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Abstract. We simulated the dynamics of electric field impact on the domain wall in 

magnetic films with inhomogeneous magnetoelectric interaction. The result of the 

simulation is the fact that both homogeneous electric field and inhomogeneous electric 

field induce excitation of spin waves. 
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INTRODUCTION 

Recently, new branches of electronics such as spintronics[1] and magnonics[2] 

have been actively developing in the world. Within the framework of spintronics, all 

possible electronics devices related to magnetic moment control are considered. This 
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control can take the form of spin transfer by creating spin-polarized currents, or the 

form of switching the magnetic moment by spin-polarized current or electric field. In 

the field of magnonics, the main subject of study is spin waves, i.e., magnetic moment 

precession waves. Such waves as an information carrier have a number of advantages: 

for spin waves as collective excitations of the magnetic sublattice, there is no leakage 

into the surrounding space that does not have an ordered magnetic structure; short spin 

waves can contribute to the miniaturization of devices down to the size of a unit cell; 

even at room temperature, spin waves in garnet ferrite can travel thousands of their 

lengths . [2] 

The control of the magnetic moment by the electric field in ferrimagnets can be 

realized due to the inhomogeneous magnetoelectric interaction. This interaction, at the 

microscopic level provided by the Dzyaloshinski-Moria interaction[3, 4, 5] , promotes 

the appearance of electric polarization[6, 7] at micromagnetic structures in a medium 

with inhomogeneous magnetization distribution (e.g., domain walls). Since the 

Dzyaloshinsky-Moriya interaction is an anisotropic correction to the isotropic 

exchange interaction arising from the spin-orbit interaction, the inhomogeneous 

magnetoelectric interaction can manifest itself in ferro-, ferri-, and antiferromagnetics.  

Thus, the domain wall, a transition region between two magnetic domains where the 

magnetization vector undergoes a reversal, can respond to an external inhomogeneous 

electric field[8] . Inhomogeneous magnetoelectric interaction also allows the 

nucleation of cylindrical magnetic domains with 180° and 90° domain wall 

orientations[9, 10] . An important aspect is that the works [7,8,9] do not use dynamical 

models to analyze the effects. Modeling the motion of the domain wall in an external 
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electric field is of interest because, on the one hand, it belongs to the field of spintronics 

and magnetoelectric effect, and on the other hand, the motion of the domain wall in an 

external electric field can be considered in the framework of magnonics as a way to 

excite spin waves by analogy with the discussed way of excitation of spin waves by 

advancing the domain wall in an external magnetic field[11] . In addition, it is known 

from classical literature that theoretical analysis of the dynamics of domain wall motion 

is a separate and challenging problem[12, 13] . In this paper, the simplest case of the 

dynamics of ferromagnetic domain wall motion in an external electric field leading to 

the excitation of spin waves is investigated theoretically and numerically.  

THEORY 

The Landau-Lifshitz-Hilbert equation was used to calculate the magnetization 

dynamics in the micromagnetic approximation: 

𝜕𝜕𝑚𝑚��⃗
𝜕𝜕𝜕𝜕 = −𝛾𝛾�𝑚𝑚��⃗ × 𝐻𝐻��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒� + 𝛼𝛼 �𝑚𝑚��⃗ ×

𝜕𝜕𝑚𝑚��⃗
𝜕𝜕𝜕𝜕 �

, (1) 

 

where𝑚𝑚��⃗  is the dimensionless vector field of magnetization having at each point a 

modulus equal to unity,𝐻𝐻��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 is the effective magnetic field,𝛾𝛾 is the gyromagnetic ratio 

for an electron,α is the attenuation index for a given material. In the following, it is 

understood that the equation ( )1 is used to describe the dynamics of magnetization in 

a ferromagnetic material characterized by the parameters of garnet ferrite films, which 

are popular elements in possible magnonics devices[14, 15] , so all parameters of the 

problem (e.g., saturation magnetization𝑀𝑀𝑠𝑠 ) characterize (in order of magnitude) 

exactly garnet ferrite films. Garnet ferrites are ferrimagnets, but the strongest exchange 
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interaction binds two magnetic sublattices in them[12] and makes the magnetic 

moments of the sublattices collinear in statics. Therefore, we use the static parameters 

of the garnet ferrite films for clarity. The effective magnetic field is defined as the 

negative variational derivative of the free energy along the magnetization vector: 

𝐻𝐻��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒 = −
1
𝑀𝑀𝑠𝑠

𝛿𝛿𝛿𝛿(𝑚𝑚��⃗ )
𝛿𝛿𝑚𝑚��⃗ . (2) 

 

The free energy of the inhomogeneous electric interaction is described by the 

following expression :[5, 6] 

𝐹𝐹𝑚𝑚𝑚𝑚 = −𝛾𝛾𝑚𝑚𝑚𝑚 �𝐸𝐸�⃗ ⋅ �𝑚𝑚��⃗ (∇ ⋅  𝑚𝑚��⃗ ) + �𝑚𝑚��⃗ × [∇ × 𝑚𝑚��⃗ ]���, (3) 

 

where𝛾𝛾𝑚𝑚𝑚𝑚 is the magnetoelectric constant,𝐸𝐸�⃗  is the electric field inside the material 

given by an external source. In the expression ( )3 the multiplier scalarly multiplied by 

the electric field vector plays the role of electric polarization induced by 

inhomogeneous distribution of magnetization. The energy𝐹𝐹𝑚𝑚𝑚𝑚 corresponds, in 

agreement with the expression ( )2 , to the effective magnetic field with the following 

components in the Cartesian coordinate system :[6] 

�Hme
eff �i = γme�2Ei ∂βmβ-2Eβ ∂imβ + mβ ∂βEi-mβ ∂iEβ�. (4) 

Since we are talking about the effect of the electric field on the magnetization𝑚𝑚��⃗  

, which is characteristic of the domain wall, we need to set the exchange interaction 

energy and the magnetic anisotropy energy. The simplest model was chosen for the 

analysis, in which the following expressions for the energy density of the exchange 

interaction and magnetic anisotropy, respectively, are valid: 
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𝐹𝐹𝑒𝑒𝑒𝑒 = 𝐴𝐴 � (𝛻𝛻𝑚𝑚𝑖𝑖 ⋅ 𝛻𝛻𝑚𝑚𝑖𝑖)
𝑖𝑖=1,3

, (5) 

𝐹𝐹𝑎𝑎𝑎𝑎 = −𝐾𝐾𝑢𝑢𝑚𝑚𝑧𝑧
2, (6) 

where𝐴𝐴 = 1 ⋅ 10−7 erg/cm is the exchange interaction constant,𝐾𝐾𝑢𝑢  =  1000 erg/cm3is 

the uniaxial magnetic anisotropy constant. The geometry of the problem is summarized 

in Fig. 1a. For the sum of energies ( ) , (56  ), the classical one-dimensional solution is 

known. 

𝑚𝑚𝑥𝑥 = sin�𝜃𝜃𝑤𝑤(𝑦𝑦)� cos(𝜑𝜑𝑤𝑤), (7) 

𝑚𝑚𝑦𝑦 = sin�𝜃𝜃𝑤𝑤(𝑦𝑦)� sin(𝜑𝜑𝑤𝑤), (8) 

𝑚𝑚𝑧𝑧 = cos�𝜃𝜃𝑤𝑤(𝑦𝑦)�, (9) 

𝜃𝜃𝑤𝑤(𝑦𝑦) = 2arctan�exp(𝑦𝑦/∆𝑤𝑤)�, (10) 

describing the Bloch domain wall[12, 16] at ,φ𝑤𝑤 = 0φ𝑤𝑤 = 𝜋𝜋  and the Neel domain 

wall at ,φ𝑤𝑤 = 𝜋𝜋/2φ𝑤𝑤 = 3𝜋𝜋/2 . Here∆𝑤𝑤= �𝐴𝐴 (𝐾𝐾𝑢𝑢 + 2𝜋𝜋𝑀𝑀𝑠𝑠
2 (sinφ𝑤𝑤)2)⁄  is the 

parameter defining the width of the domain wall,φ𝑤𝑤 is the angle defining the position 

of the magnetization in the film plane. Note, firstly, that in the classical Bloch domain 

wall from the energy point of view the different states withφ𝑤𝑤 = 0 andφ𝑤𝑤 = 𝜋𝜋 are 

indistinguishable and, secondly, that the Bloch domain wall in statics does not give a 

contribution to the inhomogeneous magnetoelectric effect, since the expression ( )3 for 

the structure ( )7 atφ𝑤𝑤 = 0 andφ𝑤𝑤 = 𝜋𝜋 is zero.  

Before turning to numerical modeling, we should perform analytical calculations 

as far as possible. We will consider analytically a one-dimensional domain wall to 

which homogeneous electric field is applied. It is important to note that the expression 
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(3) contains the electric field vector, which can be either inhomogeneous or 

homogeneous. Here, in the analytical consideration, the homogeneous electric field is 

used in order to keep it possible to draw simple conclusions and compare them with 

the results of numerical experiment. In the equilibrium state of the domain wall, which 

is described by the expressions (7) , before the application of the electric field, the total 

effective magnetic field of the exchange interaction and magnetic anisotropy is zero, 

so at the first instant of time after the application of the electric field, the domain wall 

is in the effective field𝐻𝐻��⃗ 𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒 . The equation (1) can be written for the angle 𝜃𝜃[12, 13] , 

which determines the position of magnetization with respect to the Oz axis (hereinafter 

it coincides with the normal to the surface of the magnetic film). The effective field (4) 

leads to the following differential equation for the angle𝜃𝜃 , describing the 

magnetization in an arbitrary domain wall, under a uniform electric field𝐸𝐸𝑥𝑥 , directed 

along the Ox axis:  

∂θ
∂t = -vEx

∂θ
∂y  , (11) 

where𝑣𝑣𝐸𝐸𝑥𝑥 = 2𝛾𝛾𝛾𝛾𝑚𝑚𝑚𝑚𝐸𝐸𝑥𝑥 cos(𝜃𝜃) /𝑀𝑀𝑠𝑠 . For the case of a homogeneous field𝐸𝐸𝑧𝑧 the 

following equation is valid: 

∂θ
∂t = vEz

∂θ
∂y , (12) 

where ,𝑣𝑣𝐸𝐸𝑧𝑧 = 2γγ𝑚𝑚𝑚𝑚𝐸𝐸𝑧𝑧 sin(θ) cos(φ)/𝑀𝑀𝑠𝑠𝜑𝜑 is the azimuthal angle specifying the 

position of magnetization in the film plane (see Fig. 1a). Equations (11), (12) belong 

to the class of transport equations with a known solution of the form𝑓𝑓�𝑡𝑡 − 𝑦𝑦/𝑣𝑣(𝜃𝜃)� , 

where𝑣𝑣(𝜃𝜃) is the coefficient on the derivative in the spatial coordinate, which has the 
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velocity dimension. It is important to note that an important conclusion follows from 

the equation (12) that inhomogeneous magnetoelectric interaction leads to different 

dynamics of the Bloch domain wall with positive and negative components𝑚𝑚𝑥𝑥 , since 

the shear rate𝑣𝑣𝐸𝐸𝑧𝑧  is proportional tocos(φ) , which atφ = 0, π sets the magnetization 

reversal structure. In other words, two Bloch domain walls with different sign𝑚𝑚𝑥𝑥 in a 

homogeneous electric field𝐸𝐸𝑧𝑧 will move in opposite directions. Fig. 1b shows the 

dependence of the magnetization vector components on the coordinate in the Bloch 

domain wall described by expressions (7-10) and the corresponding velocity directions 

from expressions(11) and (12), communicated to the domain wall by the electric field 

at the initial moment of time after turning on the electric field. According to (7)-

(10)𝑣𝑣𝐸𝐸𝑧𝑧~𝑚𝑚𝑥𝑥 and has a constant sign along the width of the Bloch domain wall, 

while𝑣𝑣𝐸𝐸𝑥𝑥~𝑚𝑚𝑧𝑧 and changes sign along the width of the Bloch domain wall. It follows 

that the homogeneous electric field𝐸𝐸𝑥𝑥 does not shift the domain wall as a whole, but 

leads at early stages of dynamics to compression or broadening of the domain wall - 

depending on the sign𝐸𝐸𝑥𝑥 . At the same time, the homogeneous electric field𝐸𝐸𝑧𝑧 leads in 

the dynamics to a shift of the Bloch domain wall as a whole. Also from the equation 

(12) it follows that the Neel (φ = π /2, 3π/2 ) domain wall will not respond to the 

electric field directed along the normal to the film, but will change its width in the 

electric field𝐸𝐸𝑥𝑥 like the Bloch domain wall. Strictly speaking, the equations (11), (12) 

are only applicable at the initial time instant after application of the electric field by the 

step, because the balance between the magnetic anisotropy and exchange interaction 
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energies is disturbed at subsequent time instants. Therefore, it is necessary to solve the 

equation ( )1 numerically. 

For possible comparison, the dispersion law for low amplitude exchange spin 

waves propagating in a ferromagnetic material without domain walls should also be 

given :[17] 

𝜔𝜔2 = (𝜔𝜔𝑎𝑎 + 𝜔𝜔𝑒𝑒𝑒𝑒) �𝜔𝜔𝑎𝑎 + 𝜔𝜔𝑒𝑒𝑒𝑒 + 𝜔𝜔𝑀𝑀
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2

𝑘𝑘2 �, 

𝜔𝜔𝑎𝑎𝑎𝑎 = 𝛾𝛾
2𝐾𝐾𝑢𝑢
𝑀𝑀𝑠𝑠

, 

𝜔𝜔𝑒𝑒𝑒𝑒 = 𝛾𝛾
2𝐴𝐴
𝑀𝑀𝑠𝑠

𝑘𝑘2, 

𝜔𝜔𝑀𝑀 = 4𝜋𝜋𝜋𝜋𝑀𝑀𝑠𝑠, 

(13) 

where𝑘𝑘2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 is the square of the wave vector modulus,𝜔𝜔𝑎𝑎𝑎𝑎,𝜔𝜔𝑒𝑒𝑒𝑒, 𝜔𝜔𝑀𝑀 are 

the frequencies given by magnetic anisotropy, isotropic exchange interaction, and 

demagnetization fields, respectively. Thus, the precession frequency is proportional to 

the square of the wave vector. It should be noted that the expressions (13) are obtained 

in the approximation of small and constant with time precession amplitude. In the case 

of𝑘𝑘 = 0 magnetic moments precess synchronously in an effective magnetic field of 

magnetic anisotropy. This field at the given problem parameters has a value of 500 Å, 

which corresponds to the frequency of ferromagnetic resonance𝜔𝜔𝑎𝑎𝑎𝑎/(2𝜋𝜋) = 1.4 GHz.  

NUMERICAL CALCULATION METHOD 

The numerical solution of the Landau-Lifshitz-Hilbert equation was carried out 

using the finite element method based on the FEniCS library[18, 19] . In the one-

dimensional model there were 30 nodes of the computational grid per segment 



9 
 

corresponding to one width of the domain wall𝛥𝛥 = �𝐴𝐴 𝐾𝐾𝑢𝑢⁄  , and 7 nodes in the two-

dimensional model. The calculation was performed taking into account the 

demagnetizing fields: in the case of the one-dimensional model an additional energy 

term was used𝐹𝐹𝑀𝑀 = 2π𝑀𝑀𝑠𝑠
2𝑚𝑚𝑦𝑦

2 , in the case of the two-dimensional model the structure 

of the demagnetizing fields was calculated from the Poisson equation for the scalar 

potentialΔ𝑢𝑢 = 4𝜋𝜋𝑀𝑀𝑠𝑠 div 𝑚𝑚��⃗  . The calculations were performed with the attenuation 

coefficient𝛼𝛼 = 0.0001,𝑀𝑀𝑠𝑠 = 4 Gs, and electric field strength of 3 MV/cm. The electric 

field was applied to the system in a step in time. Such a value of the electric field is 

necessary for the clarity of the results and the possibility to consider the properties of 

spin waves. 

NUMERICAL SIMULATION RESULTS 

This section discusses the results of the numerical simulations. Throughout the 

section, they are compared with the conclusions following from the equations (11), 

(12), but we are talking about the numerical solution of the Landau-Lifshitz-Hilbert 

equation (1) and the graphical representation of this solution. In the one-dimensional 

model based on the equation (1) with initial condition (7)-(10), the dependence of the 

magnetization vector in the Bloch domain wall on time was obtained. The calculation 

results for different direction of homogeneous electric field are shown in Fig. 2. When 

an electric field𝐸𝐸𝑧𝑧 is applied, the domain wall shifts to the right (Fig. 2a) from its initial 

state (Fig. 2b) in a time of 565 ps, in accordance with the conclusion following from 

the equation (12) , while spin waves appear along the course of the domain wall motion. 

In addition, when the sign of the𝑚𝑚𝑥𝑥 component in the initial state of the domain wall 

is changed to the opposite sign over the same time period, the Bloch domain wall shifts 
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in the opposite direction (Fig. 2c) When an electric field−𝐸𝐸𝑥𝑥 is applied over a time 

period of 847.5 ps, the domain wall as a whole does not experience a shift (Fig. 2d), as 

follows from the equation (11) , but spin waves occur to the left and right of the domain 

wall. The Neel domain wall, stabilized by an external magnetic field exceeding the 

demagnetization field by a factor of two, experiences similar dynamics when an 

electric field−𝐸𝐸𝑥𝑥 is applied - it remains in place as a whole, but spin waves appear at 

the periphery (Fig. 3a,b). At the same time, the numerical calculation shows that the 

Neel domain wall does not respond to a homogeneous electric field𝐸𝐸𝑧𝑧 (Fig. 3c), as 

argued in the previous section. 

In order to analyze the properties of spin waves excited in this way, a fragment 

of the dependence of𝑚𝑚𝑦𝑦 (for the Bloch wall) and𝑚𝑚𝑥𝑥 (for the Neel wall) on coordinates 

and time, containing several wavelengths, was selected for each direction of the electric 

field. For the Neel domain wall, such a fragment is shown in Fig. 3г. In Fig. 3d shows 

the dependence of the modulus of the amplitude of the spectrum of the𝑚𝑚𝑥𝑥(𝑡𝑡, 𝑦𝑦) 

function in time on the frequency and coordinates of the fragment. This dependence 

shows that the characteristic frequency of spin waves in the case of the Neel domain 

wall and electric field−𝐸𝐸𝑥𝑥 is 7.5 GHz. Also in Fig. 3d it can be seen that the precession 

frequency increases with increasing coordinate. This can be explained by the fact that 

the nonlinearity of the dynamics leads to the fact that the magnetization precession is 

not isochronous, i.e., the precession frequency depends on its amplitude. We can 

identify at least one factor that sets the character of this relation. At this site, the 

strongest effective magnetic field that sets the precession properties of the planar 

components of magnetization is created by magnetic anisotropy. This effective field, 
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as follows from (2) and (6), is proportional to𝑚𝑚𝑧𝑧 . Since in Fig. 3d with distance from 

the domain wall the amplitude of the planar components𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦 naturally decreases, 

the component𝑚𝑚𝑧𝑧 grows, and consequently a larger effective magnetic field sets a 

higher precession frequency. Of course, for the model under consideration, such a 

consideration is very simple, but it shows that the increase in the frequency of spin 

waves with distance from the domain wall is not unexpected. A more rigorous 

consideration in perspective can be obtained by analyzing the influence of all 

interactions on the dispersion relation for spin waves. In Fig. 3e shows the dependence 

of the modulus of the spectrum of the function𝑚𝑚𝑥𝑥(𝑡𝑡, 𝑦𝑦) in spatial coordinate on the 

spatial frequency for the time instant𝑡𝑡 = 565 ps. This dependence shows that the 

characteristic spin wavelength is 500 nm. Similarly, the fragments of Fig. 1, 

highlighted by blue filling, were selected for the Bloch domain wall. For the cases of 

homogeneous electric field𝐸𝐸𝑧𝑧 and -𝐸𝐸𝑥𝑥 , applied to the Bloch domain wall, the 

characteristic frequencies and wavelengths are 15 GHz, 200 nm and 7.5 GHz, 500 nm, 

respectively.  

In the two-dimensional model, spin waves are also excited under the electric field 

of a point charge. Fig. 4a shows the initial state of the Bloch domain wall and the 

position of the point charge. In a time of 170 ps after application of an electric field in 

a stepwise manner, the domain wall curves and shifts (Fig. 4b). In this case, the electric 

field component along the Oz axis has a negative sign and the𝑚𝑚𝑥𝑥 component has a 

positive sign (cos(φ) > 0 ). In this configuration, equation (12)  describes the direction 

of the domain wall displacement corresponding to Fig. 4b. The electric field causes, in 

addition to the domain wall shift, the excitation of spin waves, which are reflected in 
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the distribution of the𝑚𝑚𝑥𝑥 component in Fig. 4b. and in the distribution of the 

components ,𝑚𝑚𝑥𝑥𝑚𝑚𝑦𝑦 (Fig. 4c) plotted along the specific direction marked in Fig. 4b. In 

Fig. 4d shows the spectrum of the𝑚𝑚𝑦𝑦 component over time for each point in the 

fragment. It follows that the characteristic frequency of the excited spin waves is 12.5 

GHz. The spatial spectrum in Fig. 4d shows that the characteristic spin wavelength in 

the two-dimensional model is 300 nm.  

CONCLUSION 

Thus, using micromagnetic modeling based on the Landau-Lifshitz-Hilbert 

equation for ferromagnetic material, it is shown that in films with inhomogeneous 

magnetoelectric interaction, the effect of both homogeneous and inhomogeneous 

electric field on the Bloch and Neel domain walls leads to the excitation of spin waves 

with characteristic frequencies of about 10 GHz and wavelengths of about 100 nm. The 

obtained set of pairs of frequencies and wavelengths (15 GHz, 200 nm), (7.5 GHz, 500 

nm), (12.5 GHz, 300 nm) qualitatively satisfies the dispersion relation (13) : the smaller 

the wavelength, the larger the frequency. It is also shown that on the basis of 

approximate transport equations (11), (12) it is possible to make a conclusion about the 

presence or absence of the domain wall shift, about the connection of its sign with the 

polarity of the electric field and the structure of the domain wall. Here it is important 

to note that in contrast to the static model, the dynamic model admits the possibility of 

electric field influence on the Bloch domain wall. These conclusions imply further 

experimental work on the detection of spin waves, checking the relationship between 

the direction of the electric field and the shear properties of the domain wall. From the 

theoretical point of view, an important question is the effect of the electric field on the 
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dispersion relation for excited spin waves, as well as the question of the dependence of 

the properties of spin waves on the amplitude of the electric field. There is also a 

question about the applicability of the results of the work to the case of ferrimagnetic 

materials. It is known[12] that two types of precession of magnetic moments of two 

sublattices are possible in ferrimagnetics: low-frequency (characteristic frequencies are 

comparable to those of ferromagnetics), when magnetic moments of sublattices remain 

collinear, and high-frequency, when collinearity is broken. The second type of 

precession allows ferrimagnetics to be used to excite spin waves in the terahertz 

range[2] . In the case of garnet ferrite films, the exchange interaction between the 

sublattices is the strongest, while the Dzyaloshinski-Moria interaction is of a corrective 

nature due to the smallness of the spin-orbit interaction constant. Therefore, at low 

applied electric fields, the inhomogeneous magnetoelectric interaction will not be able 

to break the collinearity of magnetic sublattices and excite high-frequency waves. To 

estimate the smallness of the electric field, we can indicate that at an electric field value 

of 1 MV/cm, the magnitude of the inhomogeneous magnetoelectric interaction is a few 

tens of percent of the surface energy of the domain wall[10] , and, accordingly, an even 

smaller percentage of the exchange energy. Therefore, at electric field values smaller 

than 1 MV/cm, one should not expect a violation of the collinearity of magnetic 

sublattices in a ferrimagnet. In order to determine the specific precession parameters 

and to verify the above hypothesis, it is necessary to carry out appropriate modeling. 

In the case of antiferromagnetics with more than two magnetic sublattices, a separate 

calculation is required.  
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FIGURE CAPTIONS 

Fig. 1. Geometry of the problem and structure of the Bloch domain wall: geometry of 

the problem with marked magnetization components𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧 and angles𝜃𝜃, 𝜑𝜑 , 

defining the normalized magnetization vector (a); structure of the Bloch domain wall 

(b): lines mark the dependence of the magnetization vector components on the 

coordinate; arrows mark the velocities imparted by the homogeneous electric field (𝐸𝐸𝑥𝑥 

or𝐸𝐸𝑧𝑧 ) to the domain wall at the first moment of dynamics. The coordinate is counted 

in units of the domain wall width𝛥𝛥 = �𝐴𝐴 𝐾𝐾𝑢𝑢⁄ = 100 nm. 

 

Fig. 2. Numerical simulation result of the Bloch domain wall: initial state (a); with an 

initially negative component𝑚𝑚𝑥𝑥 through𝑡𝑡 = 565 ps at a homogeneous field𝐸𝐸𝑧𝑧 (b); with 

an initially positive component𝑚𝑚𝑥𝑥 through𝑡𝑡 = 565 ps at a homogeneous field𝐸𝐸𝑧𝑧 (c); 

through𝑡𝑡 = 847.5 ps at a homogeneous field−𝐸𝐸𝑥𝑥 (d). The coordinate is counted in units 

of domain wall width𝛥𝛥 = �𝐴𝐴 𝐾𝐾𝑢𝑢⁄ = 100 nm. Blue fillings show the regions selected 

for calculating the spectral characteristics. 

 

Fig. 3. Result of numerical modeling of the Neel domain wall: initial state (a); structure 

at the time𝑡𝑡 = 565 ps after application of a uniform electric field−𝐸𝐸𝑥𝑥 (b), blue fill 

shows the region selected for calculating spectral characteristics; structure that does 

not respond to a uniform electric field𝐸𝐸𝑧𝑧 (numerical calculation) (c), upper indices 

indicate initial and final states; magnetization component𝑚𝑚𝑥𝑥 at the time𝑡𝑡 = 565 ps in 

the selected region (d); time dependence of the function spectrum𝑚𝑚𝑥𝑥(𝑡𝑡, 𝑦𝑦) for each 
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coordinate of the fragment (e); function spectrum𝑚𝑚𝑥𝑥(𝑦𝑦) by coordinate at the time𝑡𝑡 = 

565 ps (f). 

 

Fig. 4. Two-dimensional numerical modeling of spin waves excitation by electric field: 

dependence of the𝑚𝑚𝑥𝑥 component in the Bloch domain wall on the coordinates at the 

initial time instant and the position of the point electric charge shown by the shaded 

circle (a); dependence of the𝑚𝑚𝑥𝑥 component in the Bloch domain wall on the 

coordinates at time𝑡𝑡 = 170 ps (b); dependence of the in-plane magnetization 

components on the coordinate along the line marked in figure b at the moment of 

time𝑡𝑡 = 170 ps (c); spectrum of the function𝑚𝑚𝑦𝑦(𝑡𝑡, 𝑦𝑦) on time for each coordinate of 

the fragment (d); spectrum of the function𝑚𝑚𝑦𝑦(𝑟𝑟) on coordinate at the moment of 

time𝑡𝑡 = 170 ps (e). 
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Fig. 1. 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 


