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Abstract. Using micromagnetic modeling methods the propagation of spin waves in 

two nanoscale laterally bonded ferrite films was studied. The features of the power 

pumping of surface and backward volume magnetostatic waves are investigated. The 

effect of the distance between the films and the films’ width of the films on the 

pumping length and cutoff frequency of these types of waves has been established. 
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INTRODUCTION 

In recent years, micro- and nanostructures based on magnetic materials have 

attracted wide interest of researchers due to their potential use in next-generation 

communication systems, where information will be transmitted using magnons or spin 

waves [1, 2]. 

Spin waves and their magnon quanta are promising information carriers in future 

signal processing systems because the Hilbert attenuation associated with the 

propagation of spin waves can be significantly reduced compared to Joule heat losses 
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in electronic devices. A number of concepts of magnetic logic and signal processing 

on spin waves have been proposed [3, 4]. But one of the unsolved problems of magnetic 

technology is the efficient and controllable coupling of individual magnetic signal 

processing devices into a magnetic circuit. For this purpose, coupled structures are 

promising candidates. Coupled structures significantly expand the functional 

capabilities of radio-physical systems, since an additional control parameter - coupling 

- appears. Such structures are widely used both in microwave engineering [5, 6] and in 

optical systems [7, 8]. In the case of two coupled waveguide ferromagnetic structures, 

coupling leads to the appearance of symmetric and antisymmetric normal waves 

propagating with different group and phase velocities, whose characteristics can be 

controlled by changing the distance between the coupled waveguides [9]. Due to the 

coupling between magnetic channels, the dynamical properties of wave processes 

change significantly and new types of spin excitations are realized [10, 11]. 

Two types of coupled magnon systems can be distinguished, namely waveguides 

arranged in planar geometry, parallel [12, 13] and at an angle to each other [14, 15] 

(transversely coupled waveguides), and waveguides having the form of multilayer 

structures [16, 17]. For the realization of controlled coupling between magnon 

channels, planar geometry is more relevant, since experimental studies of sandwich 

structure are rather difficult due to the lack of access to individual layers, which is 

necessary for excitation and reception of propagating CBs. 

Earlier studies of the peculiarities of wave propagation in planar-transversely 

coupled structures were carried out using Brillouin light scattering for micron-thick 

films [12, 13] and microwave methods for micro- and nanoscale ferromagnetic films 



3 
 

[12, 18]. It has been demonstrated that such systems realize periodic power transfer 

from one waveguide to another, and the spatial period can be controlled by the 

magnitude of the permanent magnetic field, the orientation of the static magnetization 

of the channels, and the geometry of the coupled structure [18, 19]. Most of the works 

are devoted to consideration of micron-sized structures. However, modern 

technologies for growing magnetic films make it possible to create films of nanoscale 

thickness, which is more relevant from the point of view of miniaturization and energy 

efficiency of devices on such structures. 

In [20], the propagation of CBs in laterally coupled nanoscale magnetic 

waveguides for the case of inverse bulk magnetostatic waves (IBWM) is considered. 

The pumping of OOMSWs between magnetic waveguides was investigated and a 

waveguide configuration for which a signal tap function based on such a system can 

be realized was proposed. However, to obtain a complete picture and to conclude about 

the effectiveness of coupled structures for the realization of magnononic couplings, it 

is necessary to consider also the case of surface magnetostatic waves (SMW). 

In the present work, two types of PMSW and OOMSW waves in laterally 

coupled nanoscale magnetic waveguides are considered on the basis of micromagnetic 

modeling using the MuMax3 environment. The features of power pumping between 

waveguides for both types of spin waves are investigated. The influence of waveguide 

geometry, including waveguide width and waveguide spacing, on the character of spin 

wave pumping is investigated. 

 

PROBLEM MODEL AND RESEARCH METHODS 
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 Fig. 1a shows a schematic of the investigated structure, which is two 

ferromagnetic films (FFs) of thickness S and width w, arranged in planar geometry in 

one plane. The FPs are separated by an air gap of width d. The structure is placed in an 

external magnetic field of strength H0. If the field is directed along the y-axis, PMSVs 

propagate in the structure; if the field is directed along the x-axis, the inverse PMSVs 

propagate in the structure. The signal is fed to the input of FP-1.  

 The structure parameters are as follows: film thickness S = 100 nm, film length 

L = 100 μm, film width d at least 2 μm, excitation stripe width w = 2 μm. The material 

parameters of the LIGs are as follows: exchange constant Aex= 3.614⋅e(-12)J/m, 

saturation magnetization Msat= 1.39⋅e(5)A/m, Hilbert attenuation constant αG= 0.0001. 

The MuMax3 micromagnetic modeling environment solves temporal and spatial 

problems of magnetization evolution on micro- and nanometer scales. To solve the 

problems, MuMax3 applies the finite difference method in space, which is partitioned 

into a three-dimensional grid. The Landau-Lifshitz equation is used to describe the 

forced oscillations of the magnetization vector. The processing of simulation results 

was implemented in the Matlab environment using programs and built-in modules. 

Let us consider the basic algorithms for solving the problem of magnetostatic 

wave propagation in a medium MuMax3 .  

First, the parameters for the calculations and the required values are set. 

1) On all x, y, z axes, the number and corresponding size of cells are set. In 

order not to take into account the exchange interaction, the condition𝜆𝜆 ≫ 𝑎𝑎р, (where)

рa  is the lattice constant in the direction of spin wave propagation.  

2) If necessary, boundary conditions and attenuation layers are specified. 
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3) The properties of the medium and field, such as attenuation magnitude, 

exchange constant, saturation magnetization, magnitude and direction of the external 

magnetic field, are specified.  

The task is divided into two stages: static and dynamic. At the static stage, the 

initial direction of magnetization in the substance of the structure is set and the "relax" 

command is started. As a consequence, an external field is applied to the sample, under 

the action of which the magnetization vectors𝑀𝑀 begin to precess and line up with the 

external field 0H  . The resulting state of the magnetics is used as a stationary state in 

the subsequent modeling. 

At the dynamics stage, excitation by a dynamic magnetic fieldℎ , directed 

perpendicularly to the external field, is added. The amplitude of the dynamic field in 

the linear case obeys the conditionℎ ≪ 𝐻𝐻0 . Forcing excitation by the field h  is set in 

the form of imposing a "mask" on the region of the waveguide acting as an excitation 

strip. It is necessary to set the shape of electromagnetic radiation and the shape of the 

pulse. 

Variable Field Function: 

2 2
1 2cos ( ) cos ( )B x x x x= − ⋅ − ,    (17) 

where x1and x2are the beginning and end of the excitation strip, respectively. 

 The momentum function for the excitation mask F(fc, t) depends on the method 

of solving the problem, where fcis the cutoff frequency. 

Calculation of spatial distribution of magnetization 
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 The spatial distribution of the dynamic magnetization allows us to consider the 

dynamics of spin wave propagation, in particular, the period of signal pumping in the 

coupled structure. From the theory of coupled waves [6], the expression of the pumping 

length in the case of identical films in terms of parameters takes the form of a periodic 

function. For convenience in determining the pumping length, let us define the 

excitation pulse in the following form: 

sin(2 )cI A f tπ= ⋅ ,     (18) 

where A is the pulse amplitude, cf  is the cutoff frequency. 

 The cutoff frequency cf  is selected using dispersion curves so that the horizontal 

line at this frequency intersects the symmetric and antisymmetric branches of the 

desired mode. 

At the edges of the structure along the wave direction (x-axis), layers with higher 

attenuation than in the wave propagation medium are set up, increasing towards the 

edges. 

In the process of calculations, we will keep the coordinate of the dynamic 

magnetization vector ( , , , )m x y z t∆  , corresponding to one of the axes perpendicular to 

the external field direction. However, we do not keep the modulus of both 

perpendicular coordinates (z and y), because in the confined sample the precession is 

elliptical, not circular. For our calculations, we will choose the z coordinate 

perpendicular to the external field in the case of both OOMSV and PMSV. We will 

keep the magnitude corresponding to the deviation of the dynamic magnetization from 

its stationary state by the z coordinate.  
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To qualitatively observe the propagation of a spin wave along the x-axis, we need 

the distribution of ( , , , )m x y z t∆  in the xy plane at a fixed slice height along the z-axis. 

The expression of the magnitude has the form: 

( , , ) ( , , ) ( , ,0)z z zm x y t m x y t m x y∆ = − .   (19) 

 The data are taken with the time period Δt = 10 ns, the coordinates of cells x, y, 

z and their corresponding value ( , , )zm x y t∆  are saved in the data file. Thus, we can 

plot in Matlab the distribution of ( , , )zm x y t∆  in the plane at time nΔt, where n is an 

integer. For a smoother view of the ( , , )zm x y t∆  distribution, we apply the Hilbert 

transform to the data set. 

Calculation of dispersion characteristics 

To calculate the variance, the cutoff frequency cf  for the excitation pulse must be 

selected above the upper threshold of the MSW frequencies. To effectively excite all 

frequencies below cf  , the function sinc(x), which is the inverse Fourier transform for a 

rectangular pulse, is used. The excitation pulse has the form:  

𝐼𝐼 = 𝐴𝐴 ∙ sinc(2𝜋𝜋𝑓𝑓𝑐𝑐(𝑡𝑡 − 𝑡𝑡0)),    (20) 

where A is the pulse amplitude, t0is the initial time. 

 The spin wave propagates along the x-axis, so let us set periodic boundary 

conditions along this axis. 

In the process of calculations, we will keep one of the coordinates of the dynamic 

magnetization vector ( , , , )m x y z t∆  . For our calculations, we will choose the z 



8 
 

coordinate perpendicular to the external field in the case of both OOMSV and PMSV. 

Thus, we will keep the value . ( , , , )zm x y z t∆  

 Since the width of the films is limited, the internal field includes demagnetization 

fields, so the value of ( , , , )zm x y z t∆  should be kept to a narrow three-dimensional slice 

along the centerline of the film. 

 The coordinates of cells x, y, z and their corresponding value ( , , , )zm x y z t∆  are 

stored in the data file. The data are taken with a time period inverse to the sampling 

frequency Fs. 

According to Kotelnikov's theorem, the sampling period of the signal should be 

chosen from the condition: 

1
2 m

T
f

= ,     (21) 

where mf  is the upper limit of the spectrum of the original signal, for our calculations 

it is the cutoff frequency cf  . The sampling frequency Fsis a multiple of the inverse of 

the sampling period. 

The obtained data set is processed in Matlab environment. Two-dimensional Fast 

Fourier Transform (FFT) is performed to obtain dispersion curves [21]: 

[ ] 2
2

1

1( , ) ( , , , )
N

z x z i i
i

m k f m x y z t
N =

= ∆∑  ,   (22) 

where 2  is the two-dimensional FFT, iy  is the i-th cell along the waveguide width, and 

N is the total number of cells along the waveguide width. To visualize the dispersion 

curve, we construct a 3D color map of ( , ) ( , )x z xP k f m k f∝ ∆  at a logarithmic scale. 
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Calculation of amplitude-frequency characteristics 

As in the case of variance construction, we need to determine the cutoff 

frequency above the upper cutoff frequency for the MSW. To effectively excite all 

frequencies below cf  we use the function sinc(x) in the form of expression (20). 

At the edges of the structure along the wave direction, attenuation layers are set 

up as in the algorithm for the magnetization distribution. 

In the process of calculations, two values are saved to the data file with sampling 

rate (21): the time moment t, and the corresponding value ( , , , )zm x y z t∆  - component 

along the z-axis.  

The obtained data are processed in Matlab environment using built-in tools for 

plotting the AFC, which utilizes one-dimensional Fourier transform.  

 

RESULTS OF MICROMAGNETIC MODELING  

Fig. 1 (b) shows the dispersion characteristic for OOMSV in the 

of the investigated structure. The dispersion curves corresponding to the first five 

thickness modes of the structure are plotted, each of which is split into two curves 

corresponding to symmetric and antisymmetric normal modes of the coupled structure 

with wave numbers ksand kas, respectively. The existence of symmetric and 

antisymmetric normal modes for a layered coupled structure has been shown 

theoretically, for example, in [6, 22]. The propagation of two normal modes in the 

coupled structure with different phase and group velocities leads to periodic power 

pumping between the films. The spatial period of pumping (pumping length) in this 

case is determined by the relation [5, 6]: 
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2 s ask kπΛ = − .     (23) 

Fig. 1c,d shows the amplitude-frequency characteristics (AFC) of the OOMSV 

and PMSV at the output of FP-1 (blue curve) and FP-2 (red curve). The figures show 

a sequence of maxima and minima of the FP-1 and FP-2 transfer coefficient, located 

in opposite phase. This feature indicates power pumping between the films, the length 

of which is determined by the signal frequency. Theoretical dependencies for the 

transmission coefficients illustrating the maxima and minima located in antiphase were 

calculated in [23] for PMSV in coupled micron-thick lateral waveguides. The noted 

behavior of the transmission coefficients allows us to consider the investigated 

structure as a functional element for frequency separation of signals. From the 

comparison of Fig. 1c and Fig. 1g, it can be seen that in the case of OOMSV the waves 

are effectively coupled at high frequencies, i.e., as can be seen from Fig. 1 (b) at small 

wave numbers (large wavelengths), and in the case of PMSV - at low frequencies, i.e., 

also at small wave numbers (large wavelengths). The range of frequencies at which the 

waves are effectively coupled expands as the distance between the waveguides 

decreases. 

Fig. 2a shows a map of the distribution of the deviation of the dynamic 

magnetization vector ( , , )zm x y t∆  in the plane of the waveguides during OOMSV 

propagation. A series of alternating magnetization maxima and minima in each 

waveguide along the propagation direction x can be seen. The maxima and minima in 

FP-1 and FP-2 are located in antiphase, indicating periodic power pumping between 

the films along the propagation direction. We define the pumping lengthΛ  as the 
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distance between neighboring maximum values of ( , , )zm x y t∆  in one film, as shown 

in Fig. 2a. Since it is important to analyze the periodicity of power pumping between 

the films, we will take the values of ( , , )zm x y t∆  only along the center line of each film, 

where the demagnetization fields are minimal. Fig. 2b shows the dependence of the 

magnetization deviation in FP-1 (blue curve) and in FP-2 (red curve) on the 

longitudinal x coordinate. The graph also shows maxima and minima in FP-1 and FP-

2 alternating in counter-phase, which indicates power pumping between the 

waveguides. The amplitude of the maxima decreases along the propagation direction, 

which is due to losses in the ferromagnetic medium. 

 Fig. 3 shows the dependences of the pumping length on the film gap d for 

different types of waves. For both OOMSV (Fig. 3a) and PMSV (Fig. 3b), the 

dependence ( )dΛ  is nonlinearly increasing. In each plot, the dependences for 

different film widths w are collected. It can be seen that the pumping length is 

proportional to the width of the films w: for any gap value d, the value of the pumping 

length is larger the larger the width of the films. It can also be seen that the pumping 

length for PMSV is larger than the pumping length for OOMSV, other parameters 

being equal. Fig. 3c shows the dependence of the pumping length difference for PMSV 

and for OOMSV ПМСВ ООМСВΛ −Λ  on the film width w for different film spacing d. It can 

be seen that the pumping length difference increases both with increasing waveguide 

width and with increasing film width. 

 Fig. 4 presents the dependences of the cutoff frequency of the first mode of MSW 

(   'f  , marked in Fig. 1b) on the value of the gap d between the FPs. The results are 
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shown for two types of waves, PMSW (a) and OOMSW (b), respectively, at different 

values of the film width w. It can be seen that the coupling in the system has a negligible 

effect on the cutoff frequency, however, the dynamics are different for PMSW AND 

OOMSW. For OOMSV, the cutoff frequency increases with increasing gap width d, 

while it decreases for PMSV . When the waveguide width w increases, the cutoff 

frequency decreases for the case of OOMSV and increases for PMSV. Note that in [24] 

it was shown for PMSV in a single waveguide that the cutoff frequency also increases 

with increasing waveguide width. 

 

CONCLUSION 

On the basis of micromagnetic modeling in the MuMax3 environment, the 

peculiarities of propagation of surface and inverse bulk magnetostatic waves in 

nanosized laterally coupled ferrite waveguides are investigated. The amplitude-

frequency characteristics, dispersion characteristics, and evolution of magnetization 

amplitude along the wave propagation direction are calculated. It is shown that in the 

case of OOMSV the waves are effectively bound at high frequencies, and in the case 

of PMSV - at low frequencies, i.e., in both cases at long wavelengths. The range of 

frequencies at which the waves are effectively coupled expands as the distance between 

the waveguides decreases. It is found that the power transfer length between 

waveguides increases as the distance between the waveguides increases. When the 

width of the waveguides increases, the pumping length also increases. It is shown that 

the pumping length depends on the type of MSW. When the width of the waveguides 

increases, the pumping length for PMSVs becomes longer than that for OOMSVs, and 
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the difference in pumping lengths increases as the width of the waveguides increases. 

The increase is also observed when the gap between the waveguides increases. The 

effect of coupling between the waveguides on the frequency of cutoff is investigated. 

The distance between the waveguides has an insignificant effect on the cutoff 

frequency, however, for OOMSV the dependence is increasing and the cutoff 

frequency decreases with increasing waveguide width, while for PMSV it is decreasing 

and the cutoff frequency increases with increasing waveguide width. 

The obtained results allow us to consider the investigated structure as a 

functional element for frequency separation of signals, a power divider, as well as an 

effective element of interconnections in a magnon network.  
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FIGURE CAPTIONS 

 

Fig. 1. Schematic of the structure based on laterally coupled ferrite films showing two 

types of propagating MSW: the field along the x-axis is OOMSW, along the y-axis - 
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PMSW (a). Dispersion characteristic of OOMSV in the coupled structure (b). 

Amplitude-frequency characteristics for OOMSV (c) and PMSV (d) at the output of 

FP-1 (blue curve) and FP-2 (red curve). Calculated parameters: w = 2 μm, d = 1 μm. 

 

Fig. 2. Spatial distribution of the magnetization deviation ( , , )zm x y t∆  in the xy plane 

at fixed z for OOMSV (a). Dependence of the magnetization deviation taken along the 

center line of each film on the x coordinate (b). Calculated parameters: w = 2 μm, d = 

1 μm. 

 

Fig. 3. Dependences of the pumping length on the distance between the films d at 

different film widths w for OOMSV (a) and PMSV (b). Dependence of the difference 

of the pumping lengths of PMSV and OOMSV on the film width w and at different gap 

width d (c). 

 

Fig. 4. Dependences of the first mode cutoff frequency of OOMSV (a) and PMSV (b) 

on the gap width d at different values of the film width w. 

 

 
Fig. 1 
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