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INTRODUCTION 

The study of volcanoes is an urgent and demanded task. Of particular interest is the 

monitoring of volcanic activity in densely populated areas. In some cases, such as at 

Merapi Volcano in Indonesia in 2010 [1], it was possible to obtain accurate estimates of 

the onset and intensity of eruptions, which allowed timely and prompt evacuation of the 

local population and saved thousands of human lives. The Kamchatka Branch of 

Geophysical Research of the Russian Academy of Sciences also has successful examples 

of realizing short-term forecasts of volcanic eruptions [2]. Seismoacoustic tomography is 

a key method of studying deep structures of the Earth, which allows to identify the 

structure and physical properties of rocks, as well as to observe changes in seismic 

parameters using a relatively small amount of data on the travel times of waves along 

different paths crossing the study area [3]. The use of surface seismic waves as a source 

of information about the geophysical environment led to the emergence of surface-wave 

tomography, which is currently used not only on land but also in ocean floor studies [4]. 

The fact that surface seismic waves attenuate slower with distance than bulk waves allows 

to use them for monitoring regions on both global and regional scales. Another peculiarity 

of surface waves is the dependence of their penetration depth on frequency, which makes 

it possible to obtain information on the characteristics of the medium located at different 

depths using a broadband sounding mode. Practical realization of such sounding is 

feasible by methods of noise interferometry [5, 6], which does not require the use of 

expensive low-frequency radiators. Usually, the surface-wave tomographic scheme 

consists of two stages: at the first stage, dispersion dependences of group or phase 
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velocities of surface waves are reconstructed at the points of the investigated region; at 

the second stage, the obtained dispersions are inverted into three-dimensional 

distributions of medium parameters. In the present work, we consider a one-stage three-

dimensional tomographic scheme that skips the intermediate stage of dispersion 

dependence reconstruction. This approach allows to reduce the time of solution of the 

inverse three-dimensional problem, to reduce the requirements to the technical capabilities 

of the used computational systems; it also becomes possible to take into account the 

smoothness of the medium characteristics not only at different depths, but also in different 

geographical points. Modeling is carried out for the conditions of the PLUME experiment 

[7] with geophysical environment parameters corresponding to the Hawaiian archipelago 

[4]. The reconstruction of the three-dimensional shear wave velocity field by surface wave 

propagation times in different frequency ranges is considered.  

 

PROBLEM STATEMENT 

It is assumed that the sources and receivers exciting and registering surface waves 

are located in the region under consideration, the propagation trajectories of which cover 

the region under study quite densely (Fig. 1a). At the current stage of research, it is 

assumed that the influence of the water layer and bottom topography can be neglected in 

the frequency range under consideration; Rayleigh waves propagating along the boundary 

of a flat-layered medium are considered (Fig. 1b). The perturbation of the propagation 

times of the considered surface waves ( )it f∆  is considered to be the difference between 
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the known experimental exp
it  and calculated theoretical teor

it  propagation times between i  -

source-receiver pairs at a given frequency f  . The theoretical values teor
it  are calculated for 

an a priori known "unperturbed" transverse wave velocity distribution , ( )sc r { , , }r x y z=
  

- a three-dimensional radius-vector. It is required to recover the deviation of the velocity

( )sc r∆
  from its background value ( )sc r  . The presence of ( )sc r∆

  gives rise to ( )it f∆  . It 

is assumed that in the real situation ( )sc r∆
  is small compared to ( )sc r  , which allows us to 

say that there is a close to linear relationship between ( )sc r∆
  and ( )it f∆  [8]: 

 𝛥𝛥𝑡𝑡𝑖𝑖(𝑓𝑓) = 𝑡𝑡𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝛥𝛥𝑐𝑐𝑠𝑠(𝑟𝑟).  (1) 

To solve the reconstruction problem ( )sc r∆
  from data ( )it f∆  , the inhomogeneities

( )sc r∆
  are decomposed into basis functions : ( )j rθ

  

 
1

( ) ( )
J

s j j
j

с r x r
=

∆ = θ∑  , (2) 

where jx  are the unknown coefficients of the basis expansion. As a rule, the basis 

used in solving tomographic problems should satisfy the following requirements [9]: it 

can be used to describe the expected perturbations of the medium characteristics with the 

required accuracy and its use should not impose additional complexities or restrictions on 

the calculations performed. In the present work, a striped basis previously developed and 

used for hydroacoustic applications [9] is used. This basis was modified to solve the 

problem under consideration (Fig. 1b) in order to take into account the peculiarity of the 

tomographic scheme under consideration - the penetration of surface waves to different 
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depths at different frequencies allows for "layer-by-layer" sounding of the tomographic 

medium. The parameters of the Pacific Ocean lithosphere model (thicknesses of layers, 

densities, velocities of bulk waves in them) obtained in [4] are used. When constructing 

the baseline, each layer is divided into three-dimensional strips, also rotated with an equal 

angular step (Fig. 1b). The ratio of the number of strips P  and rotation anglesU  is chosen 

from the requirement of mutual intersection of the peripheral parts of the baseline strips 

at one rotation or, to put it differently, the absence of areas between angle-adjacent strips 

that do not fall into any of them: 

 
2

U
P

π
≥ . (3) 

The basis functions ( )j rθ
  represent "basis" perturbations of the transverse wave 

velocities localized in the basis strips. 

A system of linear equations is considered to find the unknown coefficients of jx  

(2):  

 AX T= ∆ , (4) 

where the experimentally measured perturbation times it∆  form the column ; T∆

A  is the perturbation matrix whose elements are the calculated perturbations of the times

ijt∆  of surface wave propagation between i  a source-receiver pair in a medium with 

inhomogeneity given by the j  basis function ; ( )j rθ


X  is the column of the coefficients 

of the expansion jx  of the three-dimensional inhomogeneity ( )sс r∆
  by the basis functions

( )j rθ


 . System (4) implies that the time perturbations it∆  , found from the experiment and 
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caused by the presence of the desired inhomogeneity ( )sс r∆
  , can be represented as a linear 

combination of the time perturbations ijt∆  , also caused by the basis functions ( )j rθ


 :  

 
1

J

i ij j
j

t t x
=

∆ = ∆∑ . (5) 

The regularized MNC solution of the system (4), (5) has the form:  

 ( ) 1
X̂ A A E A Tε

−+ += + ∆ , (6) 

where E  is the unit matrix;ε  is the Tikhonov regularization coefficient; the symbol 

"+" at the perturbation matrix A  means Hermite conjugation. When solving the system 

(4), it is important that the number of unknowns P U⋅  , taking into account their coupling 

(3) does not exceed the total number of input data, which is determined by the number of 

source-receiver pairs and the number of frequencies used. This requirement can be relaxed 

by using additional independent information about the type of inhomogeneities to be 

reconstructed, such as inhomogeneity smoothness conditions ˆ ( )sс r∆
  , implying that the 

values of the reconstructed functions should not vary in neighboring spatial points by any 

significant amount. The solutions found from (6) ˆ jx  give an estimate of the sought 

inhomogeneities:  

 
1

ˆ ˆ( ) ( )
J

s j j
j

с r x r
=

∆ = θ∑ 

. (7) 

When solving the tomographic problem under discussion, the following 

assumptions were additionally taken into account. First, since the localization of surface 

waves depends on frequency, it is expected that at higher frequencies the wave will no 
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longer penetrate deeper layers. Thus, in the model under consideration (Fig. 2), layers 

located at depths noticeably greater than the wavelength should be excluded for the 

selected frequency range. Secondly, the reconstruction at a given frequency should use 

the basis bands at those depths for which the perturbation of the transverse wave velocity 

leads to appreciable change in the propagation time of the surface wave. In other words, 

the surface wave at the considered frequency should be "sensitive" to the perturbation of 

the reconstructed medium parameters at the considered depth. To verify these 

assumptions, numerical modeling was carried out. A medium consisting of plane-parallel 

layers was considered. On the boundary of the considered layered medium at a distance

 R  from each other were located the source and the receiver. For the selected frequency f  

in each layer, a velocity perturbation was introduced in turn ( )с z∆  , after which 

perturbations of surface wave propagation times were calculated : t∆  

 
0 0

1 1( )
( ) ( ) ( )

t f R
c z с z c z

 
∆ = − + ∆ 

, (8) 

where 0 ( )с z  are the unperturbed values of the transverse wave velocity in the layers. 

Examples of modeling results (8) are presented in Fig. 2. According to the experiment 

processing data obtained in [4], a total of 17 frequencies in the range from 0.03 to 0.07 Hz 

were considered. The check at the highest frequency of 0.07 Hz showed that the use of 

the basis functions ( )j rθ
  , located on layers lying below 12 km is not reasonable, since for 

them the time perturbation t∆  increases with the growth of the velocity perturbation

( )sс r∆
  , which contradicts the linear approximation. Meanwhile, at a frequency of 0.03 
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Hz, it makes sense to consider all layers up to a depth of 80 km, corresponding to the 

deepest layer. As for the sensitivity assessment, at 0.03 Hz all considered layers are 

insensitive to variations of surface wave velocities, whereas at 0.07 Hz the only layer not 

rejected earlier, lying at a depth of 12 km, has a high sensitivity to these variations. A 

similar analysis was carried out for all considered frequencies, which allowed us to 

proceed to the solution of the inverse problem at the next step. Before that, it was of 

interest to study the resolving power not only in depth but also in the horizontal plane.  

 

NUMERICAL MODELING OF TOMOGRAPHIC RECOVERY 

The horizontal resolving power of the discussed surface-wave tomography scheme 

was checked using the "checkerboard" test [10]. The model is represented by alternating 

positive and negative disturbances in the form of adjacent squares with side 200 km and 

amplitude of 10% of the unperturbed transverse wave velocity in each layer; there is no 

alternation in depth (Fig. 3). The radius of the investigated area R ≈  800 km. The test was 

performed for two modifications of the striped baseline, each consisting of 12 layers, with 

the first modification of the baseline being P =  8 strips and 15U =  rotation angles on each 

layer, and the second modification being , 16P = 27U =  . Fig. 3 shows the results of the 

synthetic checkerboard test on the example of a layer located at a depth of 40 km. From 

Fig. 3b, c shows that the resolution of the scheme increases with increasing number of 

basis elements. However, the increase in the number of basis elements is limited by the 

available amount of source data - the number of source-receiver pairs and the number of 

frequency bands used. 
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Further for modeling we used a modification of the striped basis with , 16P =

27U =  . We considered 328 pairs of transducers arranged in the same way as in the 

PLUME experiment [7]. The initial surface wave propagation times were taken at 17 

frequencies in the range from 0.03 to 0.07 Hz. It should be noted that controlled radiation 

at such low frequencies is hardly realizable in practice, and the chosen frequency range 

corresponds to passive correlation processing of natural seismoacoustic noise recorded in 

the PLUME experiment [4]. Fig. 4 shows the result of the reconstruction of two 

inhomogeneities with velocity perturbations opposite in sign: 

( ) 2 ( ) 2 22
( ) 0 0 0

0 2 2
1

( ) ( ) ( )( , , ) ( ) 1 exp exp
2 2

i i
i

s
i xy z

x x y y z zс x y z c z
σ σ=

    + = + Λ − −         
∑ - - - , (9) 

where , , ( )
0  ix ( )

0
iy 1,2i = 0z   ,are the coordinates of the centers of inhomogeneities;

xyσ  and zσ  are the RMS deviations in the horizontal and vertical planes, respectively;

( ) , 1,2i iΛ =  is the coefficient specifying the maximum deviation of velocity relative to 

the unperturbed value. For the case presented in Fig. 3a, (1) (2)
0 0 200x y= = −  km,

(2) (1)
0 0 200x y= =  km, 200xyσ =  km, 15zσ =  km, (1) 0.1Λ = −  , (2) 0.1Λ =  . The solution of 

the direct problem is based on the application of the Thomson-Haskell matrix method of 

calculating dispersion curves over a given layered medium and the subsequent solution of 

the Eikonal equation for two-dimensional velocity maps at different frequencies [8]. A 

wave solution of the direct problem in the horizontal plane is also possible [11], which 

will improve the resolution but will require significantly more computational resources. 

The background medium was taken from [4], where the vertical profile of the transverse 
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wave velocity, average for the region under consideration, was obtained. The 

reconstruction involved zeroing the blocks of the perturbation matrix A  , referring to the 

layers located at depths that do not contribute to ( )it f∆  , as well as taking into account the 

coupling equations between neighboring strips, rotation angles, and layers given by the 

following equation: 

 1 22 0
2

k k kx x x
h
− −− +

= , (10) 

where , , kx 1kx − 2kx −  are the expansion coefficients on "neighboring" basis bands 

located on nearby layers in depth, or located next to each other in one layer; h  is the 

"smoothness" coefficient, which was set separately to control the smoothness of the 

reconstructed functions in depth and within the boundaries of one layer. Ratio (10) 

corresponds to the requirement of minimizing the second derivative of the reconstructed 

functions by spatial coordinates. 

To assess the accuracy of the numerical simulation results obtained, the 

discrepancies were calculated by solving η c∆  :  

 

2

, ,
2

, ,

( , , ) ( , , )
η

( , , )

model rec
d l m d l m

d l m
c model

d l m
d l m

c x y z c x y z

c x y z
∆

∆ − ∆
=

∆

∑

∑
 (11) 

where modelc∆  and recc∆  are the given and reconstructed perturbations of the 

transverse wave velocity in the medium at discretized spatial points with coordinates . 

, ,d l mx y z  
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Fig. 4 presents the results of the reconstruction of the considered inhomogeneity 

(9). From Fig. 4b shows that the shape of inhomogeneities, their location, and amplitude 

values are reconstructed with acceptable accuracy. For the presented reconstruction 

variant, the discrepancy by the solution is η 0.27c∆ =  , whereas without the coupling 

equations and zeroing the blocks of the perturbation matrix A  the discrepancy value was

η 0.51c∆ =  , which indicates a noticeable improvement of the reconstruction results due to 

taking into account the peculiarities of the tomographic scheme discussed in the paper.  

 

CONCLUSION 

Thus, the results of numerical modeling presented in this paper indicate the 

possibility of restoring three-dimensional inhomogeneities using the developed surface-

wave tomography scheme. In the presented work, the recovery of transverse wave 

velocities was considered, but the discussed approach can be developed for recovery of 

other medium characteristics for which a relation similar to (1) is valid. Of separate 

interest is the study of the possibilities of joint recovery of different medium parameters 

in the discussed approach. In the course of the "chess" test, the resolving power of two 

modifications of the striped basis was demonstrated, depending on the number of used 

basis elements, the number of which, in turn, is limited by the volume of the initial data. 

The advantages of optimizing the tomographic scheme by coupling equations and 

selecting only those layers that give the main contribution to the observed perturbations 

of surface wave propagation times are demonstrated. It is assumed that in the next stage 
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of the ongoing research the approach presented in this paper will be used for 

reconstruction from experimental data obtained during the PLUME experiment. 
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FIGURE CAPTIONS 

Fig. 1. Surface wave propagation trajectories between bottom seismic stations of the 

PLUME experiment used in the tomographic study (a) and modified strip-baseline (b). 

 

Fig. 2. Numerical study of the linear relationship between the surface wave propagation 

time perturbation t∆  and the transverse wave velocity perturbation sс∆  at frequencies of 

0.03 Hz (a) and 0.07 Hz (b) at a fixed source-receiver distance.  

 

Fig. 3. Synthetic "checkerboard test" model with maximum transverse wave velocity 

perturbation equal to 10% of the value in the undisturbed medium (a); recovery result 

using a striped basis modification containing 8 stripes and 15 rotation angles in a layer 

(b); same as (b), but the striped basis contains 16 stripes and 27 rotation angles in one 

layer (c). 

 

Fig. 4. Initial distribution of inhomogeneities with the maximum perturbation of the 

transverse wave velocity equal to 10% of the value in the unperturbed medium (a); the 

result of reconstruction taking into account the coupling equations and excluding the 

blocks of the perturbation matrix with layers and frequencies for which the 

approximations used in the solution of the inverse problem are not fulfilled (b). 
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