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Abstract. A two-step method for designing acoustic metamaterials and calculating 

wave fields inside them is proposed. In the first step, the scattering coefficients are 

calculated, and in the second step, the specific design of the metamaterial elements is 

determined. The results of modeling a cloaking insulating shell and a lens with a 

tunable focus are presented. 
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INTRODUCTION 

Acoustic metamaterials are artificially created media consisting of periodically 

or chaotically arranged elements with a characteristic size much smaller than the 

wavelength. Since the design of each such element can be specifically chosen, this 

opens up the possibility of designing media with many unusual properties not normally 

found in "conventional" solid materials. These include, for example, negative 

refractive index media  [1, 2], auxetics [3 ], hiding structures [4 -7 ]. Metamaterials 

have found their application in many problems related to wave field control and the 

creation of absorbing coatings [8, 9]. 
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It is of interest to introduce active elements [9 ] into the metamaterial structure. 

In one case, they can be a combination of sensors and acoustic field sources [10 ] 

connected by electronic circuits. This further extends the allowable range of wave 

properties of the medium as wave absorption limitations are removed. In addition, 

electronic circuits can perform signal processing, including nonlinear processing. In 

another case, active elements are used not to create an acoustic field, but to dynamically 

change the structure of the metamaterial, and thus its wave properties [11 ]. 

The main questions that arise in the study of metamaterials concern, on the one 

hand, the modeling of wave processes and the search for new interesting effects in 

these media, and, on the other hand, the principles of their creation in practice. To solve 

both problems, it is possible to model wave processes in the medium as a whole by 

breaking it into sections of sufficiently small size (e.g., by the finite element method, 

FEM). However, as a rule, the size of a metamaterial element should be significantly 

smaller than the effective wavelength in the metamaterial. On the other hand, such an 

element is often a structure whose parts are even smaller. This leads to the fact that the 

step of the chosen discretization grid turns out to be on average an order of magnitude 

smaller than in problems related to the modeling of continuous media, and the volume 

of calculations in such calculations increases dramatically. 

Another solution is the introduction of effective parameters of the metamaterial 

(density, compressibility, sound velocity), which allows us to consider it as a 

continuous medium. Many effects found in metamaterials were originally considered 

using this approach [1,12]. To determine the spatial distribution of effective 

parameters, the method of transformational acoustics [13 ], which is actively used in 
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the design of various hiding configurations, can be used. The difficulty of this approach 

is to find a practical design of the medium with given effective parameters. First of all, 

it is difficult to give a correct definition of such parameters for a discrete medium, 

especially if only a small number of its elements are arranged on the wavelength or 

they are located unevenly. Often, for this purpose, an infinite periodic lattice of 

elements is introduced, coinciding in some region of space with the one under study. 

Modeling of a single element of such a lattice with imposed periodic boundary 

conditions allows us to construct dispersion characteristics and determine the effective 

sound velocity in this region. However, the effective impedance of the medium remains 

unknown, which, as a result, does not exclude the need for FEM-type methods. It 

should also be noted that the realization of the obtained parameters is difficult due to 

their high anisotropy [14, 15]. 

Another solution is related to the application of scattering theory methods to 

metamaterials [16-22]. Even before the active discussion of metamaterials in the 

literature, these approaches were actively used to analyze wave propagation in regular 

and randomly inhomogeneous media [23, 24]. In this approach, each point of the 

medium is considered as a scatterer that emits secondary waves in response to the field 

of the original incident wave and the fields scattered by other elements. 

Mathematically, the result of the calculation turns out to be equivalent to solving the 

original acoustic equations. In the case when the metamaterial is represented as 

separate elements placed in the background medium, each of them can be considered 

as a single scatterer characterized by scattering coefficients [25, 26]. Since the number 
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of such scatterers is much smaller than the number of elements when discretizing the 

medium, the method turns out to be computationally efficient. 

In the present work, we propose to use this approach and perform calculations in 

two steps, separately considering the processes of multiple field scattering inside a 

single element of a metamaterial and inside a lattice of discrete scatterers. Depending 

on the order of steps, this makes it possible either to calculate the field inside a 

metamaterial with a given structure of its elements or to solve the inverse problem of 

finding such a structure.  

 

 

DISCRETE EQUATION OF LIPPMANN-SCHWINGER TYPE 

Let the metamaterial be a system of a finite number of discrete elements of small 

size placed in a liquid homogeneous background medium. The acoustic field with time 

dependence )exp(~ tiω−  is created by primary sources located in the region X  outside 

the metamaterial. For each q  -element, a circle (in the two-dimensional case, space 

dimension 2=d  ) or a ball (in the three-dimensional case, 3=d  ) of qΓ  minimum 

possible radius centered at a point qr
  is constructed containing it. We consider a 

sufficiently wide class of metamaterials for which these circles (or balls) have no 

common points. There are no requirements that the elements of the metamaterial be 

arranged periodically or be identical. Further reasoning is carried out only for the two-

dimensional case; similar results are obtained for the three-dimensional case. 
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We consider an arbitrary fixed element of the metamaterial with index q  . The 

region of space ( ) 
q

q
d XR Γ≡Γ \\  is occupied by a homogeneous background 

medium with wave number 0k  and contains no sources. The acoustic pressure field

)(rp   in this region can be represented as 
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Here n  is the multipole order; )(rq


θ  is the angle that the vector qrr 

−  makes with the 

polar axis of the coordinate system; )(⋅nJ  and )()1( ⋅nH  are the Bessel and Hankel 

functions of the first kind n  -of order, respectively. The coefficients )(q
nA  and )(q

nB  form 
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vectors )(qA


 and )(qB


 , which are related to each other in a linear way. To describe this 

relationship, the matrix )(ˆ qT  [25 -29 ] is introduced: 

)()()( ˆ4 qqq ATiB


⋅⋅= . (3) 

It fully characterizes the properties of the metamaterial element as an acoustic field 

scatterer. Calculation of the matrix )(ˆ qT  may present a significant difficulty, since, 

strictly speaking, it (as well as vectors )(qA


 and )(qB


 ) contains an infinite number of 

elements. However, for small wave size scatterers, in most cases it is sufficient to 

consider only the monopole and dipole order of scattering [25 ]. If, in addition, the 

scattered field does not change when the metamaterial element is rotated, the matrix

)(ˆ qT  takes a diagonal form: 
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where )(
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qβ  are the monopole and dipole scattering coefficients, respectively. 

Taking into account the identity )()1()( ⋅−=⋅ −
− n
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n JJ  and the fact that qΓ  and tΓ  have 

no common points at tq ≠  , using the graph addition theorem for an arbitrary 

cylindrical function )(⋅ϑn  we can obtain the expression 
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For the field )(0 rp   then a decomposition similar to (2 ) is valid: 
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Then, taking into account (5 ), expressions (1 ) - (3 ) and (6 ) are reduced to the 

equation 
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Here we introduce the matrix ),(ˆ
tq rrG   , whose elements are equal to 0 at tq =  

and equal to  
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The equation (7 ) is a discrete Lippmann-Schwinger type equation describing the 

processes of multipole field scattering by metamaterial elements. The vector )(qA


 

contains the set of coefficients of the multipole expansion of the field in the coordinate 

system with origin at the point qr
  . Its multiplication by the matrix )(ˆ qT  gives the vector

)(qB


 of the scattered field expansion coefficients. The matrix ),(ˆ
tq rrG   plays the role of 

Green's function. It is zero if its arguments coincide. This illustrates the fact that the 

field scattered on a metamaterial element does not directly affect it; the totality of 

multiple scattering processes within the element is accounted for by the matrix . )(ˆ qT  

If the matrices )(ˆ qT  are known for each element of the metamaterial, equation (7 

) is solved with respect to the vector )(qA


 . Then the field )(rp   is defined using 

expressions (2 ) and (3 ). Conversely, equation (7 ) can be considered with respect to 

the unknown matrices )(ˆ qT  , assuming the field )(rp   is known. In each case, the 
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problem is divided into two steps: consideration of acoustic field scattering by a single 

element of the metamaterial and consideration of multiple scattering between 

individual elements. In the second step, it is sufficient to specify only a few scattering 

coefficients and scatterer coordinates. The number of variables in this case can be much 

smaller than when solving the problem using the FEM.  

The equation (7 ) remains valid regardless of the particular arrangement of the 

metamaterial elements, since only the fields in the regionΓ  are considered. The 

processes inside qΓ  may not be described by the Helmholtz equation, or their nature 

may be non-acoustic at all. It should be noted once again that the possibility of covering 

the metamaterial elements with a set of circles (or spheres) qΓ  is a significant limitation 

of the proposed method. 

 

DESIGN OF INSULATING NON-REFLECTIVE SHELL 

In the simplest case, the metamaterial element is described by a single monopole 

scattering coefficient )exp( 000 ψβ≡β i  . For a passive medium without absorption, its 

absolute value 0β  and phase 0ψ  are not arbitrary but are related by the relation

00 sin4 ψ−=β  [ , ,252630 -32 ]; for active metamaterials there are no such restrictions. 

In the case when all other elements of the matrices )(ˆ qT  are zero, the equation (7 ) is 

scalar: 
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The matrix element ( )tqtq rrkHirrG


 −−= 0
)1(

000 4
),(  here represents the delayed 

Green's function of the Helmholtz equation. 

As an illustration, we consider the problem of designing an annular shell made 

of a metamaterial (Fig. 1a). Its properties are such that, if the source is inside the shell, 

its field inside the shell is not distorted by it and does not pass outside. The field of the 

source located outside does not pass inside and is minimally scattered by the shell. The 

last circumstance relates the set problem to the problem of concealment [4 -7 ]. The 

described requirements can be written using the Green's function ),( 21 rrG   of an 

inhomogeneous medium: 
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The equation (8 ) under the conditions (9 ) can be solved in different ways [ ,3334 

]. In this case, a method similar to the one described in [35 ] was used. It consists in 

using the Born approximation and iterative refinement of the parameters of the medium 

inside the shell. It was assumed that it consists of 30 annular layers with the same 

elements in each layer. 

After the scattering coefficients of the shell elements were determined, the shell 

was tested. In Fig. 1b, the solid lines represent the acoustic pressure from the source 

located at 1S  (inside the shell) or from the source at 2S  (outside). For comparison, the 

dashed lines show similar dependencies in the absence of the shell. It can be seen that 

the source field 1S  is not distorted by the shell and is equal to zero outside it, i.e. the 

first requirement is fulfilled with great accuracy. The field of the source 2S  does not 
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penetrate inside the shell, but is scattered by it. It is especially noticeable from the side 

opposite to the source: here a "shadow" zone is formed. Thus, the condition of 

concealment is not completely fulfilled. This is due to the fact that, in contrast to the 

works [ ,45 ], the elements of the calculated structure are isotropic, and in contrast to 

the works [ ,67 ], the external field does not penetrate inside the shell. 

Fig. 1c on the complex plane shows the values of the found coefficients 0β  for 

different elements of the shell. The circleΩ  with the center in the point i2−  and radius 

2 denotes the set of scatterers for which the law of conservation of energy is satisfied [ 

,3132 ]. The points lying insideΩ  , correspond to scatterers with absorption, and 

outside to those containing an additional energy source. Although it is in principle 

possible to limit the iterative solution of the equation (8 ) to the case of energy 

conservation in scattering, this leads to a significant deterioration of the obtained 

solution. Thus, it is reasonable to realize the calculated design exactly in the class of 

active metamaterials. 

 

TUNABLE LENS DESIGN 

The equations (7 ), (8 ) can be used to calculate metamaterials that change their 

wave properties under external influence. As an illustration, we consider the problem 

of designing a planar lens with a tunable focus. Such a lens (Fig. 2a) is a lattice 

of𝑁𝑁⋅(2𝑀𝑀 + 1) elements of a metamaterial whose centers are located at the points with 

coordinates ; ; };{ mnnm yxr ≡
 Nn <≤0 MmM ≤≤−  . The tuning is realized by a slight 

compression or stretching of the lattice along one of the coordinate axes. 
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To simplify the practical realization, all elements are chosen identical. Their 

monopole and dipole scattering coefficients are 0β  and 1β  , respectively. Along the axis

OX  , they are spaced uniformly with a step asx  , i.e., nasx xn =  . The step along the 

axisOY  , equal to mmmy yybs −= +1  , is non-uniform. Here, the values a  and mb  

represent the base distances between the centers of adjacent elements, and the 

coefficients xs  and ys  , which are close to unity, determine the stretching or 

compression of the lens along the corresponding axis. 

Thus, when N  and M  are fixed, the design is fully described by the parameters , 

, 0β 1β a  and mb  . In determining their values, the following considerations are taken 

into account. First, the focal length of the designed lens should change significantly 

when changing coefficients xs  or ys  within a few percent, since such a small change 

can be relatively easy to realize in practice. Second, the acoustic field reflected from 

the lens should be minimized as much as possible. Third, the properties of the lens 

should remain stable over some frequency band. To take into account the last 

circumstance, it is necessary to specify their frequency derivatives along with the 

scattering coefficients, which complicates the analysis. On the other hand, for general 

considerations, scattering coefficients with values close to i4−  , since this point 

corresponds to resonance [ , ,253132 ], can be excluded from consideration. Ultimately, 

it is advisable to perform such a check after the internal structure of the metamaterial 

element has been determined based on the values of the scattering coefficients. 

As a result of the solution of the described problem at 10== NM  , the values of 

scattering coefficients i088.0587.00 +−=β  and i063.0497.01 +=β  were obtained; the 
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step a  is equal to 0257.0 λ  , where 00 2 kπ≡λ  is the wavelength in the homogeneous 

background medium surrounding the lens. The dependence of the steps mb  on the index

m  is close to quadratic: 2
00 )1(00019.0192.0 −λ+λ= mbm  . Such a lens has thickness

057.2 λ  and transverse dimension 04λ  . In the simulation, the incident acoustic field 

was radiated by a plane source of width 08λ  , located at a distance 02λ  from the lens. 

This source creates a wave beam in a homogeneous background medium, the amplitude 

of which at the origin is equal to . 0p  

In Fig. 2b, the black lines show the results of calculating the amplitude of the 

acoustic pressure field )(xp  on theOX  axis to the right of the lens, normalized to 0p  . 

It can be seen that when the lens is transversely deformed, when the value of ys  varies 

within %5±  , the area of focus moves significantly and, thus, the described 

configuration does solve the problem. At the same time, the field amplitude in the focal 

drag region changes within 10%, i.e., relatively weakly. The modeling also showed 

that changing the value of xs  has little effect on the amplitude and position of the focus. 

For practical realization of a lens with the described parameters it is necessary to 

propose a design of a metamaterial element possessing the found scattering 

coefficients. In the general case, this represents a separate difficult problem. One of the 

possible methods of its solution is to consider a multilayer elastic cylinder as such an 

element. The thicknesses and materials of its layers are selected so as to minimize the 

difference of the scattering coefficients from the required ones. For the obtained values 

of the scattering coefficients, if water is used as a background medium, a good match 

can be obtained using homogeneous steel cylinders with radius 0077.0 λ  . This value is 
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less than half of the minimum distance between the centers of the metamaterial 

elements, which makes it possible to implement it in practice. 

To check the performance of the lens in the broadband mode, the frequency of 

the used radiation was reduced by 10% at fixed geometrical dimensions of all elements. 

The calculated dependence of the pressure )(xp  on the axis in this case at 1=ys  is 

represented in Fig. 2b by a gray line. It can be seen that its difference from the black 

line drawn at the initial radiation frequency is small. Consequently, the calculated lens 

can be used also when working with nonmonochromatic signals.  

 

CONCLUSION 

The methods of scattering theory can be successfully used to consider 

metamaterials consisting of individual elements placed in a background medium. They 

allow, to calculate the acoustic field inside a metamaterial with a given structure or, 

conversely, to determine this structure if it is known how the field is to be transformed. 

The proposed two-step method allows us to break each of these problems into two 

parts, which can significantly speed up the solution. Such a breakdown is possible 

because the metamaterial elements have a small wave size, and it is sufficient to specify 

only a few scattering coefficients to describe the scattering on them. 
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FIGURE CAPTIONS 

Figure 1. Schematic of a cylindrical shell made of metamaterial. At the points 1S  and

2S  the sources are located (a). View of the acoustic pressure profile along the line

xy =  , when the cylindrical shell is present (solid lines) or absent (dashed lines). Black 

lines correspond to the location of the source at 1S  ; gray lines correspond to the 

location at 2S  . The gray bars indicate points inside the envelope (b). Calculated values 

of the scattering coefficient 0β  on the complex plane for different elements of the 

metamaterial inside the shell. The black line represents the circleΩ  (c). 

 

Figure 2. Schematic representation of a lens made of a metamaterial. The dots represent 

the centers of its elements. The acoustic wave is generated by a plane source located to 

the left of the lens (a). Spatial distribution of the acoustic pressure amplitude on the 

lens axis to the right of the lens at different values of the stretching coefficient ys  . 

Black lines correspond to the initial frequency of radiation; gray line - to the frequency 

of radiation reduced by 10% (b). 

а                                              b                                               c 

 

Fig. 1. 



17 
 

 

 

       а                                                                        b 

 

Fig. 2. 

 


