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Abstract. We simulated the dynamics of electric field impact on the domain wall in
magnetic films with inhomogeneous magnetoelectric interaction. The result of the
simulation is the fact that both homogeneous electric field and inhomogeneous electric
field induce excitation of spin waves.
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INTRODUCTION
Recently, new branches of electronics such as spintronics[1] and magnonics[2]
have been actively developing in the world. Within the framework of spintronics, all
possible electronics devices related to magnetic moment control are considered. This
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control can take the form of spin transfer by creating spin-polarized currents, or the
form of switching the magnetic moment by spin-polarized current or electric field. In
the field of magnonics, the main subject of study is spin waves, i.e., magnetic moment
precession waves. Such waves as an information carrier have a number of advantages:
for spin waves as collective excitations of the magnetic sublattice, there is no leakage
into the surrounding space that does not have an ordered magnetic structure; short spin
waves can contribute to the miniaturization of devices down to the size of a unit cell;
even at room temperature, spin waves in garnet ferrite can travel thousands of their
lengths . [2]

The control of the magnetic moment by the electric field in ferrimagnets can be
realized due to the inhomogeneous magnetoelectric interaction. This interaction, at the
microscopic level provided by the Dzyaloshinski-Moria interaction[3, 4, 5] , promotes
the appearance of electric polarization[6, 7] at micromagnetic structures in a medium
with inhomogeneous magnetization distribution (e.g., domain walls). Since the
Dzyaloshinsky-Moriya interaction is an anisotropic correction to the isotropic
exchange interaction arising from the spin-orbit interaction, the inhomogeneous
magnetoelectric interaction can manifest itself in ferro-, ferri-, and antiferromagnetics.
Thus, the domain wall, a transition region between two magnetic domains where the
magnetization vector undergoes a reversal, can respond to an external inhomogeneous
electric field[8] . Inhomogeneous magnetoelectric interaction also allows the
nucleation of cylindrical magnetic domains with 180° and 90° domain wall
orientations[9, 10] . An important aspect is that the works [7,8,9] do not use dynamical

models to analyze the effects. Modeling the motion of the domain wall in an external
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electric field is of interest because, on the one hand, it belongs to the field of spintronics
and magnetoelectric effect, and on the other hand, the motion of the domain wall in an
external electric field can be considered in the framework of magnonics as a way to
excite spin waves by analogy with the discussed way of excitation of spin waves by
advancing the domain wall in an external magnetic field[11] . In addition, it is known
from classical literature that theoretical analysis of the dynamics of domain wall motion
is a separate and challenging problem[12, 13] . In this paper, the simplest case of the
dynamics of ferromagnetic domain wall motion in an external electric field leading to
the excitation of spin waves is investigated theoretically and numerically.
THEORY

The Landau-Lifshitz-Hilbert equation was used to calculate the magnetization

dynamics in the micromagnetic approximation:
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whereni is the dimensionless vector field of magnetization having at each point a

modulus equal to unity,ﬁ efT is the effective magnetic field,y is the gyromagnetic ratio
for an electron,a is the attenuation index for a given material. In the following, it is
understood that the equation ()1 is used to describe the dynamics of magnetization in
a ferromagnetic material characterized by the parameters of garnet ferrite films, which
are popular elements in possible magnonics devices[14, 15] , so all parameters of the
problem (e.g., saturation magnetizationM ) characterize (in order of magnitude)

exactly garnet ferrite films. Garnet ferrites are ferrimagnets, but the strongest exchange
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interaction binds two magnetic sublattices in them[12] and makes the magnetic
moments of the sublattices collinear in statics. Therefore, we use the static parameters
of the garnet ferrite films for clarity. The effective magnetic field is defined as the

negative variational derivative of the free energy along the magnetization vector:

)

The free energy of the inhomogeneous electric interaction is described by the

following expression :[5, 6]

jRp—— (E ((V- @) + [ x [7x ﬁi]])), 3)

wherey,,, 1s the magnetoelectric constant,E is the electric field inside the material
given by an external source. In the expression ( )3 the multiplier scalarly multiplied by
the electric field vector plays the role of electric polarization induced by
inhomogeneous distribution of magnetization. The energyF,, corresponds, in
agreement with the expression ( )2 , to the effective magnetic field with the following
components in the Cartesian coordinate system :[6]
(Hg{g)i = Yme(2E; 9gmg-2Eg ;mg + mg dgE;-mg 0;Ep). (4)

Since we are talking about the effect of the electric field on the magnetizationm
, which is characteristic of the domain wall, we need to set the exchange interaction
energy and the magnetic anisotropy energy. The simplest model was chosen for the
analysis, in which the following expressions for the energy density of the exchange

interaction and magnetic anisotropy, respectively, are valid:



Fex =A Z (le . Vmi), (5)

i=13
E,, = —K,mZ, (6)
whered = 1 - 1077 erg/cm is the exchange interaction constant,K,, = 1000 erg/cm?is
the uniaxial magnetic anisotropy constant. The geometry of the problem is summarized

in Fig. 1a. For the sum of energies (), (56 ), the classical one-dimensional solution is

known.
m, = sin(6,,(y)) cos(py), (7)
m,, = sin(6,,()) sin(py), (8)
m, = cos(6,, (), ©)
6,,(y) = 2arctan(exp(y/A,)), (10)

describing the Bloch domain wall[12, 16] at ,¢,, = O¢,, = m and the Neel domain

wall at @, =m/2¢, =31/2 . HereA,=+/A/(K, + 2rMZ (sin@,,)?) is the
parameter defining the width of the domain wall,,, is the angle defining the position
of the magnetization in the film plane. Note, firstly, that in the classical Bloch domain
wall from the energy point of view the different states witho,, = 0 andy,, =  are
indistinguishable and, secondly, that the Bloch domain wall in statics does not give a
contribution to the inhomogeneous magnetoelectric effect, since the expression ()3 for
the structure ()7 ate,, = 0 andy,, = m is zero.

Before turning to numerical modeling, we should perform analytical calculations
as far as possible. We will consider analytically a one-dimensional domain wall to

which homogeneous electric field is applied. It is important to note that the expression



(3) contains the electric field vector, which can be either inhomogeneous or
homogeneous. Here, in the analytical consideration, the homogeneous electric field is
used in order to keep it possible to draw simple conclusions and compare them with
the results of numerical experiment. In the equilibrium state of the domain wall, which
is described by the expressions (7) , before the application of the electric field, the total
effective magnetic field of the exchange interaction and magnetic anisotropy is zero,
so at the first instant of time after the application of the electric field, the domain wall
is in the effective ﬁeldﬁ,‘i{;f . The equation (1) can be written for the angle 8[12, 13],
which determines the position of magnetization with respect to the Oz axis (hereinafter
it coincides with the normal to the surface of the magnetic film). The effective field (4)
leads to the following differential equation for the anglef , describing the
magnetization in an arbitrary domain wall, under a uniform electric fieldE, , directed

along the Ox axis:

0 a0 "
ot Exgy’ (b
wherevy = 2yYmoEx cos(8) /Mg . For the case of a homogeneous fieldE, the

following equation is valid:

30 a0 ,
ot~ VEz gy’ (12)

where ,vg = 2yymeE, sin(0) cos(@)/Msp is the azimuthal angle specifying the
position of magnetization in the film plane (see Fig. 1a). Equations (11), (12) belong

to the class of transport equations with a known solution of the formf (t -vy/ v(@)) ,

wherev(6) is the coefficient on the derivative in the spatial coordinate, which has the



velocity dimension. It is important to note that an important conclusion follows from
the equation (12) that inhomogeneous magnetoelectric interaction leads to different
dynamics of the Bloch domain wall with positive and negative componentsm,. , since

the shear ratevy_ is proportional tocos(¢) , which atg = 0, Tt sets the magnetization

reversal structure. In other words, two Bloch domain walls with different signm, in a
homogeneous electric fieldE, will move in opposite directions. Fig. 1b shows the
dependence of the magnetization vector components on the coordinate in the Bloch
domain wall described by expressions (7-10) and the corresponding velocity directions
from expressions(11) and (12), communicated to the domain wall by the electric field
at the initial moment of time after turning on the electric field. According to (7)-

(10)vg,~m, and has a constant sign along the width of the Bloch domain wall,
whilevy_~m, and changes sign along the width of the Bloch domain wall. It follows

that the homogeneous electric fieldE, does not shift the domain wall as a whole, but
leads at early stages of dynamics to compression or broadening of the domain wall -
depending on the signE,, . At the same time, the homogeneous electric fieldE, leads in
the dynamics to a shift of the Bloch domain wall as a whole. Also from the equation
(12) it follows that the Neel (¢ = 1 /2,31/2 ) domain wall will not respond to the
electric field directed along the normal to the film, but will change its width in the
electric fieldE, like the Bloch domain wall. Strictly speaking, the equations (11), (12)
are only applicable at the initial time instant after application of the electric field by the

step, because the balance between the magnetic anisotropy and exchange interaction



energies is disturbed at subsequent time instants. Therefore, it is necessary to solve the
equation ()1 numerically.
For possible comparison, the dispersion law for low amplitude exchange spin

waves propagating in a ferromagnetic material without domain walls should also be

given :[17]
" ki + k3
w* = (W + Wey) wa+wex+wMT ,

2K,

Wan =Y )
Ms (13)
24

Wey = Vﬂsk )

wy = 4y M,

wherek? = ki + k3 + k7 is the square of the wave vector modulus,wgy, Wey, Wy are
the frequencies given by magnetic anisotropy, isotropic exchange interaction, and
demagnetization fields, respectively. Thus, the precession frequency is proportional to
the square of the wave vector. It should be noted that the expressions (13) are obtained
in the approximation of small and constant with time precession amplitude. In the case
ofk = 0 magnetic moments precess synchronously in an effective magnetic field of
magnetic anisotropy. This field at the given problem parameters has a value of 500 A,
which corresponds to the frequency of ferromagnetic resonancew,,, /(2m) = 1.4 GHz.
NUMERICAL CALCULATION METHOD

The numerical solution of the Landau-Lifshitz-Hilbert equation was carried out

using the finite element method based on the FEniCS library[18, 19] . In the one-

dimensional model there were 30 nodes of the computational grid per segment
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corresponding to one width of the domain walld = \/A/K,, , and 7 nodes in the two-
dimensional model. The calculation was performed taking into account the
demagnetizing fields: in the case of the one-dimensional model an additional energy

term was usedF), = 2nM Szmjz, , in the case of the two-dimensional model the structure

of the demagnetizing fields was calculated from the Poisson equation for the scalar
potentialAu = 4mM, div m . The calculations were performed with the attenuation
coefficienta = 0.0001,M, = 4 Gs, and electric field strength of 3 MV/cm. The electric
field was applied to the system in a step in time. Such a value of the electric field is
necessary for the clarity of the results and the possibility to consider the properties of
spin waves.
NUMERICAL SIMULATION RESULTS

This section discusses the results of the numerical simulations. Throughout the
section, they are compared with the conclusions following from the equations (11),
(12), but we are talking about the numerical solution of the Landau-Lifshitz-Hilbert
equation (1) and the graphical representation of this solution. In the one-dimensional
model based on the equation (1) with initial condition (7)-(10), the dependence of the
magnetization vector in the Bloch domain wall on time was obtained. The calculation
results for different direction of homogeneous electric field are shown in Fig. 2. When
an electric fieldE, is applied, the domain wall shifts to the right (Fig. 2a) from its initial
state (Fig. 2b) in a time of 565 ps, in accordance with the conclusion following from
the equation (12) , while spin waves appear along the course of the domain wall motion.
In addition, when the sign of them, component in the initial state of the domain wall

is changed to the opposite sign over the same time period, the Bloch domain wall shifts
9



in the opposite direction (Fig. 2c) When an electric field—E,, is applied over a time
period of 847.5 ps, the domain wall as a whole does not experience a shift (Fig. 2d), as
follows from the equation (11) , but spin waves occur to the left and right of the domain
wall. The Neel domain wall, stabilized by an external magnetic field exceeding the
demagnetization field by a factor of two, experiences similar dynamics when an
electric field—E, is applied - it remains in place as a whole, but spin waves appear at
the periphery (Fig. 3a,b). At the same time, the numerical calculation shows that the
Neel domain wall does not respond to a homogeneous electric fieldE, (Fig. 3c), as
argued in the previous section.

In order to analyze the properties of spin waves excited in this way, a fragment

of the dependence ofm,, (for the Bloch wall) andm, (for the Neel wall) on coordinates

and time, containing several wavelengths, was selected for each direction of the electric
field. For the Neel domain wall, such a fragment is shown in Fig. 3r. In Fig. 3d shows
the dependence of the modulus of the amplitude of the spectrum of them,(t,y)
function in time on the frequency and coordinates of the fragment. This dependence
shows that the characteristic frequency of spin waves in the case of the Neel domain
wall and electric field—E, 1s 7.5 GHz. Also in Fig. 3d it can be seen that the precession
frequency increases with increasing coordinate. This can be explained by the fact that
the nonlinearity of the dynamics leads to the fact that the magnetization precession is
not isochronous, i.e., the precession frequency depends on its amplitude. We can
identify at least one factor that sets the character of this relation. At this site, the
strongest effective magnetic field that sets the precession properties of the planar

components of magnetization is created by magnetic anisotropy. This effective field,
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as follows from (2) and (6), 1s proportional tom, . Since in Fig. 3d with distance from

the domain wall the amplitude of the planar componentsm,, m,, naturally decreases,

the componentm, grows, and consequently a larger effective magnetic field sets a
higher precession frequency. Of course, for the model under consideration, such a
consideration is very simple, but it shows that the increase in the frequency of spin
waves with distance from the domain wall is not unexpected. A more rigorous
consideration in perspective can be obtained by analyzing the influence of all
interactions on the dispersion relation for spin waves. In Fig. 3e shows the dependence
of the modulus of the spectrum of the functionm, (¢, y) in spatial coordinate on the
spatial frequency for the time instantt = 565 ps. This dependence shows that the
characteristic spin wavelength is 500 nm. Similarly, the fragments of Fig. 1,
highlighted by blue filling, were selected for the Bloch domain wall. For the cases of
homogeneous electric fieldE, and -E, , applied to the Bloch domain wall, the
characteristic frequencies and wavelengths are 15 GHz, 200 nm and 7.5 GHz, 500 nm,
respectively.

In the two-dimensional model, spin waves are also excited under the electric field
of a point charge. Fig. 4a shows the initial state of the Bloch domain wall and the
position of the point charge. In a time of 170 ps after application of an electric field in
a stepwise manner, the domain wall curves and shifts (Fig. 4b). In this case, the electric
field component along the Oz axis has a negative sign and them, component has a
positive sign (cos(¢) > 0). In this configuration, equation (12) describes the direction
of the domain wall displacement corresponding to Fig. 4b. The electric field causes, in

addition to the domain wall shift, the excitation of spin waves, which are reflected in
11



the distribution of them, component in Fig. 4b. and in the distribution of the

components ,m,m,, (Fig. 4¢) plotted along the specific direction marked in Fig. 4b. In
Fig. 4d shows the spectrum of them, component over time for each point in the

fragment. It follows that the characteristic frequency of the excited spin waves is 12.5
GHz. The spatial spectrum in Fig. 4d shows that the characteristic spin wavelength in
the two-dimensional model is 300 nm.
CONCLUSION

Thus, using micromagnetic modeling based on the Landau-Lifshitz-Hilbert
equation for ferromagnetic material, it is shown that in films with inhomogeneous
magnetoelectric interaction, the effect of both homogeneous and inhomogeneous
electric field on the Bloch and Neel domain walls leads to the excitation of spin waves
with characteristic frequencies of about 10 GHz and wavelengths of about 100 nm. The
obtained set of pairs of frequencies and wavelengths (15 GHz, 200 nm), (7.5 GHz, 500
nm), (12.5 GHz, 300 nm) qualitatively satisfies the dispersion relation (13) : the smaller
the wavelength, the larger the frequency. It is also shown that on the basis of
approximate transport equations (11), (12) it is possible to make a conclusion about the
presence or absence of the domain wall shift, about the connection of its sign with the
polarity of the electric field and the structure of the domain wall. Here it is important
to note that in contrast to the static model, the dynamic model admits the possibility of
electric field influence on the Bloch domain wall. These conclusions imply further
experimental work on the detection of spin waves, checking the relationship between
the direction of the electric field and the shear properties of the domain wall. From the

theoretical point of view, an important question is the effect of the electric field on the
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dispersion relation for excited spin waves, as well as the question of the dependence of
the properties of spin waves on the amplitude of the electric field. There is also a
question about the applicability of the results of the work to the case of ferrimagnetic
materials. It is known[12] that two types of precession of magnetic moments of two
sublattices are possible in ferrimagnetics: low-frequency (characteristic frequencies are
comparable to those of ferromagnetics), when magnetic moments of sublattices remain
collinear, and high-frequency, when collinearity is broken. The second type of
precession allows ferrimagnetics to be used to excite spin waves in the terahertz
range[2] . In the case of garnet ferrite films, the exchange interaction between the
sublattices is the strongest, while the Dzyaloshinski-Moria interaction is of a corrective
nature due to the smallness of the spin-orbit interaction constant. Therefore, at low
applied electric fields, the inhomogeneous magnetoelectric interaction will not be able
to break the collinearity of magnetic sublattices and excite high-frequency waves. To
estimate the smallness of the electric field, we can indicate that at an electric field value
of 1 MV/cm, the magnitude of the inhomogeneous magnetoelectric interaction is a few
tens of percent of the surface energy of the domain wall[10] , and, accordingly, an even
smaller percentage of the exchange energy. Therefore, at electric field values smaller
than 1 MV/cm, one should not expect a violation of the collinearity of magnetic
sublattices in a ferrimagnet. In order to determine the specific precession parameters
and to verify the above hypothesis, it is necessary to carry out appropriate modeling.
In the case of antiferromagnetics with more than two magnetic sublattices, a separate

calculation is required.
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FIGURE CAPTIONS
Fig. 1. Geometry of the problem and structure of the Bloch domain wall: geometry of
the problem with marked magnetization componentsm,, m,,m, and anglesf, ¢ ,
defining the normalized magnetization vector (a); structure of the Bloch domain wall
(b): lines mark the dependence of the magnetization vector components on the
coordinate; arrows mark the velocities imparted by the homogeneous electric field (E,

orE, ) to the domain wall at the first moment of dynamics. The coordinate is counted

in units of the domain wall widthd = \/A/K,, = 100 nm.

Fig. 2. Numerical simulation result of the Bloch domain wall: initial state (a); with an
initially negative componentm, throught = 565 ps at a homogeneous fieldE, (b); with
an initially positive componentm, throught = 565 ps at a homogeneous fieldE, (c);

throught = 847.5 ps at a homogeneous field—E, (d). The coordinate is counted in units

of domain wall width4d = \/A/K,, = 100 nm. Blue fillings show the regions selected

for calculating the spectral characteristics.

Fig. 3. Result of numerical modeling of the Neel domain wall: initial state (a); structure
at the timet = 565 ps after application of a uniform electric field—E, (b), blue fill
shows the region selected for calculating spectral characteristics; structure that does
not respond to a uniform electric fieldE, (numerical calculation) (c), upper indices
indicate initial and final states; magnetization componentm, at the timet = 565 ps in

the selected region (d); time dependence of the function spectrumm, (t,y) for each
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coordinate of the fragment (¢); function spectrumm, (y) by coordinate at the timet =

565 ps (f).

Fig. 4. Two-dimensional numerical modeling of spin waves excitation by electric field:
dependence of them, component in the Bloch domain wall on the coordinates at the
initial time instant and the position of the point electric charge shown by the shaded
circle (a); dependence of them, component in the Bloch domain wall on the
coordinates at timet = 170 ps (b); dependence of the in-plane magnetization
components on the coordinate along the line marked in figure b at the moment of
timet = 170 ps (c); spectrum of the functionm,,(t,y) on time for each coordinate of
the fragment (d); spectrum of the functionm, (r) on coordinate at the moment of

timet = 170 ps (e).
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