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Abstract. A two-step method for designing acoustic metamaterials and calculating
wave fields inside them is proposed. In the first step, the scattering coefficients are
calculated, and in the second step, the specific design of the metamaterial elements is
determined. The results of modeling a cloaking insulating shell and a lens with a
tunable focus are presented.
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INTRODUCTION

Acoustic metamaterials are artificially created media consisting of periodically
or chaotically arranged elements with a characteristic size much smaller than the
wavelength. Since the design of each such element can be specifically chosen, this
opens up the possibility of designing media with many unusual properties not normally
found in "conventional" solid materials. These include, for example, negative
refractive index media [1, 2], auxetics [3 ], hiding structures [4 -7 ]. Metamaterials
have found their application in many problems related to wave field control and the

creation of absorbing coatings [8, 9].



It is of interest to introduce active elements [9 ] into the metamaterial structure.
In one case, they can be a combination of sensors and acoustic field sources [10 ]
connected by electronic circuits. This further extends the allowable range of wave
properties of the medium as wave absorption limitations are removed. In addition,
electronic circuits can perform signal processing, including nonlinear processing. In
another case, active elements are used not to create an acoustic field, but to dynamically
change the structure of the metamaterial, and thus its wave properties [11 ].

The main questions that arise in the study of metamaterials concern, on the one
hand, the modeling of wave processes and the search for new interesting effects in
these media, and, on the other hand, the principles of their creation in practice. To solve
both problems, it is possible to model wave processes in the medium as a whole by
breaking it into sections of sufficiently small size (e.g., by the finite element method,
FEM). However, as a rule, the size of a metamaterial element should be significantly
smaller than the effective wavelength in the metamaterial. On the other hand, such an
element is often a structure whose parts are even smaller. This leads to the fact that the
step of the chosen discretization grid turns out to be on average an order of magnitude
smaller than in problems related to the modeling of continuous media, and the volume
of calculations in such calculations increases dramatically.

Another solution is the introduction of effective parameters of the metamaterial
(density, compressibility, sound velocity), which allows us to consider it as a
continuous medium. Many effects found in metamaterials were originally considered
using this approach [1,12]. To determine the spatial distribution of effective

parameters, the method of transformational acoustics [13 ], which is actively used in



the design of various hiding configurations, can be used. The difficulty of this approach
is to find a practical design of the medium with given effective parameters. First of all,
it 1s difficult to give a correct definition of such parameters for a discrete medium,
especially if only a small number of its elements are arranged on the wavelength or
they are located unevenly. Often, for this purpose, an infinite periodic lattice of
elements is introduced, coinciding in some region of space with the one under study.
Modeling of a single element of such a lattice with imposed periodic boundary
conditions allows us to construct dispersion characteristics and determine the effective
sound velocity in this region. However, the effective impedance of the medium remains
unknown, which, as a result, does not exclude the need for FEM-type methods. It
should also be noted that the realization of the obtained parameters is difficult due to
their high anisotropy [14, 15].

Another solution is related to the application of scattering theory methods to
metamaterials [16-22]. Even before the active discussion of metamaterials in the
literature, these approaches were actively used to analyze wave propagation in regular
and randomly inhomogeneous media [23, 24]. In this approach, each point of the
medium is considered as a scatterer that emits secondary waves in response to the field
of the original incident wave and the fields scattered by other elements.
Mathematically, the result of the calculation turns out to be equivalent to solving the
original acoustic equations. In the case when the metamaterial is represented as
separate elements placed in the background medium, each of them can be considered

as a single scatterer characterized by scattering coefficients [25, 26]. Since the number



of such scatterers is much smaller than the number of elements when discretizing the
medium, the method turns out to be computationally efficient.

In the present work, we propose to use this approach and perform calculations in
two steps, separately considering the processes of multiple field scattering inside a
single element of a metamaterial and inside a lattice of discrete scatterers. Depending
on the order of steps, this makes it possible either to calculate the field inside a
metamaterial with a given structure of its elements or to solve the inverse problem of

finding such a structure.

DISCRETE EQUATION OF LIPPMANN-SCHWINGER TYPE
Let the metamaterial be a system of a finite number of discrete elements of small
size placed in a liquid homogeneous background medium. The acoustic field with time

dependence ~ exp(—iwt) is created by primary sources located in the region X outside
the metamaterial. For eachg -element, a circle (in the two-dimensional case, space

dimensiond =2 ) or a ball (in the three-dimensional case,d =3 ) of I, minimum
possible radius centered at a point7, is constructed containing it. We consider a

sufficiently wide class of metamaterials for which these circles (or balls) have no
common points. There are no requirements that the elements of the metamaterial be
arranged periodically or be identical. Further reasoning is carried out only for the two-

dimensional case; similar results are obtained for the three-dimensional case.



We consider an arbitrary fixed element of the metamaterial with indexqg . The

region of spacel: = (Rd \ X )\UFq is occupied by a homogeneous background
q

medium with wave numberk,, and contains no sources. The acoustic pressure field

p(7) in this region can be represented as

p(F)=po(F)+ Y p )+ p&(7); 7 eT. (1)

t#q

Here p,(7) is the field of primary sources; ) ps(é) (7) is the sum of the fields scattered
t#q

on all elements of the metamaterial exceptg -th, and PS(Q)(”) is the field scattered ong

-th element of the metamaterial. The value plq)(r) po(P)+ > ps(é) (7) represents the
t#q

field incident ong -th element of the metamaterial. Taking into account that its sources
are located outsidel, , and the sources p(q)(r) - insidel’, , introducing a cylindrical
coordinate system with the origin at the point7, and some fixed direction of the polar

axis, we can write the expansions of these fields into series on cylindrical functions:

—Vq);

PG =~ 3 explino, (] Bl 7).

n=—u0

pfr?c)(f):—i' i p[in®, (P)] 49, ko

)

Heren is the multipole order;8,(7) is the angle that the vector7 — 7, makes with the

polar axis of the coordinate system;J, (:) andH,Sl)(-) are the Bessel and Hankel

functions of the first kindn -of order, respectively. The coefficients 49 and B4’ form



vectors A and B/ | which are related to each other in a linear way. To describe this
relationship, the matrix 79 [25 -29 ] 1s introduced:

BW —4;. 7D . 4O (3)
It fully characterizes the properties of the metamaterial element as an acoustic field
scatterer. Calculation of the matrix 7(? may present a significant difficulty, since,
strictly speaking, it (as well as vectors A and B9 ) contains an infinite number of

elements. However, for small wave size scatterers, in most cases it is sufficient to
consider only the monopole and dipole order of scattering [25 ]. If, in addition, the

scattered field does not change when the metamaterial element is rotated, the matrix

79 takes a diagonal form:

- I ..
70 = diag(Bi” By B”), ©
where BE)") andBf‘” are the monopole and dipole scattering coefficients, respectively.

Taking into account the identityJ_,(-)=(~1)""J,(:) and the fact thatl’, and[, have
no common points atg #¢ , using the graph addition theorem for an arbitrary
cylindrical function 3, (-) we can obtain the expression

9, (ko\f — fq\) exp[in@,(F)|=

- i T (kolF =) exp[imGt(F)](—l)”_mS,,_m(ko‘Fq—Ft‘)exp[i(n—m)et(?)]

,7Fel, (5)

For the field p,(7) then a decomposition similar to (2 ) is valid:



PO==5 3 explind, AL ARk -7). ©)

Then, taking into account (5 ), expressions (1 ) - (3 ) and (6 ) are reduced to the

equation

4D — ;1(()61) n 41-2 GA(F(],FI)YA"O);IO) . (7)
t

Here we introduce the matrix GA(Fq,Ft) , whose elements are equal to 0 atg =¢
and equal to

GGy 7)== ™ HID, (ko =) explicn -0, G at g # 1

The equation (7 ) is a discrete Lippmann-Schwinger type equation describing the
processes of multipole field scattering by metamaterial elements. The vector AW

contains the set of coefficients of the multipole expansion of the field in the coordinate

system with origin at the point7, . Its multiplication by the matrix 79 gives the vector
B of the scattered field expansion coefficients. The matrix G(Fq, 7;) plays the role of

Green's function. It is zero if its arguments coincide. This illustrates the fact that the
field scattered on a metamaterial element does not directly affect it; the totality of

multiple scattering processes within the element is accounted for by the matrix .7 @

If the matrices7“) are known for each element of the metamaterial, equation (7

) is solved with respect to the vector Y . Then the field p(7) 1s defined using

expressions (2 ) and (3 ). Conversely, equation (7 ) can be considered with respect to

the unknown matrices7? | assuming the field p(#¥) is known. In each case, the



problem is divided into two steps: consideration of acoustic field scattering by a single
element of the metamaterial and consideration of multiple scattering between
individual elements. In the second step, it is sufficient to specify only a few scattering
coefficients and scatterer coordinates. The number of variables in this case can be much
smaller than when solving the problem using the FEM.

The equation (7 ) remains valid regardless of the particular arrangement of the

metamaterial elements, since only the fields in the regionT are considered. The

processes insidel’, may not be described by the Helmholtz equation, or their nature

may be non-acoustic at all. It should be noted once again that the possibility of covering

the metamaterial elements with a set of circles (or spheres) I, is a significant limitation

of the proposed method.

DESIGN OF INSULATING NON-REFLECTIVE SHELL

In the simplest case, the metamaterial element is described by a single monopole

scattering coefficient3, = ‘Bo‘exp(i\po) . For a passive medium without absorption, its
absolute Value‘BO‘ and phasey, are not arbitrary but are related by the relation

‘Bo‘ =-4siny, [,,252630 -32 |; for active metamaterials there are no such restrictions.

In the case when all other elements of the matrices T'?) are zero, the equation (7 ) is

scalar:

AL = 48+ X Goo PB4 rpw =03 AL = A mpu n=0. - (3)

t#q



The matrix element Gy (7,,7;) = —iH (()1) (ko‘Fq - Ii‘) here represents the delayed

Green's function of the Helmholtz equation.

As an illustration, we consider the problem of designing an annular shell made
of a metamaterial (Fig. /a). Its properties are such that, if the source is inside the shell,
its field inside the shell is not distorted by it and does not pass outside. The field of the
source located outside does not pass inside and is minimally scattered by the shell. The
last circumstance relates the set problem to the problem of concealment [4 -7 ]. The

described requirements can be written using the Green's functionG(7,7) of an
inhomogeneous medium:

G(’j‘iaf‘Z)ZGOO(Fb’E) 1pu "_/:1‘<R17

172‘ <R, unu ‘171‘ >R,

172‘>R2;

. . 9)
G(rhrZ):O 1Ipu ‘7"1‘<R1,

772‘ > R, nnu ‘771‘ > R,,

K| <R,.

The equation (8 ) under the conditions (9 ) can be solved in different ways [ ,3334
]. In this case, a method similar to the one described in [35 ] was used. It consists in
using the Born approximation and iterative refinement of the parameters of the medium
inside the shell. It was assumed that it consists of 30 annular layers with the same
elements in each layer.

After the scattering coefficients of the shell elements were determined, the shell
was tested. In Fig. /b, the solid lines represent the acoustic pressure from the source

located at.S; (inside the shell) or from the source at.S, (outside). For comparison, the

dashed lines show similar dependencies in the absence of the shell. It can be seen that

the source field S; is not distorted by the shell and is equal to zero outside it, i.e. the

first requirement 1s fulfilled with great accuracy. The field of the source S, does not



penetrate inside the shell, but is scattered by it. It is especially noticeable from the side
opposite to the source: here a "shadow" zone is formed. Thus, the condition of
concealment is not completely fulfilled. This is due to the fact that, in contrast to the
works [ ,45 ], the elements of the calculated structure are isotropic, and in contrast to
the works [ ,67 ], the external field does not penetrate inside the shell.

Fig. /c on the complex plane shows the values of the found coefficientsf3,, for

different elements of the shell. The circle 2 with the center in the point—2i and radius
2 denotes the set of scatterers for which the law of conservation of energy is satisfied [
, 3132 ]. The points lying insideQ2 , correspond to scatterers with absorption, and
outside to those containing an additional energy source. Although it is in principle
possible to limit the iterative solution of the equation (8 ) to the case of energy
conservation in scattering, this leads to a significant deterioration of the obtained
solution. Thus, it is reasonable to realize the calculated design exactly in the class of

active metamaterials.

TUNABLE LENS DESIGN
The equations (7 ), (8 ) can be used to calculate metamaterials that change their
wave properties under external influence. As an illustration, we consider the problem
of designing a planar lens with a tunable focus. Such a lens (Fig. 2a) is a lattice
ofN-(2M + 1) elements of a metamaterial whose centers are located at the points with

coordinates ; ; 7, ={x,;,} 0<n<N —M <m<M . The tuning is realized by a slight

2" mm

compression or stretching of the lattice along one of the coordinate axes.

10



To simplify the practical realization, all elements are chosen identical. Their

monopole and dipole scattering coefficients are3, and B, , respectively. Along the axis
OX , they are spaced uniformly with a steps_a , i.e.,x, =5, na . The step along the

axisOY , equal tos,b, =y, —V, , is non-uniform. Here, the valuesa andb,

represent the base distances between the centers of adjacent elements, and the

coefficientss, ands, , which are close to unity, determine the stretching or

compression of the lens along the corresponding axis.
Thus, when N and M are fixed, the design is fully described by the parameters ,

,Bo B; @ andb,, . In determining their values, the following considerations are taken

into account. First, the focal length of the designed lens should change significantly

when changing coefficientss, ors,, within a few percent, since such a small change

y
can be relatively easy to realize in practice. Second, the acoustic field reflected from
the lens should be minimized as much as possible. Third, the properties of the lens
should remain stable over some frequency band. To take into account the last
circumstance, it is necessary to specify their frequency derivatives along with the
scattering coefficients, which complicates the analysis. On the other hand, for general
considerations, scattering coefficients with values close to—4i , since this point
corresponds to resonance [ , ,253132 ], can be excluded from consideration. Ultimately,
it is advisable to perform such a check after the internal structure of the metamaterial
element has been determined based on the values of the scattering coefficients.

As a result of the solution of the described problem atM = N =10 , the values of

scattering coefficients 3, = —0.587+0.088; and3; =0.497 +0.063i were obtained; the

11



stepa is equal t00.257),, , where), =2n/k, is the wavelength in the homogeneous

background medium surrounding the lens. The dependence of the stepsb,, on the index

m is close to quadratic: b, =0.192A, +0.00019%,(m —1)* . Such a lens has thickness
2.57), and transverse dimension42, . In the simulation, the incident acoustic field
was radiated by a plane source of width82, , located at a distance2A, from the lens.

This source creates a wave beam in a homogeneous background medium, the amplitude

of which at the origin is equal to . p,

In Fig. 2b, the black lines show the results of calculating the amplitude of the

acoustic pressure field p(x) on theOX axis to the right of the lens, normalized to p,, .
It can be seen that when the lens is transversely deformed, when the value of's,, varies

withint 5% , the area of focus moves significantly and, thus, the described
configuration does solve the problem. At the same time, the field amplitude in the focal
drag region changes within 10%, i.e., relatively weakly. The modeling also showed

that changing the value of s has little effect on the amplitude and position of the focus.

For practical realization of a lens with the described parameters it is necessary to
propose a design of a metamaterial element possessing the found scattering
coefficients. In the general case, this represents a separate difficult problem. One of the
possible methods of its solution is to consider a multilayer elastic cylinder as such an
element. The thicknesses and materials of its layers are selected so as to minimize the
difference of the scattering coefficients from the required ones. For the obtained values
of the scattering coefficients, if water is used as a background medium, a good match

can be obtained using homogeneous steel cylinders with radius0.077A, . This value 1s

12



less than half of the minimum distance between the centers of the metamaterial
elements, which makes it possible to implement it in practice.

To check the performance of the lens in the broadband mode, the frequency of
the used radiation was reduced by 10% at fixed geometrical dimensions of all elements.

The calculated dependence of the pressure p(x) on the axis in this case ats, =1 is

represented in Fig. 2b by a gray line. It can be seen that its difference from the black
line drawn at the initial radiation frequency is small. Consequently, the calculated lens

can be used also when working with nonmonochromatic signals.

CONCLUSION

The methods of scattering theory can be successfully used to consider
metamaterials consisting of individual elements placed in a background medium. They
allow, to calculate the acoustic field inside a metamaterial with a given structure or,
conversely, to determine this structure if it i1s known how the field is to be transformed.
The proposed two-step method allows us to break each of these problems into two
parts, which can significantly speed up the solution. Such a breakdown is possible
because the metamaterial elements have a small wave size, and it is sufficient to specify
only a few scattering coefficients to describe the scattering on them.
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FIGURE CAPTIONS

Figure 1. Schematic of a cylindrical shell made of metamaterial. At the points.S; and
S, the sources are located (a). View of the acoustic pressure profile along the line
v =x ,when the cylindrical shell is present (solid lines) or absent (dashed lines). Black
lines correspond to the location of the source atsS; ; gray lines correspond to the
location at.S, . The gray bars indicate points inside the envelope (b). Calculated values
of the scattering coefficientf, on the complex plane for different elements of the

metamaterial inside the shell. The black line represents the circle Q2 (c).

Figure 2. Schematic representation of a lens made of a metamaterial. The dots represent
the centers of its elements. The acoustic wave is generated by a plane source located to
the left of the lens (a). Spatial distribution of the acoustic pressure amplitude on the

lens axis to the right of the lens at different values of the stretching coefficients, .

Black lines correspond to the initial frequency of radiation; gray line - to the frequency

of radiation reduced by 10% (b).
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Fig. 2.
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