микроскопия позволила опреде-
лить неоднородность губчатых композитов с на-
полнителем, выделить гомогенную зону и измерить
акустические свойства отдельных фракций в объ-
еме композита. Также было выявлено снижение
механических характеристик сорбента в результа-
те биодеградации при длительном инкубировании
(30 сут) в присутствии МВ и ассоциированных ге-
теротрофных бактерий. Результаты показали высо-
кую чувствительность микроакустических измере-
ний к изменениям упругих свойств под действием
внешних факторов, таких как: наличие биоактив-
ной компоненты, гидролиз и биодеградация, дав-
ление, механических нагрузок. Полученные дан-
ные и предложенные методики в перспективе бу-
дут служить основой для оценки типа и количе-
ства адсорбированных загрязнителей, что актуаль-
но дляисследований в области зеленых технологий.

Ультразвуковые исследования образцов выпол-
нены в рамках государственного задания ИБ-
ХФ РАН (№ 122041400112-8); изготовление сор-
бентов и изучение их механических свойств; им-
мобилизациямикроводорослей и культивирование
выполнено при поддержке Российского научного
фонда (проект № 23-44-00006).
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We proposed a method for local assessment of acoustic properties in spongy polymer samples, based
on visualizing the microstructure, measuring attenuation, and sound velocity. This approach is relevant
to the study of biopolymer composite materials and their structures, as it allows for in situ observation
of structural degradation under external influences, as well as investigation of the evolution of native tissue
replacement, if necessary.
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ВВЕДЕНИЕ

Исследование вулканов является актуальной
и востребованной задачей. Особый интерес вы-
зывает мониторинг вулканической активности
в густонаселенных районах. В некоторых случаях,
как, например, на вулкане Мерапи в Индонезии
в 2010 году [1] удалось получить точные оценки
начала и интенсивности извержений, что позво-
лило вовремя и оперативно эвакуировать местное
население и спасло тысячи человеческих жизней.
Успешные примеры реализаций краткосрочных
прогнозов изверженийна вулканах есть и уКамчат-
ского филиала Федерального исследовательского
центра «Единая геофизическая служба Российской
академии наук» [2]. Сейсмоакустическая томо-
графия — ключевой метод изучения глубинных
структур Земли, который позволяет идентифици-
ровать строение и физические свойства горных
пород, а также наблюдать за изменениями сей-
смических параметров используя сравнительно
небольшое количество данных о временах пробега
волн по разным трассам, пересекающим область
исследования [3]. Использование поверхност-
ных сейсмических волн в качестве источника
информации о геофизической среде привело
к возникновению поверхностно-волновой то-

мографии, которая в настоящее время находит
свое применение не только на суше, но и при
исследованиях дна океана [4]. Тот факт, что по-
верхностные сейсмические волны с расстоянием
затухают медленнее объемных волн, позволяет
использовать их для мониторинга регионов как
в глобальных, так и региональных масштабах. Дру-
гой особенностью поверхностных волн является
зависимость глубины их проникновения от ча-
стоты, позволяющая получать информацию о ха-
рактеристиках среды, расположенных на разных
глубинах, с помощью широкополосного режима
зондирования. Практическая реализация такого
зондирования осуществима методами шумовой
интерферометрии [5, 6], не требующей примене-
ния дорогостоящих низкочастотных излучателей.
Обычно поверхностно-волновая томографическая
схема состоит из двух этапов: на первом в точках
исследуемой области восстанавливаются диспер-
сионные зависимости групповых или фазовых
скоростей поверхностных волн; на втором — по-
лученные дисперсии инвертируются в трехмерные
распределения параметров среды. В настоящей
работе рассматривается одноэтапная трехмерная
томографическая схема, пропускающая проме-
жуточный этап восстановления дисперсионных
зависимостей. Такой подход позволяет сократить
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время решения обратной трехмерной задачи,
уменьшить требования к техническим возмож-
ностям используемых вычислительных систем;
также становится возможным дополнительный
учет гладкости характеристик среды не только
на разных глубинах, но и в разных географических
точках. Моделирование проводится для условий
эксперимента PLUME [7] с параметрами геофи-
зической среды, соответствующими Гавайскому
архипелагу [4]. Рассматривается восстановление
трёхмерного поля скорости сдвиговых волн по вре-
менам распространения поверхностных волн
в различных частотных диапазонах.

ПОСТАНОВКА ЗАДАЧИ
Предполагается, что в рассматриваемой обла-

сти расположеныисточникииприемники, возбуж-
дающие и регистрирующие поверхностные волны,
траектории распространения которых достаточно
плотно покрывают исследуемый регион (рис. 1а).
На текущем этапе исследований предполагается,
что в рассматриваемом частотном диапазоне вли-
янием водного слоя и рельефа дна можно пре-
небречь; рассматриваются рэлеевские волны, рас-
пространяющиеся вдоль границы плоскослоистой
среды (рис. 1б). Возмущением времен распро-
странения рассматриваемых поверхностных волнΔ𝑡i(𝑓) считается разность между известными экс-
периментальными 𝑡expi и рассчитанными теорети-
ческими 𝑡teori временами распространения между𝑖-ми парами источник-приемник на заданной ча-
стоте 𝑓. Теоретические значения 𝑡teori рассчиты-
ваются для априорно известного «невозмущенно-
го» распределения скоростипоперечных волн 𝑐s(𝑟),𝑟 = {𝑥, 𝑦, 𝑧} — трехмерный радиус-вектор. Тре-
буется восстановить отклонение скорости Δ𝑐s(𝑟)
от ее фонового значения 𝑐s(𝑟). Наличие Δ𝑐s(𝑟) при-
водит к возникновению Δ𝑡i(𝑓). Предполагается,

что в реальной ситуации Δ𝑐s(𝑟) мало по сравнению
с 𝑐s(𝑟), что позволяет говорить о наличии близкой
к линейной зависимость между Δ𝑐s(𝑟) и Δ𝑡i(𝑓) [8]:Δ𝑡i(𝑓) = 𝑡expi − 𝑡teori ∼ Δ𝑐s(𝑟). (1)

Для решения задачи восстановления Δ𝑐s(𝑟)
по даннымΔ𝑡i(𝑓)неоднородностиΔ𝑐s(𝑟) расклады-
ваются по базисным функциям θj(𝑟):

Δ𝑐s(𝑟) = 𝐽∑𝑗=1 𝑥jθj(𝑟), (2)

где 𝑥j — неизвестные коэффициенты разложения
побазису. Базис, используемыйприрешении томо-
графических задач, должен удовлетворять, как пра-
вило, следующим требованиям [9]: с его помощью
можно описать ожидаемые возмущения характери-
стик среды с требуемой точностью и его исполь-
зование не должно накладывать дополнительных
сложностей или ограничений на проводимые вы-
числения. В настоящей работе используется полос-
чатый базис, ранее разработанный и применяемый
для гидроакустических приложений [9]. Этот ба-
зис был модифицирован для решения рассматри-
ваемой задачи (рис. 1б) с целью учета особенности
рассматриваемой томографической схемы — про-
никновение поверхностных волн на разные глу-
бины на разных частотах позволяет осуществлять
«послойное» зондирование томографируемой сре-
ды. Используются параметры модели литосферы
Тихого океана (толщины слоев, плотности, скоро-
сти объемных волн в них), полученные в [4]. При
построении базиса каждый слой, делится на трех-
мерные полосы, также поворачиваемые с равным
угловым шагом (рис. 1б). Соотношение числа по-
лос 𝑃 и углов поворота 𝑈 выбирается из требова-
ния взаимного пересечения периферийных частей
базисных полос при одном повороте или, говоря
иначе, отсутствия областей между соседними по уг-
лу полосками, не попадающих ни в одну из них:

Рис. 1. Траектории распространения поверхностных волн между донными сейсмостанциями эксперимента PLUME,
используемые в томографическом исследовании (а) и модифицированный полосчатый базис (б).
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𝑈𝑃 ⩾ π2 . (3)

Базисные функции θj(𝑟) представляют собой
«базисные» возмущения скоростей поперечных
волн, локализованные в базисных полосках.

Для нахождения неизвестных коэффициентов𝑥j (2) рассматривается система линейных уравне-
ний: 𝐴𝑋 = Δ𝑇, (4)
где экспериментально измеренные времена воз-
мущений Δ𝑡i формируют столбец Δ𝑇; 𝐴 — мат-
рица возмущений, элементами которой являют-
ся вычисляемые возмущения времен Δ𝑡ij распро-
странений поверхностных волн между 𝑖-й парой
источник-приемник в среде с неоднородностью,
заданной 𝑗-й базиснойфункцией θj(𝑟);𝑋—столбец
коэффициентов разложения 𝑥j трехмернойнеодно-
родности Δ𝑐s(𝑟) по базисным функциям θj(𝑟). Си-
стема 4 подразумевает, что возмущения времен Δ𝑡i,
найденные из эксперимента и вызванные присут-
ствиемискомойнеоднородностиΔ𝑐s(𝑟), могут быть
представлены в виде линейной комбинации воз-
мущений времен Δ𝑡ij, также вызванных базисными
функциями θj(𝑟):

Δ𝑡i = 𝐽∑𝑗=1Δ𝑡ij𝑥j. (5)

Регуляризованное МНК-решение системы (4),
(5) имеет вид: ̂𝑋 = (𝐴+𝐴 + ε𝐸)−1 𝐴+Δ𝑇, (6)
где𝐸—единичнаяматрица; ε—коэффициент регу-
ляризации Тихонова; символ «+» у матрицы возму-
щений 𝐴 означает эрмитово сопряжение. При ре-
шении системы (4) важно, чтобы количество неиз-
вестных 𝑃 ⋅ 𝑈, с учетом их связи (3) не превы-

шало общего количества исходных данных, кото-
рое определяется числом пар источник-приемник
и количеством используемых частот. Это требова-
ние можно ослабить, если использовать дополни-
тельную независимую информацию о типе восста-
навливаемых неоднородностей, например условия
гладкости неоднородностей Δ ̂𝑐s(𝑟), подразумеваю-
щие, что в соседних пространственных точках зна-
чения восстанавливаемых функций не должны из-
меняться сколь угодно сильно. Найденные из (6)
решения ̂𝑥j дают оценку искомых неоднородно-
стей:

Δ ̂𝑐s(𝑟) = 𝐽∑𝑗=1 ̂𝑥jθj(𝑟). (7)

При решении обсуждаемой томографической
задачи дополнительно учитывались следующие
предположения. Во-первых, так как локализа-
ция поверхностных волн зависит от частоты,
ожидается, что на более высоких частотах волна
уже не будет проникать в более глубокие слои.
Тем самым в рассматриваемой модели (рис. 2)
для выбранного частотного диапазона следует
исключить слои, расположенные на глубинах
заметно больших длины волны. Во-вторых, при
восстановлении на заданной частоте должны
использоваться базисные полосы на тех глубинах,
для которых возмущение скорости поперечных
волн приводит к заметному изменению времени
распространения поверхностной волны. Другими
словами, поверхностная волна на рассматри-
ваемой частоте должна быть «чувствительной»
к возмущению восстанавливаемых параметров
среды на рассматриваемой глубине. Для проверки
этих предположений проводилось численное
моделирование. Рассматривалась среда, состоя-
щая из плоскопараллельных слоев. На границе

Рис. 2. Численное исследование линейной зависимости между возмущением времени распространения поверхност-
ной волныΔ𝑡 и возмущением скорости поперечной волныΔ𝑐s на частотах 0.03 Гц (a) и 0.07 Гц (б) прификсированном
расстоянии между источником и приемником.
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рассматриваемой слоистой среды на расстоя-
нии 𝑅 друг от друга располагались источник
и приемник. Для выбранной частоты 𝑓 в каждом
слое поочередно вносилось возмущение скоростиΔ𝑐(𝑧), после чего вычислялись возмущения времен
распространений поверхностных волн Δ𝑡:

Δ𝑡(𝑓) = 𝑅 ( 1𝑐0(𝑧) + Δ𝑐(𝑧) − 1𝑐0(𝑧)) , (8)

где 𝑐0(𝑧)— невозмущенные значения скорости по-
перечных волн в слоях. Примеры результатов мо-
делирования (8) представлены на рис. 2. В соот-
ветствии с данными обработки эксперимента, по-
лученными в [4], были рассмотрены всего 17 ча-
стот в диапазоне от 0.03 до 0.07 Гц. Проверка на са-
мой высокой частоте 0.07 Гц показала, что исполь-
зование базисных функций θj(𝑟), расположенных
на слоях, лежащих ниже 12 км не целесообразно,
так как для них возмущение времени Δ𝑡 возрастает
с ростомвозмущения скоростиΔ𝑐s(𝑟), чтопротиво-
речит ранее сделанным предположениям. Тем вре-
менем на частоте 0.03 Гц имеет смысл рассматри-
вать все слои вплоть до глубины 80 км, соответству-
ющей самому глубокому слою. Что касается оцен-
ки чувствительности, на частоте 0.03 Гц все рас-
смотренные слои малочувствительны к вариациям
скоростей поверхностных волн, тогда как на часто-
те 0.07 Гц высокую чувствительность к этим вари-
ациям имеет единственный не отброшенный ранее
слой, лежащийна глубине12км.Аналогичныйана-
лиз былпроведен для всех рассматриваемых частот,
что позволило на следующем шаге перейти к ре-
шению уже обратной задачи. Перед этим представ-
ляло интерес изучить разрешающую способность
не только по глубине, но и в горизонтальной плос-
кости.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ
ТОМОГРАФИЧЕСКОГО ВОССТАНОВЛЕНИЯ

Проверка горизонтальной разрешающей
способности обсуждаемой схемы поверхностно-
волновой томографии была проведена с помощью
«шахматного» теста [10]. Модель представлена че-
редующимися положительнымии отрицательными
возмущениями в виде прилегающих друг к другу
квадратов со стороной 200 км и амплитудой в 10%
от невозмущенной скорости поперечных волн
в каждом слое, чередование по глубине отсутствует
(рис. 3). Радиус исследуемой области 𝑅 ≈ 800 км.
Тест проводился для двух модификаций полосча-
того базиса, каждая состоит из 12 слоев, причем
в первой модификации базис представлял собой𝑃 = 8 полос и 𝑈 = 15 углов поворота на каждом
слое, а во второй — 𝑃 = 16, 𝑈 = 27. На рис. 3
представлены результаты синтетического теста
«шахматная доска» на примере слоя, располо-
женного на глубине 40 км. Из рис. 3б, в видно,
что разрешающая способность схемы возрастает
с увеличением числа базисных элементов. Однако
увеличение количества базисных элементов огра-
ничено имеющимся объемом исходных данных —
количеством пар источников-приемников и коли-
чеством используемых частотных диапазонов.

Далее для моделирования использовалась мо-
дификация полосчатого базиса с 𝑃 = 16, 𝑈 = 27.
Рассматривались 328 пар преобразователей, распо-
ложенных также, как в эксперименте PLUME [7].
Исходные времена распространений поверхност-
ных волн брались на 17 частотах в диапазоне от 0.03
до 0.07 Гц. Следует отметить, что контролируемое
излучение на столь низких частотах вряд ли реали-
зуемо на практике, а выбранный частотный диапа-
зон соответствует пассивной корреляционной об-
работке естественных сейсмоакустических шумов,
зарегистрированных в эксперименте PLUME [4].
На рис. 4 приведен результат восстановления двух

Рис. 3. Синтетическая модель «шахматный тест» с максимальным возмущением скорости поперечных волн, равным10% от значения в невозмущенной среде (а); результат восстановления с использованием модификации полосчатого
базиса, содержащей 8 полос и 15 углов поворота в слое (б); то же, что и (б), но полосчатый базис содержит 16 полос
и 27 углов поворота в одном слое (в).
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Рис. 4. Исходное распределение неоднородностей с максимальным возмущением скорости поперечных волн, равным10% от значения в невозмущенной среде (а); результат восстановления с учетом уравнений связи и c исключением
блоковматрицывозмущенийсо слоямиичастотами, длякоторыхприближения, используемыеприрешенииобратной
задачи, не выполняются (б).

неоднородностей с противоположными по знаку
возмущениями скорости:

𝑐s(𝑥, 𝑦, 𝑧) = 𝑐0(𝑧) ⎧⎪⎪⎨⎪⎪⎩1 + 2∑𝑖=1 Λ(i) ×
× exp

⎛⎜⎜⎝−
(𝑥 − 𝑥(i)0 )2

+ (𝑦 − 𝑦(i)0 )2
2σ2

xy

⎞⎟⎟⎠×
× exp

⎛⎝−
(𝑧 − 𝑧0)22σ2

z

⎞⎠
⎫⎪⎪⎬⎪⎪⎭ ,

(9)

где 𝑥(i)0 , 𝑦(i)0 , 𝑖 = 1, 2, 𝑧0 — координаты центров
неоднородностей; σxy и σz — среднеквадратичные
отклонения в горизонтальной и вертикальной
плоскостях, соответственно; Λ(i), 𝑖 = 1, 2 — ко-
эффициент, задающий максимальное отклонение
скорости относительно невозмущенного зна-
чения. Для случая, представленного на рис. 3а,𝑥(1)0 = 𝑦(2)0 = −200 км, 𝑥(2)0 = 𝑦(1)0 = −200 км, σxy =

= 200 км, σz = 15 км, Λ(1) = −0.1, Λ(2) = 0.1. Ре-
шение прямой задачи основано на применении
матричного метода Томсона–Хаскелла расчета
дисперсионных кривых по заданной слоистой
среде и последующем решении уравнения Эйко-
нала для двумерных карт скоростей на различных
частотах [8]. Возможно и волновое решение пря-
мой задачи в горизонтальной плоскости [11],
что даст улучшение разрешающей способности,
но потребует привлечения существенно больших
вычислительных ресурсов. Фоновая среда бралась
из работы [4], где был получен вертикальный
профиль скорости поперечной волны, средний
для рассматриваемого региона. При восстановле-
нии осуществлялось обнуление блоков матрицы
возмущений𝐴, относящихся к слоям, расположен-

ным на глубинах, не дающих вклад вΔ𝑡i(𝑓), а также
учет уравнений связи между соседними полосами,
углами поворота и слоями, заданных следующим
уравнением: 𝑥k − 2𝑥k−1 + 𝑥k−22ℎ = 0, (10)

где 𝑥k, 𝑥k−1, 𝑥k−2 — коэффициенты разложения
по «соседним» базисным полосам, расположен-
ным на близлежащих слоях по глубине, или рас-
положенным рядом в одном слое; ℎ — коэффи-
циент «гладкости», который задавался отдельно
для контроля гладкости восстанавливаемых функ-
ций по глубине и в границах одного слоя. Со-
отношение (10) соответствует требованию мини-
мизации второй производной восстанавливаемых
функций по пространственным координатам.

Для оценки точности получаемых результатов
численного моделирования рассчитывались невяз-
ки по решению ηΔ𝑐:
ηΔ𝑐=

¿ÁÁÁÀ∑d,l,m ∣Δ𝑐model (𝑥d, 𝑦l, 𝑧m) − Δ𝑐rec (𝑥d, 𝑦l, 𝑧m)∣2∑d,l,m ∣Δ𝑐model (𝑥d, 𝑦l, 𝑧m)∣2 ,
(11)

где Δ𝑐model и Δ𝑐rec — заданные и восстановлен-
ные возмущения скорости поперечных волн в сре-
де в дискретизованных пространственных точках
с координатами 𝑥d, 𝑦i, 𝑧m.

На рис. 4 представлены результаты восста-
новления рассматриваемой неоднородности (9).
Из рис. 4б видно, что форма неоднородностей,
их расположение, а также амплитудные значе-
ния восстановлены с приемлемой точностью.
Для представленного варианта реконструкции
невязка по решению ηΔ𝑐 = 0.27, тогда как без
уравнений связи и обнуления блоков матрицы
возмущений 𝐴 значения невязки составляло
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ηΔ𝑐 = 0.51, что говорит о заметном улучшении
результатов восстановления за счет учета особен-
ностей обсуждаемой в работе томографической
схемы.

ЗАКЛЮЧЕНИЕ
Таким образом, представленные в работе

результаты численного моделирования указыва-
ют на возможность восстановления трехмерных
неоднородностей с помощью развиваемой схемы
поверхностно-волновой томографии. В представ-
ленной работе рассматривалось восстановление
скоростей поперечных волн, однако обсуждаемый
подход может быть развит и для восстановления
других характеристик среды, для которых справед-
ливо соотношение, аналогичное (1). Отдельный
интерес представляет исследование возможностей
совместного восстановления различных пара-
метров среды в обсуждаемом подходе. В ходе
«шахматного» теста была продемонстрирована
разрешающая способность двух модификаций
полосчатого базиса, зависящая от количества ис-
пользуемых базисных элементов, число которых,
в свою очередь, ограничено объемом исход-
ных данных. Продемонстрированы преимущества
оптимизации томографической схемы за счет урав-
нений связи и выбора только тех слоев, которые
дают основной вклад в наблюдаемые возмущения
времен распространений поверхностных волн.
Предполагается, что на следующем этапе прово-
димых исследований представленный в данной
работе подход будет использоваться для вос-
становления по экспериментальным данным,
полученным в ходе эксперимента PLUME.

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 23-27-00271. �

СПИСОК ЛИТЕРАТУРЫ
1. Jousset P., Pallister J., Boichu M. et al. // J. Volcanol.

Geotherm. Res. 2012. V. 241. P. 121.
2. Кулаков И.Ю. // Геология и геофизика. 2022.

Т. 63. № 11. С. 1455; Koulakov I.Yu. // Russ. Geol.
Geophys. 2022. V. 63. No. 11. P. 1207.

3. Яновская Т.Б. Поверхностно-волновая томо-
графия в сейсмологических исследованиях.
СПб.: Наука, 2015.

4. Тихоцкий С.А., Преснов Д.А., Собисевич А.Л.,
Шуруп А.С. // Акуст. журн. 2021. Т. 67. № 1.
С. 107; Tikhotskii S.A., Presnov D.A., Sobise-
vich A.L., Shurup A.S. // Acoust. Phys. 2021. V. 67.
No. 1. P. 91.

5. Дмитриев К.В. // Изв. РАН. Сер. физ. 2022.
Т. 86. № 11. С. 1611; Dmitriev K.V. // Bull. Russ.
Acad. Sci. Phys. 2022. V. 86. No. 11. P. 1336.

6. Дмитриев К.В. // Изв. РАН. Сер. физ. 2022.
Т. 86. № 1. С. 135; Dmitriev K.V. // Bull. Russ.
Acad. Sci. Phys. 2022. V. 86. No. 1. P. 94.

7. Laske G., Markee A., Orcutt J.A. et al. // Geophys.
J. Int. 2011. V. 187. P. 1725.

8. Presnov D.A., Sobisevich A.L., Shurup A.S. // Phys.
Wave Phenom. 2016. V. 24. No. 3. P. 249.

9. Буров В.А., Сергеев С.Н., Шуруп А.С. // Акуст.
журн. 2011. Т. 57. № 3. С. 337; Burov V.A.,
Sergeev S.N., Shurup A.S. // Acoust. Phys. 2011.
V. 57. No. 3. P. 344.

10. Koulakov I.Yu., D’Auria L., Prudencio J. et al. //
J. Geophys. Res. Solid Earth. 2023. V. 128. No. 3.
Art. No. e2022JB025798.

11. Зотов Д.И., Румянцева О.Д., Черняев А.С. //Изв.
РАН.Сер.физ. 2024. Т. 88.№1.С. 131; Zotov D.I.,
Rumyantseva O.D., Cherniaev A.S. // Bull. Russ.
Acad. Sci. Phys. 2024. V. 88. No. 1. P. 113.

Numerical investigation of surface wave tomography scheme for three-dimensional
inhomogeneities reconstruction
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A three-dimensional tomographic scheme for reconstructing parameters of inhomogeneous geophysical
media is proposed. Initial data are propagation times of surfacewaves in various frequency ranges. Results of
numerical modeling implemented for conditions of theHawaiian Archipelago are presented, which indicate
the operability of the proposed approach.
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