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ВВЕДЕНИЕ

Проблема распространения акустических волн
в случайно-неоднородных средах и необходимость
расчета статистических характеристик таких волн
возникает во многих случаях [1, 2], в частности
при распространении звука в турбулентной атмо-
сфере [2–7]. В этом случае параметры среды из-
меняются со временем, так что небольшой набор
реализаций не дает полного представления о воз-
можном характере эволюции волны. Полноценное
описание возможно только на основе статистиче-
ских характеристик типа распределений вероятно-
сти или, по крайней мере, средних величин, дис-
персий и т. д. Отметим также задачи зондирования
и восстановления параметров неоднородных сред,
при реализации которых присутствующие шумы
и флуктуации могут оказаться полезными [8, 9].
В настоящее время актуальными становятся во-
просы распространения нелинейных волн и пуч-
ков [10] в случайно-неоднородных средах, в том
числе акустических ударных волн с узким фрон-
том от перспективных гражданских сверхзвуковых
самолетов [11, 12], а также в медицинских прило-
жениях [13]. Поэтому необходимо развитие мето-
дов расчета статистических характеристик ударных
и разрывных волн в случайно-неоднородной среде.

Построение точных динамических решений
для нелинейных уравнений представляет большие
трудности, тем более это относится к стохастиче-

ским уравнениям со случайными функциями. Од-
ним из эффективных подходов к расчету стати-
стических характеристик волновых полей является
усреднение стохастических уравнений с целью по-
лучения уравнений для моментов — среднего поля,
дисперсии и т. д.

Данная статья посвящена дальнейшему уточне-
нию проведения процедуры усреднения для аку-
стических ударных и разрывных волн с узкими
ударными фронтами. Как известно [14–16], усред-
нение в целом приводит к появлению так назы-
ваемого турбулентного затухания и, соответствен-
но, сглаживанию ударных фронтов. Следователь-
но, можно было бы ожидать, что усреднение раз-
рывных профилей не будет иметь особенностей
по сравнению с усреднением гладких профилей.
Однако, оказывается, что это не так, и наличие
разрыва необходимо учитывать перед процедурой
усреднения.

МЕТОД СРЕДНЕГО ПОЛЯ
Одним из распространенных методов получе-

ния замкнутых уравнений для усредненных ха-
рактеристик является метод среднего поля, име-
ющий давнюю историю [17]. Он достаточно хо-
рошо зарекомендовал себя при решении линей-
ных задач. При рассмотрении нелинейных задач
возникает проблема замыкания нелинейных сла-
гаемых. Согласно методу среднего поля среднее
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значение квадрата акустического поля (например,
давления), заменяется на произведение средних
значений. Фактически это означает пренебрежение
средним квадратом флуктуаций давления, что при-
водит к определенным ошибкам [14, 18]. Кроме то-
го, необходимо определить, насколько корректно
он учитывает ударные фронты и разрывы в профи-
ле волны.

В качестве исходного уравнения рассмот-
рим уравнение типа простых волн, включа-
ющее случайную расстройку скорости звука

𝜍(𝑧) =
𝑐2

0

2
(𝑐−2(𝑧) − 𝑐−2

0 ), вызванную флуктуациями
параметров среды распространения:

𝜕𝑝

𝜕𝑧
−
𝜍(𝑧)

𝑐0

𝜕𝑝

𝜕τ
−

ε

ρ𝑐3
0

𝑝
𝜕𝑝

𝜕τ
= 0, (1)

где 𝑝 — акустическое давление, 𝑧 — координата,
τ = 𝑡−

𝑧

𝑐0
— время в сопровождающей системе коор-

динат, 𝑐(𝑧)— случайная локальная скорость звука,
𝑐0 — характерная средняя скорость звука, ε — нели-
нейный параметр, ρ — плотность среды.

Применяя к уравнению (1) метод среднего по-
ля, получим уравнение Бюргерса для среднего дав-
ления:

𝜕⟨𝑝⟩

𝜕𝑧
−

ε

ρ𝑐3
0

⟨𝑝⟩
𝜕⟨𝑝⟩

𝜕τ
=

σ2

2𝑐2
0

𝜕2⟨𝑝⟩

𝜕τ2
. (2)

Здесь угловые скобки означают усреднение по ан-
самблю, σ2 имеет смысл дисперсии флуктуаций
расстройки скорости (конкретно задается корреля-
ционная функция ⟨𝜍(𝑧1)𝜍(𝑧2)⟩ = σ2δ(𝑧2 − 𝑧1)). Как
видно, усреднение привело к появлению так на-
зываемого турбулентного затухания, т. е. в среднем
поле затухает. Уравнение (2) замечательно тем, что
заменой Хопфа–Коула 𝑉 = 2Γ 𝜕

𝜕θ
ln𝑈 оно сводится

к линейному уравнению:

𝜕𝑈

𝜕𝑥
= Γ

𝜕2𝑈

𝜕θ2 .

Здесь введены безразмерные переменные

𝑉=
⟨𝑝⟩

𝑝0
, θ=

τ

τ0
, 𝑥=

𝑧

𝑧nl
, 𝑧nl=

ρ𝑐3
0τ0

ε𝑝0
, Γ=

σ2

2𝑐2
0

𝑧nl

τ2
0

, (3)

где𝑝0 и τ0 — характерные амплитуда и длительность
импульса.

В качестве исходного сигнала будем рассматри-
вать 𝑁-волну,

𝑝(𝑧 = 0, τ) = 𝐹(τ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
𝑝0τ

τ0
, ∣τ∣ < τ0,

0, ∣τ∣ > τ0,
(4)

представляющую модельный вариант характерных
профилей, зарегистрированных от сверхзвуковых
самолетов [3, 5]. Для начального профиля (4) полу-

чим решение уравнения Бюргерса в безразмерных
переменных:

⟨𝑝⟩

𝑝0
= 2Γ 𝜕

𝜕θ
ln {1 + 1

2
Φ (

θ − 1
2
√
Γ𝑥
) −

1
2
Φ (

θ + 1
2
√
Γ𝑥
) +

+
1

2
√
𝑥 + 1

exp (𝑥 + 1 − θ2

4Γ(𝑥 + 1)
)×

×[Φ (
𝑥 + 1 + θ

2
√
Γ𝑥
√
𝑥 + 1

) − Φ (
θ − 𝑥 − 1

2
√
Γ𝑥
√
𝑥 + 1

)]} ,

(5)

где Φ(𝑡) = 2
√
π

𝑡

∫

0

𝑒−𝑡
2
𝑑𝑡 — интеграл ошибок.

Из формулы (5) можно увидеть динамику полу-
ченного фронта — происходит расплывание удар-
ных фронтов, пропорциональное как дисперсии
флуктуаций фазы, так и пройденному расстоя-
нию. В частности, даже разрывные профили в рам-
ках этой модели сглаживаются и не содержат осо-
бенностей, на чем и основывается предположение
о применимости стандартных подходов к усредне-
нию волн с разрывами. Характерные профили ре-
шения (5) представлены на рис. 1 для значения
Γ = 0.05. Происходит расплывание фронта волны,
причем как за счет диффузионного расплывания
ширины начального фронта, так и за счет опреде-
ленного среднеквадратичного сноса среднего по-
ложения ударного фронта. Хотя в решении (5) и со-
держится значительная информация о нелинейно-
сти среды, оно всё равно неудовлетворительно опи-
сывает среднее поле, поскольку основано на при-
ближенной модели усреднения [14, 18].

УСРЕДНЕНИЕ ТОЧНОГО ДИНАМИЧЕСКОГО
РЕШЕНИЯ

Чтобы оценить точность описанных выше ме-
тодов, вернемся к уравнению (1). Оно удобно для
анализа тем, что удается построить его точное ана-
литическое решение даже при наличии флуктуа-
ций. Усреднение этого решения покажет точность
и близость к верному результату решений, полу-
ченных приближенными методами.

Сделаем замену переменных

τ1 = τ +
1
𝑐0

𝑧

∫

0

𝜍 (𝑧′) 𝑑𝑧′

и приведем уравнение (1) к стандартному уравне-
нию простых волн:

𝜕𝑝

𝜕𝑧
−

ε

ρ𝑐3
0

𝑝
𝜕𝑝

𝜕τ1
= 0. (6)

Решение уравнения (6) с произвольным начальным
профилем задается в неявном виде:

𝑝 = 𝐹
⎛

⎝
τ1 +

ε

ρ𝑐3
0

𝑝𝑧
⎞

⎠
. (7)
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Рис. 1. Временные профили среднего давления, полученные методом среднего поля для значения дисперсии фазы
Γ = 0.05 на расстояниях 𝑥 = 0.0001, 0.15, 0.7, 2, 5 (кривые 1–5).

Введя обозначение η =
1
𝑐0

𝑧

∫

0

𝜍 (𝑧′) 𝑑𝑧′, решение

уравнения (1), содержащего флуктуации, запишем
в следующем виде:

𝑝 = 𝐹
⎛

⎝
τ + η +

ε

ρ𝑐3
0

𝑝𝑧
⎞

⎠
. (8)

Решение (8) задано в неявном виде и не поз-
воляет непосредственно его усреднить. Поэтому
перейдем к спектру волны и усредним его, а за-
тем найдем профиль усредненной волны. Из-
вестно, что до образования разрыва спектр про-
стой волны (7) описывается разложением Бесселя–
Фубини [19]. Проведя аналогичные расчеты для ре-
шения (8), получим выражение для его спектра:

𝑆(ω) =
1

𝑖ω (ε/ρ𝑐3) 𝑧

∞

∫

−∞
𝑒−𝑖ω(𝑇+η) (𝑒

𝑖ω
ε

ρ𝑐3 𝑧𝐹 − 1) 𝑑𝑇.

Учтем, что дисперсия величины η равна ⟨η2⟩ =

=
2
𝑐2

0

𝑧

∫

0

(𝑧 − 𝑠)𝐾𝜎(𝑠)𝑑𝑠, и при δ-коррелированности

флуктуаций 𝐾𝜎(𝑠) = 𝐷δ(𝑠), ⟨η
2⟩ =

𝐷𝑧

𝑐2
0

. Среднее зна-

чение ⟨η⟩ = 0, если среднее значение флуктуаций
скорости равно нулю. Если флуктуации 𝜍 являют-
ся гауссовским процессом, то η также будет гаус-
совским процессом. Тогда можно записать выра-
жение для характеристической функции ⟨𝑒−𝑖ωη⟩ =

= 𝑒
−ω2

2
⟨η2⟩
= 𝑒
−ω2

2
𝐷𝑧

𝑐2
0 . Теперь усредненный спектр ра-

вен:

⟨𝑆(ω)⟩=
1

𝑖ω (ε/ρ𝑐3) 𝑧

∞

∫

−∞
𝑒
−𝑖ω𝑇−ω2

2
⟨η2⟩
(𝑒
𝑖ω

ε

ρ𝑐3 𝑧𝐹−1) 𝑑𝑇. (9)

Применяя обратное преобразование Фурье,
находим среднее поле:

⟨𝑝⟩ =
1

2π

∞

∫

−∞
⟨𝑆(ω)⟩𝑒−𝑖ωτ𝑑ω =

=

∞

∫

−∞

1
2π𝑖ω (ε/ρ𝑐3) 𝑧

𝑒
−ω2

2
⟨η2⟩

×

×

∞

∫

−∞
𝑒𝑖ω(τ−𝑇) (𝑒

𝑖ω
ε

ρ𝑐3 𝑧𝐹 − 1) 𝑑𝑇𝑑ω.

(10)

В (10) удобно сначала вычислить производную
от среднего поля

𝜕⟨𝑝⟩

𝜕τ
=

1
2π (ε/ρ𝑐3) 𝑧

¿
Á
ÁÀ 2π
⟨η2⟩

×

×

∞

∫

−∞
{exp (− 1

2⟨η2⟩
(τ − 𝑇 +

ε

ρ𝑐3 𝑧𝐹(𝑇))
2
) −

− exp (−
(τ − 𝑇)2

2⟨η2⟩
)} 𝑑𝑇.

(11)
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Для 𝑁-волны (4) решение (10) в безразмерных
переменных (3) имеет вид:

⟨𝑝⟩

𝑝0
=

β

2𝑥
{

1
1 + 𝑥

[
θ + (1 + 𝑥)

β
Φ (

θ + (1 + 𝑥)
β

) −

−
θ − (1 + 𝑥)

β
Φ (

θ − (1 + 𝑥)
β

) +

+
1
√
π

exp (−
(θ + (1 + 𝑥))2

β2 ) − (12)

−
1
√
π

exp (−
(θ − (1 + 𝑥))2

β2 )] +

+
θ − 1
β

Φ (
θ − 1
β
) −

θ + 1
β

Φ (
θ + 1
β
) +

+
1
√
π
𝑒
− (θ−1)2

β2 −
1
√
π
𝑒
− (θ+1)2

β2 } ,

где β = β(𝑧) =

√
2⟨η2⟩

τ0
=

√
2𝐷𝑧
𝑐0τ0

≡ 𝐷0
√
𝑥.

Однако полученное решение (10) неверно опи-
сывает эволюцию 𝑁-волны (4). В этом легко убе-
диться, рассмотрев в (12) предельный переход к от-
сутствию флуктуаций при β → 0 (𝐷 → 0):
⟨𝑝⟩

𝑝0
=

1
2𝑥
{

1
1 + 𝑥

[∣θ + 1 + 𝑥∣ − ∣θ − 1 − 𝑥∣] +

+∣θ − 1∣ − ∣θ + 1∣}.
(13)

Временные профили решения (13) построены
на рис. 2 для различных расстояний. Видно, что по-
лученное решение описывает расплывание ударно-
го фронта, что не соответствует динамике ударно-
го импульса N-образной формы в нелинейной сре-
де. Таким образом, при усреднении волн с разры-
вами необходимо предварительно получить явное
разрывное решение для профиля.

УРАВНЕНИЕ ДВИЖЕНИЯ РАЗРЫВА В СРЕДЕ
С ФЛУКТУАЦИЯМИ

Проанализируем динамику движения разры-
ва в волне, описываемой уравнением (1). Для
𝑁-волны решение (8) можно записать в явном виде
для обратной функции:

τ = −
τ0

𝑝0
𝑝 −

ε

ρ𝑐3𝑝𝑧 − η + τ0.

Определим положение переднего фронта при
распространении волны. Введем обозначения:
𝑝1 — минимальное значение давления в разрыве,
𝑝2 — максимальное. Тогда для переднего фронта
можно записать:

𝑝1 = 0, τ2 = −
τ0

𝑝0
𝑝2 −

ε

ρ𝑐3𝑝2𝑧 − η + τ0. (14)

0.5
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–0.5
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4 5
6 θ

1 2 3–1–2–3

Рис. 2. Предельные профили при исчезающе малых флуктуациях среды, полученные при усреднении спектрального
разложения. Кривые 1–6 соответствуют расстояниям 𝑥 = 0.001, 0.3, 0.54, 0.8, 1.2, 2.
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Уравнение движения координаты разрыва τp
можно получить из закона сохранения импульса:

𝑑

𝑑𝑧

𝑝2

∫

𝑝1

(τ(𝑝) − τp) 𝑑𝑝 = 0, ⇒

⇒

𝑝2

∫

𝑝1

𝑑τ

𝑑𝑧
𝑑𝑝 = (𝑝2 − 𝑝1)

𝑑τp

𝑑𝑧
.

(15)

Вычисляем:
𝑑τ

𝑑𝑧
= −

𝑑τ

𝑑𝑝

𝑑𝑝

𝑑𝑧
= −

𝑑τ

𝑑𝑝
(

ε

ρ𝑐3𝑝
𝑑𝑝

𝑑τ
+ ς

𝑑𝑝

𝑑τ
) = −

ε

ρ𝑐3𝑝 − ς,

и из (15) получаем:
𝑑τp

𝑑𝑧
= −

ε

2ρ𝑐3 (𝑝2 + 𝑝1) − ς. (16)

Уравнения (14) и (16) полностью описывают
движение разрыва. Решая их совместно, получаем
выражения для амплитуды и положения разрыва:

𝑝2 =
𝑝0

√

1 +
ε𝑝0

ρ𝑐3τ0

, τp = −τ0

¿
Á
ÁÀ1 +

ε𝑝0

ρ𝑐3τ0
− η + τ0.

Окончательно, получаем явное решение для
профиля N-волны:

𝑝 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
𝑝0

τ0

τ + η

1 + 𝑥
, −𝑇(𝑥) − η < τ < 𝑇(𝑥) − η,

0, −𝑇(𝑥) − η > τ, τ > 𝑇(𝑥) − η,
(17)

где 𝑇(𝑥) = τ0
√

1 + 𝑥, расстояние 𝑥 определено в (3).
Выражение (17) позволяет правильно усреднить ре-
шение для волны с разрывом. Используя спек-
тральное представление решения (17), получим вы-
ражение для среднего поля:

⟨𝑝⟩ =
1

2π

𝑇(𝑧)

∫

−𝑇(𝑧)
𝑝(τ′)𝑑τ′

∞

∫

−∞
𝑒
− ⟨η2

⟩

2
ω2+𝑖ω(τ−τ′)

𝑑ω =

=
1

√
2π⟨η2⟩

𝑇(𝑧)

∫

−𝑇(𝑧)
𝑝(τ′) exp (−

(τ − τ′)2

2⟨η2⟩
) 𝑑τ′.

(18)

Для 𝑁-волны в безразмерных переменных
окончательно получаем:

⟨𝑝⟩

𝑝0
= −

1
2

1
1 + 𝑥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ (Φ (
θ +
√

1 + 𝑥
𝐷0
√
𝑥
) −

− Φ (
θ −
√

1 + 𝑥
𝐷0
√
𝑥
)) +

𝐷0
√
𝑥

√
π

×

×

⎛
⎜
⎜
⎝

exp
⎛
⎜
⎜
⎝

−

(θ−
√

1+𝑥)2

𝐷2
0𝑥

⎞
⎟
⎟
⎠

−exp
⎛
⎜
⎜
⎝

−

(θ−
√

1+𝑥)2

𝐷2
0𝑥

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(19)

При 𝐷0 → 0 получаем следующее решение:
⟨𝑝⟩

𝑝0
=−

1
2

θ

1+𝑥
[sgn (θ+

√
1+𝑥)−sgn (θ−

√
1+𝑥)] . (20)

Выражение (20) правильно описывает эволю-
цию 𝑁-волны в однородной нелинейной среде.

Таким образом, наличие разрыва в профиле
волны необходимо учитывать до проведения про-
цедуры усреднения несмотря на то, что она са-
ма по себе вносит турбулентное затухание и сгла-
живает ударные фронты. Однако это сглажива-
ние не учитывает уширение длительности импуль-
са за счет нелинейных эффектов, а приводит толь-
ко к расплыванию ударного фронта в области его
начального положения. На самом деле происходит
конкуренция двух процессов — нелинейного уши-
рения и турбулентного затухания.

ЭВОЛЮЦИЯ ИСХОДНОГО ТРЕУГОЛЬНОГО
ИМПУЛЬСА

Интересно также проследить динамику исход-
ного треугольного импульса, в котором разрыв еще
отсутствует:

𝐹(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

𝑝0
τ + τ0

τ0
, −τ0 ⩽ τ ⩽ 0,

𝑝0
−τ + τ0

τ0
, 0 < τ ⩽ τ0,

0, ∣τ∣ > τ0.

(21)

Воспользуемся формулами (10) и (11), получен-
ными на основе усреднения спектрального пред-
ставления. Подставляя в них профиль (21), найдем:

⟨𝑝⟩

𝑝0
=

1
2𝑥

⎧⎪⎪
⎨
⎪⎪⎩

−𝐷0

√
𝑥

π
exp
⎛

⎝
−
(θ + 1)2

𝐷2
0𝑥

⎞

⎠
−

−(θ + 1)Φ ( θ + 1
𝐷0
√
𝑥
) + 𝐷0

√
𝑥

π
exp
⎛

⎝
−
(θ − 1)2

𝐷2
0𝑥

⎞

⎠
+

+(θ − 1)Φ ( θ − 1
𝐷0
√
𝑥
) + [

1
𝑥 − 1

+
1

𝑥 + 1
]×

×

⎡
⎢
⎢
⎢
⎢
⎣

𝐷0

√
𝑥

π
exp
⎛

⎝
−
(θ + 𝑥)2

𝐷2
0𝑥

⎞

⎠
+ (θ + 𝑥)Φ (

θ + 𝑥

𝐷0
√
𝑥
)

⎤
⎥
⎥
⎥
⎥
⎦

+

+
1

𝑥 − 1

⎡
⎢
⎢
⎢
⎢
⎣

(θ + 1)Φ ( θ + 1
𝐷0
√
𝑥
) − 𝐷0

√
𝑥

π
exp
⎛

⎝
−
(θ + 1)2

𝐷2
0𝑥

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+

+
1

𝑥 + 1

⎡
⎢
⎢
⎢
⎢
⎣

(θ − 1)Φ ( θ − 1
𝐷0
√
𝑥
) − 𝐷0

√
𝑥

π
exp
⎛

⎝
−
(θ − 1)2

𝐷2
0𝑥

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

(22)

Профиль решения (22) (22), рассчитанный при
исчезающей вязкости, имеет вид:
⟨𝑝⟩

𝑝0
=

1
2𝑥
{(θ − 1)sgn(θ − 1) − (θ + 1)sgn(θ + 1)+

+
(𝑥 + θ)sgn(𝑥 + θ) − (θ + 1)sgn(θ + 1)

𝑥 − 1
+

+
(𝑥 + θ)sgn(𝑥 + θ) − (θ − 1)sgn(θ − 1)

𝑥 + 1
}.

(23)

Профиль (23) изображен на рис. 3 для раз-
личных расстояний. Как видно, на расстояниях до
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Рис. 3. Предельные профили исходного треугольного импульса при исчезающе малых флуктуациях среды, полученные
при усреднении спектрального разложения для расстояний 𝑥 = 0.001, 0.3, 0.54, 0.8, 1.2, 2 (кривые 1–6).

образования разрыва искажение профиля соответ-
ствует законам нелинейной акустики (кривые 1–3).
После образования разрыва расчет профиля на ос-
нове спектрального представления неверно описы-
вает динамику ударного фронта — он расплывается
вместо того, чтобы сдвигаться.

Усредненные профили для треугольного
импульса после образования разрыва на основе
выражения для правильно усредненного поля
приведены на рис. 4. Здесь нужно обратить также
внимание на форму импульса. При относитель-
но небольшой дисперсии флуктуаций (рис. 4а)
импульс имеет характерную форму с укручением
и явно заметным ударным фронтом, соответствую-
щую его уширению за счет нелинейных эффектов.
На эту форму накладывается сглаживающее воз-
действие турбулентного затухания. Таким образом,
мы действительно получаем усредненные профили
волны с разрывом. При увеличении дисперсии
(рис. 4б) это укручение пропадает и профиль
оказывается сглаженным. Если вернуться к рис. 1
для профилей, получаемых методом среднего
поля, то можно заметить, что укручение на удар-
ных фронтах выражено слабо при сравнимых
значениях дисперсии с графиками на рис. 4а.

Таким образом, можно заключить, что метод
среднего поля неточно описывает самую суще-
ственную часть усредненного профиля — ударный
фронт и степень его крутизны, занижая данные
величины. Тем самым, оценки на его основе мо-

гут дать заниженные значения ожидаемых акусти-
ческих полей в турбулентной атмосфере, что мо-
жет негативно сказаться на состоянии окружающей
среды.

ЗАКЛЮЧЕНИЕ
Таким образом, рассмотрены методы получе-

ния замкнутых уравнений для средних полей аку-
стических волн в случайно-неоднородных средах
и результаты расчетов для волновых профилей
с разрывами. Показано, что метод среднего по-
ля неточно описывает трансформацию ударного
фронта в условиях сильной нелинейности. При
этом усреднение точного динамического решения
также требует аккуратности, вначале необходимо
определить положение разрыва в профиле.
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Mean field of acoustic waves with discontinuities in randomly inhomogeneous media
D. M. Alekseev, V. A. Gusev∗
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The features of the construction of closed equations for the mean field of acoustic waves with discontinuous
profiles in a randomly inhomogeneous medium are considered. Different approaches to obtaining such
equations are compared. It is shown that, despite the smoothing of profiles in the average, the presence of
a discontinuity in the profile should be considered before the averaging operation. An exact expression for
the mean field of the initial 𝑁-wave is obtained.

Keywords: discontinuous waves, random inhomogeneous media, mean field, averaging, exact solution
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