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Abstract. The dependences of the spin-valve critical switching field with planar and 

perpendicular anisotropy of layers on the anisotropy coefficient and the magnetic-field 

direction are analytically and numerically obtained. It is established that the smallest 

critical values of the field and switching time are achieved when the magnetic field 

deviates from the anisotropy axis by an angle of 45°. 
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INTRODUCTION 

Magnetic superlattices, such as spin valves, are actively used in microelectronics 

due to their versatility, scalability, and compatibility with K-MOS technologies [1]. 

Magnetoresistive random access memory (MRAM), hard magnetic disk drive 

(HMDD) read heads, and deterministic spin logic utilize spin valve switching between 

antiparallel and parallel states. HMDDs remain the most popular type of persistent 

storage due to their non-volatile nature, ease of fabrication, and high reliability [1]. In 

DOI: 10.31857/S03676765250409e6

mailto:linda_nike@mail.ru


2 
 

turn, MRAM has all the advantages of HMDDs but with higher performance and 

integration, making it a potential replacement for other types of memory [2]. The 

principle of two possible outcomes is the basis of stochastic spin logic (PSL). The main 

advantages of spin logic devices include reversibility of processes, the ability to 

perform both deterministic and probabilistic computations, and data storage in a single 

integrated circuit [3]. The precession mode is applicable in spin-transfer nano-

oscillators (STNOs). STNO generators provide extensive frequency and amplitude 

characteristics that can be varied by magnetic field and electric current [4]. The high 

sensitivity of spin valves to magnetic field and temperature has been utilized in various 

magnetic biosensors, magnetic field sensors and bolometric sensors. Arrays of spin-

valve biosensors hold great promise in molecular diagnostics of cancer, infections and 

cardiovascular diseases [5]. In [6] the mechanism of operation of magnetoresistive 

LED as a magnetic field sensor is considered and it is shown that despite the small 

coefficient of giant magnetoresistance δGMR, it is possible to achieve a 100% change in 

the intensity of the emitted light, that is, to realize the operation of magnetoresistive 

LED in the "on or off" mode, respectively, in the presence or absence of a magnetic 

field. The analysis carried out in [7] showed that the sensitivity of spin-ventile structure 

to microwave irradiation along with the electrical contribution contains a thermal one, 

which makes it possible to use magnetic superlattices for detection and microwave 

visualization of objects at small distances.  

All the above-mentioned emphasizes the relevance of research aimed at 

improving the energy efficiency and magnetic sensitivity of spin-gate structures. 

Nevertheless, one of the main problems of their application remains high energy 
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consumption during switching by means of a magnetic field [8 - 10]. In this work, the 

behavior of a spin-valve in a magnetic field of arbitrary orientation is examined with 

the goal of reducing energy consumption and increasing sensitivity without loss of fast 

performance. For this purpose the following tasks were set: to construct a 

macromagnetic model of a spin valve placed in a field with an arbitrary direction, by 

means of bifurcation analysis of the system of equations of the model to obtain 

equations for the coordinates of its special points, from these equations to derive 

formulas for the dependence of the critical switching fields on the direction of the 

magnetic field and to evaluate the values of speed and sensitivity of the spin valve on 

the basis of ten different materials.  

The classical geometry of field switched MRAM cells and magnetic field sensors 

uses the field direction along the anisotropy axis [5]. As a method of energy reduction, 

it is proposed to add a perpendicular component to the magnetic field directed along 

the anisotropy axis. Although this modification will lead to a complication of the 

geometry of the structure, however, for the topology of integrated circuits it means 

adding only one additional power bus for the whole circuit. This is due to the fact that 

the additional field component can be applied simultaneously to the entire matrix of 

spin gates, which can serve as a clock signal for all cells [1]. At the same time, the 

value of this component will not be sufficient to switch the spin valve, and thus will 

not lead to errors in the operation of the device. 

  

BASIC EQUATIONS 
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The object of study is a spin valve with a square cross section with side d0= 11 

nm [2], shown in Fig. 1. It consists of two ferromagnetic layers FM1 and FM2 

separated by a non-magnetic NM interlayer of thickness d(NM) (1)= 1.2 nm [11]. Two 

types of anisotropy of ferromagnetic layers were considered in the study: planar and 

perpendicular to the surface of the layers. The antiferromagnetic layer AF is used to 

anchor the direction of the magnetization vector 𝑀𝑀��⃗ 1   in the thicker (fixed) 

ferromagnetic layer FM1, whose thickness d(FM) (1)= 5 nm [2]. The resistance of the 

superlattice depends on the direction of the magnetization vector𝑀𝑀��⃗ 2   in the thin (free) 

layer FM2, whose thickness is d(FM) (2)= 2 nm [2]. The structure is placed in the 

magnetic field𝐻𝐻��⃗   , whose direction is given by the azimuthal angle φ and zenith angle 

θ. The magnetization vector of the free layer𝑀𝑀��⃗ 2   can change its direction, MX, MY, 

MZare its projections on the corresponding OX, OY, OZ axes. An electric current of 

density J is passed perpendicular to the plane of the layers opposite to the OZ axis. 

The spin valve has two main stationary states: parallel with resistance RPand 

antiparallel with resistance RAP. They can be expressed through the specific resistances 

of the ferromagnetic ρFand the spin polarization parameter P [1]. The total resistance 

of a magnetic superlattice for any position of the vector𝑀𝑀��⃗ 2  is described by the 

expression R= 0.5 [(RP+ R(AP))+ (RP- RAP)(Mi/ Ms)], where M(i)is the projection of the 

vector𝑀𝑀��⃗ 2 on the anisotropy axis, and Msis the saturation magnetization.  

The dynamics of the vector𝑀𝑀��⃗ 2 is described by the phenomenological Landau-

Lifshitz-Hilbert equation 
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where α is the dissipation coefficient,𝐻𝐻��⃗ эфф is the effective magnetic field including the 

following components: 

– light-axis anisotropy field equal to 2MXK / (M(s) (
2) µ

0) for the direction along the OX 

axis (planar anisotropy) and 2MZK / (M(s) (
2) µ

0) for the direction along the OZ axis 

(perpendicular anisotropy), where K is the first anisotropy constant; 

– demagnetization field equal to MZ; 

– field due to the spin-polarized current contribution, according to [8 - 10], is of the 

form GЈћ / (ed(FM) (2)µ(0) M(s) (
2)) [(𝑀𝑀��⃗ 1 / Ms)×𝑀𝑀��⃗ 2 ], where G= c / (b+ MX/ Ms) is the current 

coefficient, here c= 4P(3/2)/ (1+P)3, b= 3 - 4c [8 - 10]; 

– external magnetic field .𝐻𝐻��⃗  

The influence of the antiferromagnetic AF layer is accounted for in the effective 

field𝐻𝐻��⃗ эфф only for the magnetization vector of the fixed layer𝑀𝑀��⃗ 1 such that the vector 

vector𝑀𝑀��⃗ 1 has a fixed direction and magnitude. 

The following constants are used in the calculations: µ0is the magnetic constant, 

γ is the gyromagnetic ratio, ћ is Planck's constant, and e is the elementary electric 

charge. 

The following six magnetically soft materials were selected as the materials for 

layers FM1 and FM2:  

– cobalt and iron, whose monocrystalline films are easier and cheaper to obtain; 

– Fe70Co(30) (permendur) and Fe(60)Co(20) B20with high spin polarization parameter P > 

0.5; 
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– Co93Gd7and Co80Gd20, having the best magnetic properties to reduce the magnetic 

switching field. 

The following magnetically hard alloys have also been used: 

– Co50Pt50with small saturation magnetization Ms; 

– Fe50Pd50and Fe(50)Ni(50) (permalloy) are ferromagnetic alloys with a small 

dissipation factor α = 0.01; 

– Fe50Pt50is the alloy with the highest anisotropy constant. 

The materials are classified into magnetically soft and magnetically hard 

materials taking into account the magnetically hardness criterion κ = (K / (M(s) (
2) µ(0) 

))1/2. Magnetically hard materials have the criterion κ > 1 [12]. The parameters of these 

ferromagnetics are summarized in Table 1. Copper was chosen as the material for the 

non-magnetic interlayer. Defects in the microstructure and the degree of structural 

order of materials are not taken into account in the model under consideration. 

 

BIFURCATION ANALYSIS 

The most important characteristic of the dynamics of any vector are its 

equilibrium positions, or, in another way, the special points of the system of equations. 

In papers [8 - 10], an effective method for finding the number and coordinates of the 

equilibrium positions of the free layer magnetization vector of the spin fan𝑀𝑀��⃗ 2  . 

Equations (P1) and (P2) for calculating the coordinates of the special points of the 

system (1) for planar and perpendicular anisotropy, respectively, are presented in the 

Appendix.  
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The type of special points is determined using the Cauchy theorem on the 

existence or uniqueness of the solution of the system of differential equations, which 

is not fulfilled in them. For this purpose, the eigenvalues of the Jacobi matrix of the 

system (1) are calculated. Depending on the signs of their real parts, the stability of the 

singular point is determined. While the magnitude of the imaginary part of the 

eigenvalues of the Jacobi matrix determines the type of equilibrium position (focus, 

node, saddle).  

By dividing the plane of control parameters H - J by a frequent grid and 

determining the number, coordinates, and type of special points in each node of this 

grid, bifurcation diagrams for equation (1) for different materials, anisotropy 

configurations, and magnetic field direction were constructed in [8 - 10]. 

When considering bifurcation diagrams, it was observed that the critical 

switching field of the spin valve Hminfor planar anisotropy depends strongly and 

nonlinearly on the direction of the magnetic field, i.e., on the angles φ and θ [9], and 

for perpendicular anisotropy only on the angle θ [10], while being independent of the 

dissipation factor α. This is because equations (P1) and (P2) do not depend on α, and 

also equation (P2) does not depend on the angle φ. In [9] it was noted that for planar 

anisotropy the decrease of the angle θ leads to a monotonic increase of the critical 

switching field, so we will perform all further calculations for this direction of 

anisotropy for θ = π / 2. 

In order to numerically obtain the dependence of Hmin(φ, θ), bifurcation diagrams 

at zero current (J= 0) (Fig. 2) for a cobalt-based spin valve with planar anisotropy in 

the φ - H plane (θ = π / 2) (Fig. 2a) and for Fe50Pt50with perpendicular anisotropy for θ 
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- H (Fig. 2b). They highlight regions with qualitatively different dynamics of the 

magnetization vector𝑀𝑀��⃗ 2 . In regions I and VI, there can be no spin fan switching, since 

both ground steady states are stable. In regions II and IV, switching to the parallel state 

is observed, and in regions III and V - to the antiparallel state. It is worth noting that 

system (1) has 6 special points in region I, 4 special points in regions II, III and VI, and 

2 special points in regions IV and V. The number of special points determines the type 

of dynamics of the magnetization vector of the free layer of the spin fan. The more 

special points, the more complex the trajectory of the end of the vector𝑀𝑀��⃗ 2 , which leads 

to a greater number of oscillations in the graph of the transient switching process of the 

spin valve. Oscillations in the transient can lead to errors in the operation of the 

integrated circuit, so it is necessary to choose modes of operation of the spin valve in 

regions with fewer special points. 

The bifurcation lines bounding regions I and VI are highlighted in red - these are 

the stability lines of the special points of the system (1) corresponding to the parallel 

and antiparallel states of the spin fan. They numerically determine the dependence of 

the critical switching field Hminon the angle φ or θ. The appearance of these bifurcation 

lines suggests that the functions H(min) (k, φ) and H(min) (k, θ) have a single minimum. 

These lines also correspond to the bifurcation of the vanishing of a pair of special 

points, that is, the pair of real roots of equations (P1) and (P2) goes to the region of 

complex numbers. Applying to them the criteria for the loss of stability of stationary 

states of the spin fan (the real part of the eigenstates of the linearization matrix for a 

given point is 0), as well as the criterion M(X) ,MY, MZ∈ ℝ in the course of this study, 

independently of each other for planar and perpendicular anisotropy, taking into 
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account J= 0, the formula for calculating the critical switching field normalized to the 

saturation magnetization was analytically obtained (2). 

Hmin/ Ms = ±  N((q2 +  sq + s2- 1) / q)(1/2),   (2) 

where q= (0.5 (s - 1) ((4s+ 5)1/2+ 2s+ 2s(2) -1))(1/3), for planar anisotropy at θ = π / 2 the 

multipliers N and s take the following values: N= k , s= 9cos4 φ - 9cos2 φ+ 1. For 

perpendicular anisotropy at any φ, the coefficients N and s are k - 1 and 9cos4 θ - 9cos2 

θ+ 1, respectively. The anisotropy field coefficient k is calculated using the anisotropy 

constant K and the saturation magnetization k = 2K / (Ms
2µ0) .  

Fig. 3 shows the corresponding plots of the dependence of H(min) (k, φ) and H(min) 

(k, θ) for planar and perpendicular anisotropy. It is worth noting that the cross sections 

of the surfacesH(min) (k, φ) and H(min) (k, θ) in Fig. 3 respectively by the planes (φ - Hmin) 

and (θ - Hmin) coincide with the corresponding numerically obtained bifurcation lines 

in the diagrams of Fig. 2. 

Differentiating equation (2) for planar anisotropy by the angle φ, and for 

perpendicular anisotropy by the angle θ, and equating the derivative to zero, we obtain 

that the function (2) in both cases has a single minimum in the coordinate (N/2, π/4) . 

For planar anisotropy, the minimum valueH(min)/ Ms is half k when θ = π/2, φ = π/4, and 

for perpendicular anisotropy it is (k - 1)/2 when θ = π / 4, which is half the critical 

switching field when the magnetic field is directed along the anisotropy axis. These 

results coincide with the numerical values obtained by constructing bifurcation 

diagrams (Fig. 2). This means a twofold reduction in the energy consumption of the 

spin valve as a magnetic field switched MRAM memory cell [5]. Table 2 shows the 
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calculated critical switching fields of the spin valve when the field is directed along the 

anisotropy axis and when it is deflected from it by 45°. 

 

NUMERICAL RESULTS 

At switching of the spin valve in the field not parallel to the anisotropy axis, the 

stable special point, to which the switching occurs, is shifted relative to the basic 

stationary equilibrium state. Thus switching will occur in two steps. First, in a magnetic 

field, the vector𝑀𝑀��⃗ 2 will switch to a stable special point near one of the stationary states 

(parallel or antiparallel), and then, when the magnetic field is turned off, the end𝑀𝑀��⃗ 2 

will switch to the stationary state in the basin of attraction. Thus, the switching of the 

spin valve in a magnetic field not parallel to the anisotropy axis will be two-cycle. 

Table 2 shows estimates of the switching time t for the first switching cycle of 

the spin valve in a magnetic field close to the critical field, made by modeling the 

switching of the spin valve using the Runge-Kutta method of the fourth order. The data 

in Table 2 show that for almost all materials the switching time is lower for a field 

deflected from the anisotropy axis by an angle of π/4. The corresponding cells are 

shaded in gray. 

The sensitivity of the spin valve as a magnetic field sensor S0is inversely 

proportional to the magnetic field change S0= dR/dH [5]. However, the shift of the 

stable equilibrium position from the stationary one reduces the change in resistance dR, 

which in turn reduces the sensitivity S0. The numerical experiments performed for ten 

considered materials to simulate the dynamics of the spin valve in a magnetic field 

deviated from the anisotropy axis showed that at a field magnitude close to the critical 
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one, the deviation of the singular point from the stationary state is not more than 10%. 

Thus, the reduction of S0due to reduction of dR,in this case, will not be more than 10%, 

but a 2-fold reduction of the switching field will make a greater contribution to the 

change in the value of S0, as can be seen from the data presented in Table 2. 

From the results of numerical calculations given in Table 2 it can be concluded 

that the smallest critical switching field has Co93Gd7with planar anisotropy at θ = π/2, 

φ = π/4. Accordingly, the Co93Gd7alloy has the highest sensitivity of 89.08 Ohm/Tl. 

The lowest switching time of 1 ns is observed for Co50Pt(50)and Fe(50)Pt(50), but 

the critical switching field for these materials is~ 700 times higher than that of Co93Gd7. 

The optimal material for these two parameters is the Fe70Co30permendur with planar 

anisotropy, since it has a critical switching field of 0.015 MA/m (θ = π/2, φ = π/4) at a 

switching time of 3 ns. 

 

CONCLUSION 

Thus, the dependence of the critical switching field of the spin fan Hminon its 

direction is numerically and analytically obtained. Studies have been carried out for 

ten different ferromagnetics with planar and perpendicular anisotropy. It is determined 

that the deviation of the magnetic field by an angle of 45° from the anisotropy axis 

reduces the critical switching field Hminby two times and increases the speed of the spin 

valve for most of the considered materials. It is shown that the decrease in sensitivity 

due to the deviation of the magnetic field from the anisotropy axis is completely leveled 

by its growth due to a twofold decrease in Hmin. Numerical calculations of sensitivity 

and switching time have shown that the best of the considered ferromagnetics for 
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fabrication of magnetoresistive sensors and reading heads of hard disks is Co93Gd7with 

planar anisotropy of layers, while for magnetoresistive MRAM cells switched by 

magnetic field, the optimal material is permendur (Fe70Co30) . For both applications, the 

best magnetic field direction will be at an angle of π/4 to the anisotropy field. 
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APPENDIX. DETERMINATION OF COORDINATES OF SPECIAL POINTS FOR 

THE LANDAU-LIFSHITZ-HILBERT SYSTEM 

1. For the case of planar anisotropy and arbitrary magnetic field direction (θ, φ - 

any), let us write the system of equations (1) in coordinate form. 

dmx / dτ = P(mx, my, mz) = mymz + h(vmz – wmy) – Gj(my
2 + mz

2) + 

+ α(kmx + mxmz
2 – kmx

3) + αh(u – umx
2 – vmxmy – wmxmz), 

dmy / dτ = Q(mx, my, mz) = – mxmz(k + 1) + h(wmx – umz) – Gj(αmz – mxmy) +  

+ α(mymz
2 – kmx

2my) + αh(v – vmy
2 – umxmy – wmymz), 

dmz / dτ = S(mx, my, mz) = kmxmy + h(umy – vmx) + Gj(αmy – mxmz) +  

+ α(mz
3 – mz– kmx

2mz) + αh(w – wmz
2 – umxmz – vmymz). 

Here τ = tγµ0Ms / (1 + α2), u = sin θ · cos ϕ, v = sin θ · sin ϕ, w = cos θ, 

h = H / Ms, j = Jћ / (edFM2µ0Ms
2), mx = MX / MS, my = MY / MS, mz = MZ / MS, 

k =2K / (Ms
2µ0). 

To find the equilibrium positions of the system (1), equate its right-hand sides to 

zero and, by successive elimination of variables, obtain the equation for calculating the 

component mx: 

� 𝐴𝐴𝑓𝑓𝑚𝑚𝑥𝑥
𝑓𝑓 = 0

10

𝑓𝑓=0
,      (П1) 

where 

А10 = k² (k + 1)², 

А9 = 2(k + 1) k (2bk (k + 1) + hu (2k + 1)), 

А8 = ((k + 1) (hu (hu (5k + 1) + 8bk (2k + 1)) + h²v² + 2j²c²k) + (k + 1)² (6b²k² – k²) + 

+ h²k (k + v²)), 
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А7 = 2 (2 (b³k² – k²b + h²b + 6hb²uk – huk) (k + 1)² + (k + 1) (k (hu (10hbu + 1 –6b²) + 

+ 2j²c²b) – 2h²bw² + c²j²hu + h³u) + h ( – 2hk (u² + w²) b + uk (j²c² + u²h²) –  

– hw (huw + jcv))), 

А6 = ((k + 1)² ((b4 – 6b²) k² + k (16hbu (b² – 1)) + 6h²b²) + (k + 1) (2khu (3hu (5b² –  

– 1)– 4b (b² – 1)) + 2kc²j² (b² – 1) + 8hbu (h²u² + c²j² + h²) + 6h²b² (v²–w²–1)) + 

+ (j4c4 + hj²c² (h + hu² – 4bu) – 6h²bjvwc + h²( u² (h² – 1) + 2b (v²–1) (4hu – 3b)))), 

А5 = 2 (2b² (k + 1)² (h²b – bk² – 6hku + hb²ku) + (k + 1) (kb (2u²h² (5b² – 6) –  

–buh (b² – 6) – 2c²j²) + (6h³b²u)) – (2k + 1) h (h (hu³ + 2b³w²) – c²j²u (b² – 1)) +  

+ h²b (2kbu²(3hu – b ) + (2hu (hu – 3bw²) + c²j²(u² + 1) – 2u² – 3bvcjw))), 

А4 = (– b³k (bk + 8hu) (k + 1)² + b (k + 1) (h²b³(v² + k + 5ku²) + 8hub² (u²h² – k²) –

– 2kb(j²c² + 18u²h²) – 4hu (j²c² + 2u²h²)) + h²b4 (u² – w²k) + 2h²b³ (4khu – vwcj +  

+4huv²) + h²b² (j²c²(u² + 1) + 6u² (h² – 1)) – 4khub (j²c² + 2u²h²) – (j²c² + u²h²)²), 

А3 = 2hbu (((– 2k² + u²h²)b² – 12hubk – 5u²h²) b (k + 1) – b³ (k + 1)² – (j²c² – b² + 

+ u²h²) (2hu + 2bk + b) + b ((h²k – k + h²v²)b² + 2hub (h² – 2) – 5u²h²k)), 

А2 = – h²u²b² (6b²k (k + 1) + 8hbu (2k + 1) + 2j²c² – h²b² + b² + 6u²h²), 

А1 = – 2h³u³b³ (2hu + 2bk + b), 

А0 = – h4b4u4. 

The remaining coordinates are calculated from the equations S and P by 

substituting the values obtained from equation (P1). 

2. For the case of perpendicular anisotropy and arbitrary magnetic field direction 

(θ, φ - any), let us write the system of equations (1) in coordinate form. 

dmx / dτ = P(mx, my, mz) = – mymz (k – 1) + h(vmz – wmy) – Gj(mxmz + αmy) + 

+ α(mxmz
2 – kmxmz

2) + αh(u – vmxmy – wmxmz – umx
2 ), 
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dmy / dτ = Q(mx, my, mz) = mxmz(k – 1) + h(wmx – umz) – Gj(αmx – mymz) +  

+ α(mymz
2 – kmx

2mz) + αh(v – umxmy – vmy
2 – wmymz), 

dmz / dτ = S(mx, my, mz) = kmxmy + h(umy – vmx) – Gj(my
2 + mx

2) +  

– α(mz
3 – mz)(k – 1) + αh(w – umxmz – wmz

2 – vmymz). 

To find the equilibrium positions of the system (1), we should equate its right-

hand sides to zero and by successively excluding variables we obtain the equation for 

calculating the component mz. Then, by successively excluding variables, we obtain 

the expression (P2) for calculating the coordinate mzof special points: 

� 𝐵𝐵𝑓𝑓𝑚𝑚𝑧𝑧
𝑓𝑓 = 0

10

𝑓𝑓=0
,     (П2) 

where 

B6 = (k – 1)², 

B5 = 2 (hw – b + bk)(k – 1), 

B4 = 2k – 4hbw + 4hbwk + h2 +b2 – k2 – 2b2k + b2k2 + c2j2 – 1, 

B3 = 2(hw – b + 2bk – hkw + h2b – bk2 – hwb2 + hkwb2), 

B2 = 4hbw – 4hbkw – b2 + 2kb2 – h2w2 – b2k2 – c2j2 + h2b2, 

B1 = – 2hbw(hw – b + bk), 

B0 = – h2b2w2. 

It should be noted that expression (3) is independent of the parameters u and v, 

which means that the coordinates of the special points along the OZ axis do not depend 

on the azimuthal angle φ. For non-zero fields and currents at w= 1, equation (P2) has 

two significant roots mz= ±1, and for H= 0, J= 0, three roots mz= ±1 and mz= 0. In the 



16 
 

case of w≠ 1, expression (P2) has two or four real roots whose modulus is less than 

one. 
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FIGURE CAPTIONS 

Figure 1: Geometry of the spin valve model. 

 

Figure 2: Bifurcation diagrams at zero current in the H - φ plane for cobalt with planar 

anisotropy at θ =  π/2 (a) and in the H - θ plane for Fe50Pt50with perpendicular 

anisotropy (b). 

 

Figure 3: Dependence of the critical switching field on its direction for planar (a) and 

perpendicular anisotropy (b). 

 

 

Table 1. Material parameters used in the calculations. 

Material µ0Ms, 
Tl α K, 

kJ/m3 P ρF, 
nOm∙m 

RAP, 
Ohm 

RP, 
Ohm 

δGMR, 
% 

M
ag

ne
tic

al
ly

 so
ft 

Co [13] 1.76 0.020 530 0.35 62.4 4.11 3.70 11 

Fe [13, 14] 2.15 0.008 48 0.40 97.1 6.58 5.71 15 

Fe70Co30 [14 – 16] 2.40 0.015 35 0.55 83.3 6.62 4.93 34 

Fe60Co20B20 
[17 – 19] 1.96 0.040 210 0.53 195.6 15.01 11.42 31 

Co93Gd7 [20] 1.21 0.020 1.88 0.30 78.1 4.96 4.61 8 
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Co80Gd20 [20] 0.10 0.020 1.38 0.10 112.9 6.67 6.62 1 
M

ag
ne

tic
al

ly
 h

ar
d Co50Pt50 [13, 21] 1.01 0.030 4900 0.30 100.2 6.35 5.88 8 

Fe50Pd50 [13, 22, 23] 1.37 0.010 1800 0.50 99.0 7.37 5.83 26 

Fe50Pt50 [13, 24] 1.43 0.050 6600 0.40 106.0 7.17 6.23 15 

Fe50Ni50 [25, 26] 1.59 0.010 1300 0.20 80.0 4.87 4.71 3 
 

 
Table 2. Critical switching fields, switching times at these fields, and spin valve 

sensitivity calculated for different materials and magnetic field direction 

configurations. 

Material 

Planar anisotropy Perpendicular anisotropy 

θ = π / 2, φ = 0 θ = π / 2, φ = π / 
4 

θ = 0 θ = π / 4 

Hmin, 
MA/m 

t, 
ns 

S0, 
Ohm/T

l 

Hmin, 
MA/m 

t, 
ns 

S0, 
Ohm/T

l 

Hmin, 
MA/m 

t, 
ns 

S0, 
Ohm/Tl 

Hmin, 
MA/m 

t, 
ns 

S0, 
Ohm/Tl 

Co 0.605 9 0.27 0.301 7 0.52 0.922 47 0.20 0.461 42 0.39 

Fe 0.047 17 7.69 0.022 21 14.91 1.899 55 0.21 0.949 60 0.40 

Fe70Co30 0.032 11 23.01 0.015 3 44.64 2.416 18 0.36 1.208 16 0.69 

Fe60Co20B20 0.218 7 6.66 0.107 4 12.93 1.425 29 1.06 0.712 25 2.06 

Co93Gd7 0.013 12 45.92 0.007 8 89.08 1.003 84 0.15 0.501 73 0.29 

Co80Gd20 0.028 442 0.77 0.014 135 1.49 0.069 464 0.41 0.034 126 0.79 

Co50Pt50 9.645 5 0.02 4.851 1 0.04 9.347 17 0.02 4.673 10 0.04 

Fe50Pd50 2.616 9 0.23 1.314 6 0.45 1.631 254 0.40 0.815 212 0.77 

Fe50Pt50 9.126 4 0.04 4.610 1 0.08 8.179 49 0.05 4.089 24 0.09 

Fe50Ni50 1.645 7 0.04 0.817 9 0.07 0.427 446 0.17 0.213 382 0.32 
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Fig. 2. 
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Fig. 3. 

 


