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Abstract. A three-dimensional tomographic scheme for reconstructing parameters of
inhomogeneous geophysical media is proposed. Initial data are propagation times of
surface waves in various frequency ranges. Results of numerical modeling implemented
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of the proposed approach.
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INTRODUCTION

The study of volcanoes is an urgent and demanded task. Of particular interest is the
monitoring of volcanic activity in densely populated areas. In some cases, such as at
Merapi Volcano in Indonesia in 2010 [1], it was possible to obtain accurate estimates of
the onset and intensity of eruptions, which allowed timely and prompt evacuation of the
local population and saved thousands of human lives. The Kamchatka Branch of
Geophysical Research of the Russian Academy of Sciences also has successful examples
of realizing short-term forecasts of volcanic eruptions [2]. Seismoacoustic tomography is
a key method of studying deep structures of the Earth, which allows to identify the
structure and physical properties of rocks, as well as to observe changes in seismic
parameters using a relatively small amount of data on the travel times of waves along
different paths crossing the study area [3]. The use of surface seismic waves as a source
of information about the geophysical environment led to the emergence of surface-wave
tomography, which is currently used not only on land but also in ocean floor studies [4].
The fact that surface seismic waves attenuate slower with distance than bulk waves allows
to use them for monitoring regions on both global and regional scales. Another peculiarity
of surface waves is the dependence of their penetration depth on frequency, which makes
it possible to obtain information on the characteristics of the medium located at different
depths using a broadband sounding mode. Practical realization of such sounding is
feasible by methods of noise interferometry [5, 6], which does not require the use of
expensive low-frequency radiators. Usually, the surface-wave tomographic scheme

consists of two stages: at the first stage, dispersion dependences of group or phase
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velocities of surface waves are reconstructed at the points of the investigated region; at
the second stage, the obtained dispersions are inverted into three-dimensional
distributions of medium parameters. In the present work, we consider a one-stage three-
dimensional tomographic scheme that skips the intermediate stage of dispersion
dependence reconstruction. This approach allows to reduce the time of solution of the
inverse three-dimensional problem, to reduce the requirements to the technical capabilities
of the used computational systems; it also becomes possible to take into account the
smoothness of the medium characteristics not only at different depths, but also in different
geographical points. Modeling is carried out for the conditions of the PLUME experiment
[7] with geophysical environment parameters corresponding to the Hawaiian archipelago
[4]. The reconstruction of the three-dimensional shear wave velocity field by surface wave

propagation times in different frequency ranges is considered.

PROBLEM STATEMENT
It is assumed that the sources and receivers exciting and registering surface waves
are located in the region under consideration, the propagation trajectories of which cover
the region under study quite densely (Fig. 1a). At the current stage of research, it is
assumed that the influence of the water layer and bottom topography can be neglected in
the frequency range under consideration; Rayleigh waves propagating along the boundary
of a flat-layered medium are considered (Fig. 1b). The perturbation of the propagation

times of the considered surface waves A¢,(f) is considered to be the difference between
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the known experimental /" and calculated theoretical#,"”" propagation times betweeni -

source-receiver pairs at a given frequency f . The theoretical values?“" are calculated for
an a priori known "unperturbed" transverse wave velocity distribution ,c () 7 = {x, y,z}
- a three-dimensional radius-vector. It is required to recover the deviation of the velocity
Ac (7) from its background valuec, () . The presence of Ac (7) gives rise toAz,(f) . It
is assumed that in the real situation Ac (7) is small compared toc,(7) , which allows us to
say that there is a close to linear relationship betweenAc, () and A¢,( /') [8]:
At (f) =t — %7 ~ Acg(P). (1)
To solve the reconstruction problem Ac (#) from dataA¢,(f) , the inhomogeneities

Ac,(r) are decomposed into basis functions : 0, (7)
J
Ac,(F)=) x,0,(F), (2)
=1

wherex; are the unknown coefficients of the basis expansion. As a rule, the basis

used in solving tomographic problems should satisfy the following requirements [9]: it
can be used to describe the expected perturbations of the medium characteristics with the
required accuracy and its use should not impose additional complexities or restrictions on
the calculations performed. In the present work, a striped basis previously developed and
used for hydroacoustic applications [9] is used. This basis was modified to solve the
problem under consideration (Fig. 1b) in order to take into account the peculiarity of the

tomographic scheme under consideration - the penetration of surface waves to different



depths at different frequencies allows for "layer-by-layer" sounding of the tomographic
medium. The parameters of the Pacific Ocean lithosphere model (thicknesses of layers,
densities, velocities of bulk waves in them) obtained in [4] are used. When constructing
the baseline, each layer is divided into three-dimensional strips, also rotated with an equal
angular step (Fig. 1b). The ratio of the number of strips P and rotation anglesU 1is chosen
from the requirement of mutual intersection of the peripheral parts of the baseline strips
at one rotation or, to put it differently, the absence of areas between angle-adjacent strips

that do not fall into any of them:
U_rx
—2>—, 3
725 3)
The basis functions8,(r) represent "basis" perturbations of the transverse wave

velocities localized in the basis strips.

A system of linear equations is considered to find the unknown coefficients ofx;

2):
AX =AT, (4)
where the experimentally measured perturbation times A7, form the column ;AT

A 1s the perturbation matrix whose elements are the calculated perturbations of the times

At; of surface wave propagation betweeni a source-receiver pair in a medium with
inhomogeneity given by the j basis function ;6,(7) X is the column of the coefficients
of the expansionx; of the three-dimensional inhomogeneity Ac,(7) by the basis functions

0,(r) . System (4) implies that the time perturbations Az, , found from the experiment and
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caused by the presence of the desired inhomogeneity Ac, (7) , can be represented as a linear

combination of the time perturbations Az, , also caused by the basis functions8,(7) :
J
At =) Ax,. (5)
j=1

The regularized MNC solution of the system (4), (5) has the form:
X=(44+¢E) A4°AT, 6)
where E is the unit matrix; ¢ is the Tikhonov regularization coefficient; the symbol

"+" at the perturbation matrix 4 means Hermite conjugation. When solving the system

(4), it is important that the number of unknowns P-U , taking into account their coupling
(3) does not exceed the total number of input data, which is determined by the number of
source-receiver pairs and the number of frequencies used. This requirement can be relaxed
by using additional independent information about the type of inhomogeneities to be

reconstructed, such as inhomogeneity smoothness conditions A¢, () , implying that the
values of the reconstructed functions should not vary in neighboring spatial points by any
significant amount. The solutions found from (6))@ give an estimate of the sought

inhomogeneities:

J
A (F)=D %8,(F). (7)
j=1
When solving the tomographic problem under discussion, the following

assumptions were additionally taken into account. First, since the localization of surface

waves depends on frequency, it is expected that at higher frequencies the wave will no
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longer penetrate deeper layers. Thus, in the model under consideration (Fig. 2), layers
located at depths noticeably greater than the wavelength should be excluded for the
selected frequency range. Secondly, the reconstruction at a given frequency should use
the basis bands at those depths for which the perturbation of the transverse wave velocity
leads to appreciable change in the propagation time of the surface wave. In other words,
the surface wave at the considered frequency should be "sensitive" to the perturbation of
the reconstructed medium parameters at the considered depth. To verify these
assumptions, numerical modeling was carried out. A medium consisting of plane-parallel
layers was considered. On the boundary of the considered layered medium at a distance

R from each other were located the source and the receiver. For the selected frequency f
in each layer, a velocity perturbation was introduced in turnAc(z) , after which

perturbations of surface wave propagation times were calculated : Az

1 1
M= R[co(z) VEN co<z>j’ ®)

wherec,(z) are the unperturbed values of the transverse wave velocity in the layers.
Examples of modeling results (8) are presented in Fig. 2. According to the experiment
processing data obtained in [4], a total of 17 frequencies in the range from 0.03 to 0.07 Hz
were considered. The check at the highest frequency of 0.07 Hz showed that the use of

the basis functions8,(7) , located on layers lying below 12 km is not reasonable, since for

them the time perturbation Az increases with the growth of the velocity perturbation

Ac,(7) , which contradicts the linear approximation. Meanwhile, at a frequency of 0.03



Hz, it makes sense to consider all layers up to a depth of 80 km, corresponding to the
deepest layer. As for the sensitivity assessment, at 0.03 Hz all considered layers are
insensitive to variations of surface wave velocities, whereas at 0.07 Hz the only layer not
rejected earlier, lying at a depth of 12 km, has a high sensitivity to these variations. A
similar analysis was carried out for all considered frequencies, which allowed us to
proceed to the solution of the inverse problem at the next step. Before that, it was of

interest to study the resolving power not only in depth but also in the horizontal plane.

NUMERICAL MODELING OF TOMOGRAPHIC RECOVERY

The horizontal resolving power of the discussed surface-wave tomography scheme
was checked using the "checkerboard" test [10]. The model is represented by alternating
positive and negative disturbances in the form of adjacent squares with side 200 km and
amplitude of 10% of the unperturbed transverse wave velocity in each layer; there is no
alternation in depth (Fig. 3). The radius of the investigated area R ~ 800 km. The test was
performed for two modifications of the striped baseline, each consisting of 12 layers, with
the first modification of the baseline being P = 8 strips andU =15 rotation angles on each
layer, and the second modification being , P =16 U =27 . Fig. 3 shows the results of the
synthetic checkerboard test on the example of a layer located at a depth of 40 km. From
Fig. 3b, ¢ shows that the resolution of the scheme increases with increasing number of
basis elements. However, the increase in the number of basis elements is limited by the
available amount of source data - the number of source-receiver pairs and the number of

frequency bands used.



Further for modeling we used a modification of the striped basis with ,P=16
U =27 . We considered 328 pairs of transducers arranged in the same way as in the
PLUME experiment [7]. The initial surface wave propagation times were taken at 17
frequencies in the range from 0.03 to 0.07 Hz. It should be noted that controlled radiation
at such low frequencies is hardly realizable in practice, and the chosen frequency range
corresponds to passive correlation processing of natural seismoacoustic noise recorded in
the PLUME experiment [4]. Fig. 4 shows the result of the reconstruction of two

inhomogeneities with velocity perturbations opposite in sign:

¢.(x,y,2)=¢, (Z){l n iA(i) exp(— (x- x(()i))z +(y- y(()i))2 ] exp(— (Zz- Zg)2 j} .(9)
(o}

2

where , , x(()i) yé” i=1,2 z, ,are the coordinates of the centers of inhomogeneities;

o, ando_ are the RMS deviations in the horizontal and vertical planes, respectively;

AY, i=1,2 is the coefficient specifying the maximum deviation of velocity relative to
the unperturbed value. For the case presented in Fig. 3a,x)’ =y’ =-200 km,
X =y =200 km,o,, =200 km,o, =15 km,A” =-0.1 ,A®”’ =0.1 . The solution of

the direct problem is based on the application of the Thomson-Haskell matrix method of
calculating dispersion curves over a given layered medium and the subsequent solution of
the Eikonal equation for two-dimensional velocity maps at different frequencies [8]. A
wave solution of the direct problem in the horizontal plane is also possible [11], which
will improve the resolution but will require significantly more computational resources.

The background medium was taken from [4], where the vertical profile of the transverse
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wave velocity, average for the region under consideration, was obtained. The

reconstruction involved zeroing the blocks of the perturbation matrix 4 , referring to the
layers located at depths that do not contribute to Az,( /) , as well as taking into account the
coupling equations between neighboring strips, rotation angles, and layers given by the

following equation:

X, —2x, 4%,
2h

=0, (10)

where , ,x, x, | x, , are the expansion coefficients on "neighboring" basis bands

located on nearby layers in depth, or located next to each other in one layer;/ is the
"smoothness" coefficient, which was set separately to control the smoothness of the
reconstructed functions in depth and within the boundaries of one layer. Ratio (10)
corresponds to the requirement of minimizing the second derivative of the reconstructed
functions by spatial coordinates.

To assess the accuracy of the numerical simulation results obtained, the

discrepancies were calculated by solvingn,, :

Z:‘Acmoafel(xd’yljzm)_Acrec(xd’yl’Zm)‘2

= 222 an
’ Z ‘AcmOdel(xdaylaZm)‘z

d,,m

where Ac”* and Ac™ are the given and reconstructed perturbations of the
transverse wave velocity in the medium at discretized spatial points with coordinates .

Xas Vis 2y
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Fig. 4 presents the results of the reconstruction of the considered inhomogeneity
(9). From Fig. 4b shows that the shape of inhomogeneities, their location, and amplitude
values are reconstructed with acceptable accuracy. For the presented reconstruction

variant, the discrepancy by the solution isn, =0.27 , whereas without the coupling

equations and zeroing the blocks of the perturbation matrix 4 the discrepancy value was

N, = 0.51 , which indicates a noticeable improvement of the reconstruction results due to

taking into account the peculiarities of the tomographic scheme discussed in the paper.

CONCLUSION

Thus, the results of numerical modeling presented in this paper indicate the
possibility of restoring three-dimensional inhomogeneities using the developed surface-
wave tomography scheme. In the presented work, the recovery of transverse wave
velocities was considered, but the discussed approach can be developed for recovery of
other medium characteristics for which a relation similar to (1) is valid. Of separate
interest is the study of the possibilities of joint recovery of different medium parameters
in the discussed approach. In the course of the "chess" test, the resolving power of two
modifications of the striped basis was demonstrated, depending on the number of used
basis elements, the number of which, in turn, is limited by the volume of the initial data.
The advantages of optimizing the tomographic scheme by coupling equations and
selecting only those layers that give the main contribution to the observed perturbations

of surface wave propagation times are demonstrated. It is assumed that in the next stage
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of the ongoing research the approach presented in this paper will be used for

reconstruction from experimental data obtained during the PLUME experiment.
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FIGURE CAPTIONS
Fig. 1. Surface wave propagation trajectories between bottom seismic stations of the

PLUME experiment used in the tomographic study (a) and modified strip-baseline (b).

Fig. 2. Numerical study of the linear relationship between the surface wave propagation

time perturbationAs and the transverse wave velocity perturbationAc, at frequencies of

0.03 Hz (a) and 0.07 Hz (b) at a fixed source-receiver distance.

Fig. 3. Synthetic "checkerboard test" model with maximum transverse wave velocity
perturbation equal to 10% of the value in the undisturbed medium (a); recovery result
using a striped basis modification containing 8 stripes and 15 rotation angles in a layer
(b); same as (b), but the striped basis contains 16 stripes and 27 rotation angles in one

layer (c).

Fig. 4. Initial distribution of inhomogeneities with the maximum perturbation of the
transverse wave velocity equal to 10% of the value in the unperturbed medium (a); the
result of reconstruction taking into account the coupling equations and excluding the
blocks of the perturbation matrix with layers and frequencies for which the

approximations used in the solution of the inverse problem are not fulfilled (b).
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