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STRUCTURE IN THE ARBITRARY-DIRECTION MAGNETIC FIELD
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Abstract. The dependences of the spin-valve critical switching field with planar and
perpendicular anisotropy of layers on the anisotropy coefficient and the magnetic-field
direction are analytically and numerically obtained. It is established that the smallest
critical values of the field and switching time are achieved when the magnetic field
deviates from the anisotropy axis by an angle of 45°.
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INTRODUCTION
Magnetic superlattices, such as spin valves, are actively used in microelectronics
due to their versatility, scalability, and compatibility with K-MOS technologies [1].
Magnetoresistive random access memory (MRAM), hard magnetic disk drive
(HMDD) read heads, and deterministic spin logic utilize spin valve switching between
antiparallel and parallel states. HMDDs remain the most popular type of persistent

storage due to their non-volatile nature, ease of fabrication, and high reliability [1]. In
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turn, MRAM has all the advantages of HMDDs but with higher performance and
integration, making it a potential replacement for other types of memory [2]. The
principle of two possible outcomes is the basis of stochastic spin logic (PSL). The main
advantages of spin logic devices include reversibility of processes, the ability to
perform both deterministic and probabilistic computations, and data storage in a single
integrated circuit [3]. The precession mode is applicable in spin-transfer nano-
oscillators (STNOs). STNO generators provide extensive frequency and amplitude
characteristics that can be varied by magnetic field and electric current [4]. The high
sensitivity of spin valves to magnetic field and temperature has been utilized in various
magnetic biosensors, magnetic field sensors and bolometric sensors. Arrays of spin-
valve biosensors hold great promise in molecular diagnostics of cancer, infections and
cardiovascular diseases [5]. In [6] the mechanism of operation of magnetoresistive
LED as a magnetic field sensor is considered and it is shown that despite the small
coefficient of giant magnetoresistance dgmr, it 1S possible to achieve a 100% change in
the intensity of the emitted light, that is, to realize the operation of magnetoresistive
LED in the "on or off" mode, respectively, in the presence or absence of a magnetic
field. The analysis carried out in [7] showed that the sensitivity of spin-ventile structure
to microwave irradiation along with the electrical contribution contains a thermal one,
which makes it possible to use magnetic superlattices for detection and microwave
visualization of objects at small distances.

All the above-mentioned emphasizes the relevance of research aimed at
improving the energy efficiency and magnetic sensitivity of spin-gate structures.

Nevertheless, one of the main problems of their application remains high energy



consumption during switching by means of a magnetic field [8 - 10]. In this work, the
behavior of a spin-valve in a magnetic field of arbitrary orientation is examined with
the goal of reducing energy consumption and increasing sensitivity without loss of fast
performance. For this purpose the following tasks were set: to construct a
macromagnetic model of a spin valve placed in a field with an arbitrary direction, by
means of bifurcation analysis of the system of equations of the model to obtain
equations for the coordinates of its special points, from these equations to derive
formulas for the dependence of the critical switching fields on the direction of the
magnetic field and to evaluate the values of speed and sensitivity of the spin valve on
the basis of ten different materials.

The classical geometry of field switched MRAM cells and magnetic field sensors
uses the field direction along the anisotropy axis [5]. As a method of energy reduction,
it is proposed to add a perpendicular component to the magnetic field directed along
the anisotropy axis. Although this modification will lead to a complication of the
geometry of the structure, however, for the topology of integrated circuits it means
adding only one additional power bus for the whole circuit. This is due to the fact that
the additional field component can be applied simultaneously to the entire matrix of
spin gates, which can serve as a clock signal for all cells [1]. At the same time, the
value of this component will not be sufficient to switch the spin valve, and thus will

not lead to errors in the operation of the device.

BASIC EQUATIONS



The object of study is a spin valve with a square cross section with side dy= 11
nm [2], shown in Fig. 1. It consists of two ferromagnetic layers FM1 and FM2
separated by a non-magnetic NM interlayer of thickness dayy 1y= 1.2 nm [11]. Two
types of anisotropy of ferromagnetic layers were considered in the study: planar and

perpendicular to the surface of the layers. The antiferromagnetic layer AF is used to

anchor the direction of the magnetization vector Ml in the thicker (fixed)

ferromagnetic layer FM1, whose thickness dy) 1= 5 nm [2]. The resistance of the

superlattice depends on the direction of the magnetization Vectorﬁz in the thin (free)

layer FM2, whose thickness 1s druy o= 2 nm [2]. The structure is placed in the
magnetic fieldH , whose direction is given by the azimuthal angle ¢ and zenith angle

0. The magnetization vector of the free layerl\_jz can change its direction, My, My,
M_zare its projections on the corresponding OX, OY, OZ axes. An electric current of
density J is passed perpendicular to the plane of the layers opposite to the OZ axis.
The spin valve has two main stationary states: parallel with resistance Rpand
antiparallel with resistance Rap. They can be expressed through the specific resistances

of the ferromagnetic prand the spin polarization parameter P [1]. The total resistance
of a magnetic superlattice for any position of the vector MZ is described by the
expression R= 0.5 [(Rp+ Rap))+ (Rp- Rap)(Mi/ M;)], where Mis the projection of the
vectorM » on the anisotropy axis, and Miis the saturation magnetization.

The dynamics of the Vectorﬁz is described by the phenomenological Landau-

Lifshitz-Hilbert equation
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where a is the dissipation coefﬁcient,ﬁ3¢¢ is the effective magnetic field including the

following components:

— light-axis anisotropy field equal to 2MxK / (M) > *o) for the direction along the OX
axis (planar anisotropy) and 2MzK / (M) @ %) for the direction along the OZ axis
(perpendicular anisotropy), where K is the first anisotropy constant;

— demagnetization field equal to M;

— field due to the spin-polarized current contribution, according to [8 - 10], is of the
form GJh / (ed iy ooy mes) &) [(My / Mg)x M, 1, where G= ¢/ (b+ M/ Ms) is the current
coefficient, here c= 4P®?)/ (1+P), b=3 - 4¢ [8 - 10];

— external magnetic field H

The influence of the antiferromagnetic AF layer is accounted for in the effective

ﬁeldﬁa(bq, only for the magnetization vector of the fixed 1ayer1\71)1 such that the vector

Vect0r1\7f1 has a fixed direction and magnitude.

The following constants are used in the calculations: pis the magnetic constant,
v is the gyromagnetic ratio, / is Planck's constant, and e is the elementary electric
charge.

The following six magnetically soft materials were selected as the materials for
layers FM1 and FM2:
— cobalt and iron, whose monocrystalline films are easier and cheaper to obtain;
—  Fe70Cog0) (permendur) and Fe60)Co(20) B20with high spin polarization parameter P >

0.5;



— Coy3Gdrand CogyGd,o, having the best magnetic properties to reduce the magnetic
switching field.

The following magnetically hard alloys have also been used:

—  CosoPtsowith small saturation magnetization Mj;

— FesoPdspand Fe(sp)Niio) (permalloy) are ferromagnetic alloys with a small
dissipation factor o = 0.01;

—  FesoPtsois the alloy with the highest anisotropy constant.

The materials are classified into magnetically soft and magnetically hard
materials taking into account the magnetically hardness criterion k = (K / (M) » *(o)
)2 Magnetically hard materials have the criterion x > 1 [12]. The parameters of these
ferromagnetics are summarized in Table 1. Copper was chosen as the material for the
non-magnetic interlayer. Defects in the microstructure and the degree of structural

order of materials are not taken into account in the model under consideration.

BIFURCATION ANALYSIS
The most important characteristic of the dynamics of any vector are its
equilibrium positions, or, in another way, the special points of the system of equations.
In papers [8 - 10], an effective method for finding the number and coordinates of the
equilibrium positions of the free layer magnetization vector of the spin faan :
Equations (P1) and (P2) for calculating the coordinates of the special points of the
system (1) for planar and perpendicular anisotropy, respectively, are presented in the

Appendix.



The type of special points is determined using the Cauchy theorem on the
existence or uniqueness of the solution of the system of differential equations, which
is not fulfilled in them. For this purpose, the eigenvalues of the Jacobi matrix of the
system (1) are calculated. Depending on the signs of their real parts, the stability of the
singular point is determined. While the magnitude of the imaginary part of the
eigenvalues of the Jacobi matrix determines the type of equilibrium position (focus,
node, saddle).

By dividing the plane of control parameters H - J by a frequent grid and
determining the number, coordinates, and type of special points in each node of this
grid, bifurcation diagrams for equation (1) for different materials, anisotropy
configurations, and magnetic field direction were constructed in [8 - 10].

When considering bifurcation diagrams, it was observed that the critical
switching field of the spin valve Hminfor planar anisotropy depends strongly and
nonlinearly on the direction of the magnetic field, i.e., on the angles ¢ and 0 [9], and
for perpendicular anisotropy only on the angle 6 [10], while being independent of the
dissipation factor a. This is because equations (P1) and (P2) do not depend on a, and
also equation (P2) does not depend on the angle ¢. In [9] it was noted that for planar
anisotropy the decrease of the angle 0 leads to a monotonic increase of the critical
switching field, so we will perform all further calculations for this direction of
anisotropy for 0 =m/ 2.

In order to numerically obtain the dependence of Hnin(@, 0), bifurcation diagrams
at zero current (J= 0) (Fig. 2) for a cobalt-based spin valve with planar anisotropy in

the ¢ - H plane (6 ==/ 2) (Fig. 2a) and for FesoPtsowith perpendicular anisotropy for 6



- H (Fig. 2b). They highlight regions with qualitatively different dynamics of the

magnetization vectorM. » . Inregions I and VI, there can be no spin fan switching, since
both ground steady states are stable. In regions II and IV, switching to the parallel state
is observed, and in regions III and V - to the antiparallel state. It is worth noting that
system (1) has 6 special points in region I, 4 special points in regions II, Il and VI, and
2 special points in regions IV and V. The number of special points determines the type

of dynamics of the magnetization vector of the free layer of the spin fan. The more

special points, the more complex the trajectory of the end of the Vectorl\7[)2 , which leads
to a greater number of oscillations in the graph of the transient switching process of the
spin valve. Oscillations in the transient can lead to errors in the operation of the
integrated circuit, so it is necessary to choose modes of operation of the spin valve in
regions with fewer special points.

The bifurcation lines bounding regions I and VI are highlighted in red - these are
the stability lines of the special points of the system (1) corresponding to the parallel
and antiparallel states of the spin fan. They numerically determine the dependence of
the critical switching field Hminon the angle ¢ or 0. The appearance of these bifurcation
lines suggests that the functions Hmin) k, @) and Hmin) k, 0) have a single minimum.
These lines also correspond to the bifurcation of the vanishing of a pair of special
points, that is, the pair of real roots of equations (P1) and (P2) goes to the region of
complex numbers. Applying to them the criteria for the loss of stability of stationary
states of the spin fan (the real part of the eigenstates of the linearization matrix for a

given point is 0), as well as the criterion M) My, Mz< R in the course of this study,

independently of each other for planar and perpendicular anisotropy, taking into
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account J= 0, the formula for calculating the critical switching field normalized to the
saturation magnetization was analytically obtained (2).

Hui/ My =+ N((¢* + sq +s2- 1)/ ¢V, ()
where g= (0.5 (s - 1) ((4s+ 5)"?+ 25+ 2s@ 1Y) for planar anisotropy at 0 = 7/ 2 the
multipliers N and s take the following values: N= k , s= 9cos* ¢ - 9cos® ¢+ 1. For
perpendicular anisotropy at any ¢, the coefficients N and s are k - 1 and 9cos* 0 - 9cos?
0+ 1, respectively. The anisotropy field coefficient £ is calculated using the anisotropy
constant K and the saturation magnetization k = 2K / (M,*p,) .

Fig. 3 shows the corresponding plots of the dependence of Hmin) k, ¢©) and Hmin)
¢k, 0) for planar and perpendicular anisotropy. It is worth noting that the cross sections
of the surfacesumin) k, ¢) and Hmin) k, 0) in Fig. 3 respectively by the planes (¢ - Hiin)
and (0 - Hmin) coincide with the corresponding numerically obtained bifurcation lines
in the diagrams of Fig. 2.

Differentiating equation (2) for planar anisotropy by the angle ¢, and for
perpendicular anisotropy by the angle 0, and equating the derivative to zero, we obtain
that the function (2) in both cases has a single minimum in the coordinate (N/2, n/4) .
For planar anisotropy, the minimum valuegminy/ M is half £ when 0 = /2, ¢ = /4, and
for perpendicular anisotropy it is (k - 1)/2 when 0 = n / 4, which is half the critical
switching field when the magnetic field is directed along the anisotropy axis. These
results coincide with the numerical values obtained by constructing bifurcation
diagrams (Fig. 2). This means a twofold reduction in the energy consumption of the

spin valve as a magnetic field switched MRAM memory cell [5]. Table 2 shows the



calculated critical switching fields of the spin valve when the field is directed along the

anisotropy axis and when it is deflected from it by 45°.

NUMERICAL RESULTS
At switching of the spin valve in the field not parallel to the anisotropy axis, the
stable special point, to which the switching occurs, is shifted relative to the basic

stationary equilibrium state. Thus switching will occur in two steps. First, in a magnetic
field, the vectorM » will switch to a stable special point near one of the stationary states

(parallel or antiparallel), and then, when the magnetic field is turned off, the endl\_fz
will switch to the stationary state in the basin of attraction. Thus, the switching of the
spin valve in a magnetic field not parallel to the anisotropy axis will be two-cycle.

Table 2 shows estimates of the switching time ¢ for the first switching cycle of
the spin valve in a magnetic field close to the critical field, made by modeling the
switching of the spin valve using the Runge-Kutta method of the fourth order. The data
in Table 2 show that for almost all materials the switching time is lower for a field
deflected from the anisotropy axis by an angle of n/4. The corresponding cells are
shaded in gray.

The sensitivity of the spin valve as a magnetic field sensor Spis inversely
proportional to the magnetic field change So= dR/dH [5]. However, the shift of the
stable equilibrium position from the stationary one reduces the change in resistance dR,
which in turn reduces the sensitivity So. The numerical experiments performed for ten
considered materials to simulate the dynamics of the spin valve in a magnetic field

deviated from the anisotropy axis showed that at a field magnitude close to the critical
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one, the deviation of the singular point from the stationary state is not more than 10%.
Thus, the reduction of Sydue to reduction of dR in this case, will not be more than 10%,
but a 2-fold reduction of the switching field will make a greater contribution to the
change in the value of Sp, as can be seen from the data presented in Table 2.

From the results of numerical calculations given in Table 2 it can be concluded
that the smallest critical switching field has Coy3Gd;with planar anisotropy at 6 = n/2,
¢ = /4. Accordingly, the Co¢3Gd7alloy has the highest sensitivity of 89.08 Ohm/T1.

The lowest switching time of 1 ns is observed for CosoPtisgand FesoPtso), but
the critical switching field for these materials is~ 700 times higher than that of Cog3Gdy.
The optimal material for these two parameters is the Fe;gCosopermendur with planar
anisotropy, since it has a critical switching field of 0.015 MA/m (0 =n/2, ¢ = n/4) ata

switching time of 3 ns.

CONCLUSION

Thus, the dependence of the critical switching field of the spin fan Hyinon its
direction is numerically and analytically obtained. Studies have been carried out for
ten different ferromagnetics with planar and perpendicular anisotropy. It is determined
that the deviation of the magnetic field by an angle of 45° from the anisotropy axis
reduces the critical switching field Hninby two times and increases the speed of the spin
valve for most of the considered materials. It is shown that the decrease in sensitivity
due to the deviation of the magnetic field from the anisotropy axis is completely leveled
by its growth due to a twofold decrease in Huin. Numerical calculations of sensitivity

and switching time have shown that the best of the considered ferromagnetics for
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fabrication of magnetoresistive sensors and reading heads of hard disks is Cog3Gd;with
planar anisotropy of layers, while for magnetoresistive MRAM cells switched by
magnetic field, the optimal material is permendur (Fe;oCosg). For both applications, the

best magnetic field direction will be at an angle of /4 to the anisotropy field.
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APPENDIX. DETERMINATION OF COORDINATES OF SPECIAL POINTS FOR
THE LANDAU-LIFSHITZ-HILBERT SYSTEM
1. For the case of planar anisotropy and arbitrary magnetic field direction (0, ¢ -
any), let us write the system of equations (1) in coordinate form.
dm, / dt = P(my, m,, m;) = mym. + h(vm, — wm,) — Gj(m,* + m.*) +
+ a(km, + man? — km?) + ah(u — um,? — vmam, — wmm),

dm, / dv = Q(my, my, m;) = — mun(k + 1) + h(wm, — um;) — Gj(am, — mm,) +
+ a(mym;* — kmy*my) + ah(v — vm,* — umam, — wm,m.),

dm; / dt = S(my, my, m;) = kmm, + h(um, — vm,) + Gj(am, — mum;) +
+ a(m;® — m— km*m;) + ah(w — wm.? — umgm, — vm,m.).

Here t=1typmoM,/(1+02), u=sin0-cosqp, v=sin0- sing, w=cos0,
h=H/M, j=Jh/(edmnpoM?), m.=Mx/Ms, m,=My/Ms, m.=Mz/Ms,
k =2K | (M:no).

To find the equilibrium positions of the system (1), equate its right-hand sides to
zero and, by successive elimination of variables, obtain the equation for calculating the

component m,:

10
zf_OAfm,{ — 0, (1)

where

A=k (k+ 1)

Ao=2(k+ 1)k 2bk (k+ 1)+ hu 2k + 1)),

As=((k+ 1) (hu (hu (5k+ 1) + 8Dk 2k + 1)) + h»V* + 2j2c*k) + (k + 1)* (60*k* — k?) +

+ 1k (k + 7)),

13



A7 =2 (2 (K2 — kb + 12D + 6hbPuk — huk) (k + 12 + (k + 1) (k (hu (10hbu + 1 —6b%) +

+ 2j%c*b) — 2h*bw? + cHhu + h*u) + h (— 2hk (1? + w?) b + uk (j*c* + u*h*) —

— hw (huw + jcv))),

Ao = ((k+ 1> ((b* — 6b?) k> + k (16hbu (b — 1)) + 6h2b?) + (k + 1) 2khu 3hu (5b* —
—1)-4b (b*> - 1)) + 2kc?* (b*> — 1) + 8hbu (h*u* + ¢ + h?) + 6h%b* (V*—w*~1)) +

+ (j*c* + hirc? (h + hu? — 4bu) — 6h*bjvwe + h*(u? (B2 — 1) + 2b (v—1) (4hu — 3b)))),
As =2 (2b? (k + 1)? (h*b — bk* — 6hku + hb*ku) + (k + 1) (kb (2uh? (50> — 6) —

—buh (b* — 6) — 2¢%?) + (6h°b*u)) — 2k + 1) h (h (hu® +26*w?) — 2u (b* — 1)) +

+ h*b 2kbu*(3hu — b ) + 2hu (hu —3bw?) + c4*(u* + 1) — 2u* — 3bvciw))),

Ay = (— bk (bk + 8hu) (k+ 1)+ b (k+ 1) (BPb>(V* + k + Sku?) + 8hub* (u*h* — k*) —
— 2kb(2c* + 18uh?) — dhu (°c* + 2uh?)) + h*b* (1> — wk) + 2h2b* (4khu — vwej +
+4huv?) + 2b? (jc*(u* + 1) + 6u? (h* — 1)) — 4khub (°c® + 2u*h?) — (j°c* + u*h?)?),
Az =2hbu (((— 2k* + u*h*)b* — 12hubk — Su*h*) b (k+ 1) — b (k+ 1)> — (j°c>* — b* +
+ u*h?) 2hu + 2bk + b) + b ((h*k — k + h*?)b* + 2hub (h* - 2) — S5u*h?k)),

A =— hPuPb? (6b*k (k+ 1) + 8hbu (2k + 1) + 22c* — h*b* + b> + 6u*h?),

Ay ==21*’b* (2hu + 2bk + b),

Ao =— h*b*u’.

The remaining coordinates are calculated from the equations S and P by

substituting the values obtained from equation (P1).

2. For the case of perpendicular anisotropy and arbitrary magnetic field direction

(0, @ - any), let us write the system of equations (1) in coordinate form.
dm, / dt = P(my, m,, m:) = —mym. (k— 1) + h(vm, —wm,) — Gj(m.m. + am,) +

+ a(mum;® — kmum;?) + oh(u — vmum, — wmam, — um,? ),

14



dm, / dv = Q(my, my, m;) = mank — 1) + h(wm, —um.) — Gj(oum, — mym.) +
+ a(mym;* — kmy*m.) + oh(v — umum, — vm,? — wm,m,),
dm. / dt = S(my, my, m.) = kmym, + h(um, — vmy) — Gj(m,* + m,*) +
—a(m; —m)(k— 1) + ah(w — umym, — wm,* — vm,m.).
To find the equilibrium positions of the system (1), we should equate its right-
hand sides to zero and by successively excluding variables we obtain the equation for
calculating the component m.. Then, by successively excluding variables, we obtain

the expression (P2) for calculating the coordinate m.of special points:

10
zf_oBfm§ =0, (T2)

where
Bs=(k—1),
Bs=2 (hw—-b + bk)(k—1),
By =2k — 4hbw + 4hbwk + h* +b* — k* - 2b%k + b*k> + &> — 1,
B3 =2(hw — b + 2bk — hkw + h*b — bk? — hwb* + hkwb?),
By = 4hbw — 4hbkw — b* + 2kb* — h*w? — b*k*> — &2j* + h*b?,
By ==2hbw(hw — b + bk),
Bo =— *b*w?.
It should be noted that expression (3) is independent of the parameters u and v,
which means that the coordinates of the special points along the OZ axis do not depend
on the azimuthal angle ¢. For non-zero fields and currents at w= 1, equation (P2) has

two significant roots m.= =1, and for H= 0, J= 0, three roots m.= =1 and m.= 0. In the

15



case of w# 1, expression (P2) has two or four real roots whose modulus is less than
one.
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FIGURE CAPTIONS

Figure 1: Geometry of the spin valve model.

Figure 2: Bifurcation diagrams at zero current in the H - ¢ plane for cobalt with planar

anisotropy at 0 =

anisotropy (b,.

n/2 (a) and in the H - O plane for FesoPtsowith perpendicular

Figure 3: Dependence of the critical switching field on its direction for planar (a) and

perpendicular anisotropy (b).

Table 1. Material parameters used in the calculations.

. Mo, K, PF, Rap, | Rp, | OGMR,
Material Tl o kJ/m? P nOm'm | Ohm | Ohm | %

Co [13] 176 | 0.020| 530 |035| 624 | 411|370 | 11
fau
7 | Fe[13, 14] 215 | 0008 | 48 |040| 971 | 658|571 15
S | FenCox[l14—16] | 240 |0.015| 35 |0.55| 833 | 6.62 | 493 | 34
=
5 | FeanCoxBa 1.96 | 0.040 | 210 |053| 1956 | 1501|1142 31
g [17-19]

Coo3Gids [20] 121 |0.020| 188 |030| 78.1 | 496 | 461 | 8
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CogoGday [20] 0.10 | 0.020 | 1.38 |0.10| 1129 | 6.67 | 6.62 1
g CosoPtso [13, 21] 1.01 | 0.030 | 4900 |0.30| 100.2 | 6.35 | 5.88 8
%‘ FesoPdso [13,22,23] | 1.37 | 0.010 | 1800 |0.50| 99.0 | 7.37 | 5.83 | 26
.‘é FesoPtso [13, 24] 1.43 | 0.050 | 6600 |0.40| 106.0 | 7.17 | 6.23 | 15
CE%D FesoNiso [25, 26] 1.59 | 0.010 | 1300 |0.20| 80.0 | 4.87 | 4.71 3

Table 2. Critical switching fields, switching times at these fields, and spin valve

sensitivity calculated for different materials

and magnetic field direction

configurations.
Planar anisotropy Perpendicular anisotropy
0=1/2,0=0 O0=n/2,9o=m/ 0=0 0=mn/4
Material So. 4 So.
M| ns O 2 OBT | e bt MA | 58 OB
Co 0.605| 9 | 0.27 |0301| 7| 0.52 |0.922|47| 0.20 |0.461 42| 0.39
Fe 0.047| 17 | 7.69 | 0.022 {21| 1491 | 1.899 | 55| 0.21 [0.949 |60 | 0.40
Fe;0Cos [0.032] 11 |23.01]0.015|3 |44.64|2.416| 18| 0.36 | 1.208 | 16| 0.69
FeqoCo20Bao| 0.218| 7 | 6.66 [0.107 | 4 | 12.93 | 1.425|29 | 1.06 |0.712 25| 2.06
Co93Gd; [0.013 | 12 | 45.92|0.007 | 8 | 89.08 | 1.003 | 84 | 0.15 | 0.501|73| 0.29
CosoGdy | 0.028 |442| 0.77 | 0.014 [135 1.49 | 0.069 |464| 0.41 | 0.034 (126 0.79
CosoPtsp | 9.645| 5 | 0.02 [4.851| 1| 0.04 {9.347| 17| 0.02 [4.673 10| 0.04
FesoPdso |2.616| 9 | 0.23 | 1314 6 | 0.45 | 1.631 |254| 0.40 | 0.815|212| 0.77
FesoPtso | 9.126| 4 | 0.04 | 4.610| 1 | 0.08 | 8.179 49| 0.05 | 4.089 24| 0.09
FesoNiso | 1.645| 7 | 0.04 | 0.817 | 9 | 0.07 | 0.427 |446| 0.17 | 0.213 |382| 0.32
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