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Abstract. Improved numerical implementation of the two-dimensional functional 

analytical algorithm is proposed. The algorithm is designed to reconstruct spatial 

distributions of sound speed and absorption coefficient in a tomography region. The 

high accuracy of obtained tomograms is illustrated even with large wave sizes and 

complicated internal structure of object under study.  
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INTRODUCTION 

Let us consider a rigorous wave solution of the inverse problem of acoustic 

scattering. It is required to recover the inhomogeneous spatial distributions of sound 

velocity )(rc   and amplitude absorption coefficient ),( jr ωα
  at a given frequency jω

inside a tomographic object located in the regionℜ  . Outside the regionℜ  there is a 

homogeneous non-absorbing background medium; its sound velocity 0c  and wave 
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number 00 ck jj ω=  . The transmitters and receivers used to obtain experimental data are 

outside the regionℜ  and surround the object under investigation on all sides. The object 

is probed by a fixed incident acoustic pressure field )(0 ru   . Upon reaching the object, 

this field )(0 ru   is scattered on acoustic inhomogeneities insideℜ  . This creates a total 

field )(ru   , which is detected by all receivers. The direction of the incident field is then 

changed, and the corresponding fields )(ru   are again received. The complete data set 

is obtained by enumerating all possible sensing and receiving directions. This data set 

is processed, i.e. the inverse problem is solved. As a result, the desired functions )(rc   

and ),( jr ωα
  are recovered quantitatively. The possibility of obtaining quantitative 

estimates at each point of r  space is a fundamental difference between inverse acoustic 

problems of tomographic type and inverse problems of ultrasound type. This possibility 

is provided, firstly, by the availability of experimental data at the most different angles 

and, secondly, by a sufficiently rigorous algorithm for processing such data. Below, 

for processing purposes, we consider a two-dimensional wave functional-analytic 

algorithm [1 -5 ] in the monochromatic version. This algorithm is based on the ideas 

of solving inverse scattering problems on quantum mechanical potentials [1–3, 6, 7].  

The total field )(ru   at each fixed )(0 ru   obeys the Helmholtz equation
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−ω=ω  is the scatterer 

function for time-dependent fields )exp(~ ti jω−  . The function ),( jrv ω
  [8 ] must first be 

recovered, after which the separate functions )(rc   and ),( jr ωα
  [9 ] can be extracted from 

it. The input data for the functional algorithm are the complex values of the classical 
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scattering amplitude );,( jlkf ω


 . They are assumed to be known for all valid wave 

vectors 2RI, ∈lk


 , where 2
0

22
jklk ==



 . Let the incident field be a classical plane wave  

)exp();,(0 rkikru j






=ω      (1) 

with wave vector k


 , and the field );,( jkru ω


  is taken in the far field in the direction co-

directional to the wave vector l


 , i.e., lr




↑↑  . Then the values );,( jlkf ω


 are 

proportional to the scattered field );,();,( 0 jj krukru ω−ω






  . At the same time, the values 

of );,( jlkf ω


 can be recalculated from the fields taken in the near zone outside the 

region of the tomographic object [8, 10].  

TWO-DIMENSIONAL FUNCTIONAL ALGORITHM AND ANGULAR 

HARMONIC APPARATUS 

The two-dimensional functional algorithm for recovering the scatterer function

),( jrv ω
  consists of several successive steps, which are given below in terms of angles 

and angular harmonics [4, 5]. Namely, the angular spectrum )(~ qg  for an arbitrary 

periodic function )(ϕg  with period π2  is defined by the relations (angular harmonics 

have integer numbers ...,2,1,0 ±±=q  , i.e., ): ZZ∈q  

∫
π

ϕϕ−ϕ
π

=
2

0

)exp()(
2
1)(~ diqgqg ,   ∑

∞

−∞=

ϕ=ϕ
q

iqqgg )exp()(~)( ,   ZZ∈q .  (2) 

For the two-dimensional vectors k


 and l


 in the polar coordinate system we have:  

{ }ϕ= ,0 jkk


,     { }ϕ′= ,0 jkl


;     (3) 

then );,();,( jj flkf ωϕ′ϕ≡ω


 . First, two functions );,( jh ωϕ′ϕ±  - the so-called generalized 

scattering amplitude - are found based on the known values of the classical scattering 
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amplitude );,( jf ωϕ′ϕ  . For this purpose, for each fixed value ofϕ  , a linear system of 

equations is solved, which is obtained by enumerating all anglesϕ′  :  

[ ] );,();,()sin();,();,(
2

0
jjjj fdfhih ωϕ′ϕ=ϕ ′′ωϕ′ϕ ′′ϕ−ϕ ′′±θωϕ ′′ϕπ−ωϕ′ϕ ∫

π
±±  , (4) 

where { }0при0;0при1)( ≤>=θ ttt  is the Heaviside function. After that, for each 

fixed point r  with Cartesian coordinates },{ yxr =
  we construct auxiliary functions 

[ ] .)]sin([)}sin(sin)cos(cos{exp);,(

);,,(

0 ϕ−ϕ′±θϕ−ϕ′+ϕ−ϕ′ωϕ′ϕ≡

≡ωϕ′ϕ

⋅±

±

yxikh

rQ

jj

j


 (5) 

Their dual angular spectrum is calculated by the Fourier transform in angles: 

)exp()exp( );,,(
)π2(

1);,,(
~~ π2

0

π2

0
2 ϕ′′−ϕ−ωϕ′ϕϕ′ϕ≡ω′ ±± ∫∫ qiiqrQddqqrQ jj

  , (6) 

and for all ZZ∈′q  the function  
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
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Knowing );,,(
~~

jqqrB ω′
  allows us to find the angular harmonics );,(~cl

jqr ωµ
  of a 

classical field with the "carrier" wave removed: );,()exp();,(cl
jj krurkikr ω−≡ωµ







  . 

These angular harmonics are found at each fixed point r  from the system of linear 

equations: 

0
'

clcl );,(~);,,(
~~2);,(~

q
q

jjj qrqqrBqr δ=ω′µω′−π+ωµ ∑
∞

−∞=

  ,   (8) 

where { }0при0;0при10 ≠==δ qqq  . Finally, the desired scatterer function is 

calculated from the relation 
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The described two-dimensional functional algorithm allows to take into account 

the processes of multiple wave scattering on inhomogeneities of the medium almost 

strictly (with accuracy up to the effects associated with backscattering). In this case, all 

solved systems of equations (4 ) and (8 ) remain linear with respect to the unknowns. 

Nevertheless, the numerical realization of the algorithm [4, 5] is very nontrivial. In the 

numerical realization it turns out to be convenient to use the apparatus of angular 

harmonics, which has already been used earlier to record the relations (6 )-(9 ) of this 

algorithm [4, 5], as well as to correct the experimental data in the case of non-ideal 

positions of transmitters and receivers [11 ].  

In previous numerical implementations [4, 5], the generalized scattering 

amplitude );,( jh ωϕ′ϕ±  was found from the system (4 ) directly in terms of the anglesϕ  

andϕ′  . The auxiliary functions );,,( jrQ ωϕ′ϕ±   were formed, according to (5 ), also in 

terms of angles, followed by a double Fourier transform on the angles (6 ). Subsequent 

actions (7 )-(9 ) were performed already in terms of angular harmonics [4, 5]. 

Below it is proposed to solve the system (4 ) and to consider the relation (5 ) at 

once with the help of angular harmonics. Such a technique allows, first, to increase the 

accuracy of numerical realization when passing from continuous values of anglesϕ  

andϕ′  to discrete numbers of angular harmonics q  and q′  . Secondly, the relations (4 ) 

and (5 ) contain Heaviside functions  

)sin()( ϕ±θ≡ϕθ±  ,      (10) 
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which change discontinuously from 1 to 0 in the infinitesimal neighborhood of the zero 

value of its argument. Therefore, the angular discretization step for the functions )(ϕθ±  

should be much shallower than for );,( jf ωϕ′ϕ  and );,( jh ωϕ′ϕ±  . This is related to the 

fact that the angular spectrum ∫
π

±± ϕϕ−ϕθ
π

≡θ
2

0

)exp()(
2
1)(~ diqq  of the functions )(ϕθ±  

decays slowly:  

{ }








≠−−±=≡





 π=θ± 0при1)1(

π2
;0при

2
1

2
sinc)(

2
1)(~ q

q
iqqiq qq

  ,

 (11) 

and , { }∗+− θ=θ )(~)(~ qq q∀  . At the same time, there is a function in ( ) 5 

[ ] { }rkliyxikrE jj




 )(exp)}sin(sin)cos(cos{exp);,,( 0 −≡ϕ−ϕ′+ϕ−ϕ′≡ωϕ′ϕ , (12) 

where (3 ) is taken into account. The function );,,( jrE ωϕ′ϕ
  oscillates with changes inϕ  

andϕ′  the stronger the larger the fixed value of rk j


0  . As a consequence, the angular 

spectrum of this function will have the higher significant angular harmonics the larger

rk j


0  . Thus, the introduction of discrete analogs of both functions (10 ) and (12 ) 

requires increased attention in the numerical implementation of the considered 

functional algorithm.  

Thirdly, the consideration of functions in terms of angular harmonics makes it 

convenient to control the sufficiency of the volume of discretized function values 

involved at each stage of the restoration procedure. Such control, starting from the 

volume of initial discretized data );,( jf ωϕ′ϕ  , is fundamental for ensuring the 

uniqueness, stability and, ultimately , adequacy of the solution of the considered 
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inverse problem [8 ]. This will be briefly mentioned at the stage of numerical 

simulation.  

To transform the integral term of the equations (4 ), the functions );,( jh ωϕ′′ϕ±  and

);,( jf ωϕ′ϕ′′  can be represented according to (2 ) as 

∑
∞

−∞=′′

±± ϕ′′′′ω′′ϕ=ωϕ′′ϕ
q

jj qiqhh )exp();,(~);,(  ,     

∑
∞

−∞=′′′

ϕ ′′′′′ωϕ′′′′=ωϕ′ϕ′′
q

jj qiqff )exp();,(~);,(  . 

This brings the equation (4 ) into the form: 

[ ] [ ] .);,()(~)(exp2

);,(~);,(~);,(

j

j
q q

jj

fqqqqi

qfqhih

ωϕ′ϕ=′′′+′′−θ⋅ϕ′′′+′′π×

×ωϕ′′′′ω′′ϕπ−ωϕ′ϕ

±

∞

−∞=′′

∞

−∞=′′′

±± ∑ ∑
     

The Fourier transform of this expression over the angleϕ′  gives: 

.;);,(~);,(~)exp(

)exp();,(
~~)(~2);,(~ 2

ZZ∈′ω′ϕ=ω′′ϕϕ′′×

×








ϕ′′′ω′′′′′′′−′′−θπ−ω′ϕ

±

∞

−∞=′′

±
∞

−∞=′′′

± ∑ ∑

qqfqhqi

qiqqfqqiqh

jj

q
j

q
j

  (13) 

The system of equations (13 ) obtained by enumerating ZZ∈′q  , is solved with 

respect to the single angular harmonics );,(~
jqh ω′ϕ±  at each fixed angleϕ  . In the right-

hand side (13 ) stands the single angular spectrum of the classical scattering amplitude 

∫ ϕ′ϕ′′−ωϕ′ϕ=ω′ϕ
π2

0

)exp( );,(
π2

1);,(~ dqifqf jj ,   ZZ∈′q ,   (14) 

and in the left part - the double angular spectrum  

)exp()exp( );,(
)π2(

1);,(
~~ π2

0

π2

0
2 ϕ′′−ϕ−ωϕ′ϕϕ′ϕ=ω′ ∫∫ qiiqfddqqf jj ,  ZZ∈′qq, . (15) 

After finding );,(~
jqh ω′ϕ±  , the double angular spectrum is calculated  
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∫ ϕϕ−ω′ϕ=ω′ ±±
π2

0

)exp( );,(~
π2

1);,(
~~ diqqhqqh jj  .    (16) 

On the other hand, it is possible to find at once the dual angular harmonics

);,(
~~

jqqh ω′±  from a system that is obtained by the Fourier transform of the equations 

(13 ) on the angleϕ  followed by substitution of the variables:  

.ZZ∈′ω′=ω′′′′′×

×








−′′′θ⋅ω′′′−+′′′−π−ω′

±

∞

−∞=′′

±
∞

−∞=′′′

± ∑ ∑

qqqqfqqh

qqqqqqfiqqh

jj

q
j

q
j

,;);,(
~~);,(

~~

)(~);,(
~~2);,(

~~ 2

  (17) 

However, unlike the system (13 ), which is solved at each fixedϕ  , the system 

(17 ) requires finding );,(
~~

jqqh ω′±  for all values of ),( qq ′  , i.e., none of the arguments q  

or q′  can be fixed. Thus, the transition from (13 ) to (17 ) is not always reasonable, 

since there may be difficulties due to matrices of huge dimension when solving the 

system (17 ) - similar to the situation described in [12 ].  

Instead of performing the sequence of operations (5 ) and (6 ), the expression (5 

) can be transformed immediately in terms of angular harmonics. Taking into account 

(1 ), (3 ) and (12 ), we have: );,();,()exp()exp();,,( jjj rPrPrlirkirE ωϕ′ωπ+ϕ≡−=ωϕ′ϕ








  

. Here, for convenience, the notation )exp();,();,(0 rkirPkru jj










=ωϕ≡ω  is introduced, 

and then  

{ }π+ϕ=− ,0 jkk


, )exp();,( rkirP j






−≡ωπ+ϕ  ; , .      { }ϕ′= ,0 jkl


    

)exp();,( rlirP j






≡ωϕ′  

The expression (5 ) is rewritten as 
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{ }
.)();,();,();,(

)()(exp);,();,,(

ϕ−ϕ′θωϕ′ωπ+ϕωϕ′ϕ≡

≡ϕ−ϕ′θ⋅−ωϕ′ϕ=ωϕ′ϕ

±±

±±±

jjj

jj

rPrPh

rklihrQ








  (18) 

Each of the functions ±h  and P  in (18 ) is represented as a sum of angular 

harmonics: 

∑ ∑
∞

−∞=

∞

−∞=

±± ϕ′ϕω=ωϕ′ϕ
1 2

)exp()exp();,(
~~);,( 2121

q q
jj iqiqqqhh  ,   

{ }∑
∞

−∞=

π+ϕω=ωπ+ϕ
3

)(exp);,(~);,( 33
q

jj iqqrPrP   ,    

∑
∞

−∞=

ϕ′ω=ωϕ′
4

)exp();,(~);,( 44
q

jj iqqrPrP   ,   (19) 

and a double Fourier transform of the expression (18 ) is performed on the cornersϕ  

andϕ′  , according to (6 ). This leads (18 ) to the form: 

.);,(
~~)(~);,(~

);,(~)1();,,(
~~

21332

31
1 2 3

31

jj

q q q
j

qqq
j

qqhqqqqrP

qqqrPqqrQ

ω


θ⋅ω−−′×





×ω+−−=ω′

±±

∞

−∞=

∞

−∞=

∞

−∞=

+−± ∑ ∑ ∑





  (20) 

Since in the polar coordinate system { }rrr 



ϕ= ,  , then  

{ } [ ])(exp)()cos(exp)exp();,( 00 r
q

jq
q

rjj iqrkJirikrkirP 







ϕ−ϕ=ϕ−ϕ=≡ωϕ ∑
∞

−∞=

 ,            (21) 

where qJ  is the Bessel function of q  -th order. From the comparison of (19 ) and (21 ) 

it follows that  

)()exp();,(~
0 rkJiqiqrP jqr

q
j



ϕ−=ω  .    (22) 

Substituting (22 ) into (20 ) results in the final expression: 
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{ }

{ } ,);,(
~~),,()(exp)(

)(exp)();,,(
~~

2102121
1 2

12
jj

q q
r

qq

r
qq

j

qqhrkqqqqqqii

qqiiqqrQ

ω−′−κ+ϕ−×

×′+ϕ−−=ω′

±±
∞

−∞=

∞

−∞=

−

′−±

∑ ∑ 







 

 (23) 

where  

  ∑
∞

−∞=

±
−′+

± θ⋅−≡′κ
3

33

3 )(~)()()1(),,( 3000
q

jqnjqn
q

j qrkJrkJrknn  ;   ZZ∈′nn, .  (24) 

The expression for )(~ q±θ  is given in (11 ). It allows you to transform the 

expression (24 ) to take into account that 0)(~
=θ± q  at ...,8,6,4,2=q  : 

.ZZ∈′
+π

±

±=′κ

−−′++

∞

−∞=

′
±

∑ mnnrkJrkJ
m

i

rkJrkJrknn

jmnjmn
m

jnjnj

,,;)()(
12

1

)()(
2
1),,(

012012

000





  (25) 

It is directly apparent from (25 ) that ,  { }∗+− ′κ=′κ ),,(),,( 00 rknnrknn jj
 ZZ∈′∀ nn,  

. 

Thus, the sequence of actions in restoring the scatterer function using the angular 

harmonic apparatus has the following schematic form:  

 

      );',( jf ωϕϕ                  );,(
~~,);,(~

jj qqfqf ω′ω′ϕ                  );,(~
jqh ω′ϕ±  

                            (14 ), (15 ) (17)              ( ) 13 (16) 

);,(
~~

jqqh ω′±  

                         );,,(
~~

jqqrQ ω′±                  );,(~cl
jqr ωµ

               ),( jrv ω
                                                

       (25 ), ( )23           (7 ), ( )8                       ( )9 
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NUMERICAL MODELING  

The effectiveness of the proposed new variant of the numerical implementation 

of the two-dimensional functional algorithm was verified by reconstruction of the 

model acoustic scatterer. Two MRI images of two-dimensional cross-sections of the 

breast [13 ] were taken to specify the scatterer model. One of the images became 

conventionally interpreted as sound velocity values )(rc   (Fig.1 a), the other image as 

absorption coefficient values ),( jr ωα
  (Fig.1 b). In the background non-absorbing 

medium (water) surrounding the mammary gland, 15000 =c  m/s was assumed; then the 

wavelength 3
00 102 −=π≡λ k  m at the chosen frequency of 1.5 MHz. The sampling step 

of the images under consideration was set equal to 05.0 λ  . In this case, the entire 

tomography area was 0106λ  along each Cartesian axis, and the linear dimension of the 

breast cross-section proper was 080λ≈  . Quantitative values in the images were set 

based on the characteristic ranges of )(rc   and ),( jr ωα
  [14, 15]: assumed to be 1460--

1535 m/s forc  and 15--34 Np/m, i.e., 1.3--3.0 Db/cm, forα  . The values ofc  andα  are 

largest in skin, and much smaller in subcutaneous adipose tissue.  

When the wave travels along the trajectories parallel to the abscissa and ordinate 

axes, the largest positive additional run-up of the wave phase 0>ψ∆  is acquired at sites 

with 0)( crc >
  [4, 8, 12] along the cross section 0λ−=y  and is π≈ψ∆ 25.1  . The largest 

(modulo) negative run-up 0<ψ∆  is acquired at sites with 0)( crc <
  [4, 8, 12] along the 

cross section 031λ−=y  and is π−≈ψ∆ 27.1  . The maximum absorption is observed along 
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the cross section 05.16 λ−=x  , while the wave amplitude decreases by a factor of 8≈  . 

Thus, the effects of multiple wave scattering are quite strong.  

The 800 quasi-dot transducers were placed uniformly on a circle of radius 0.1536 

m around the tomography region. From such data the scattering amplitude was 

recalculated );,( jf ωϕ′ϕ  with the angular sampling step 8002π  . It should be noted that 

the number of transducers in modern ultrasound tomographs, which are designed 

primarily for layer-by-layer diagnosis of the breast, can reach one and a half to two 

thousand [16, 17]. Moreover, additional rotation of the antenna array allows, in 

principle, to significantly increase the effective volume of experimental information [8 

]. 

The double angular spectrum of the scattering amplitude );,(
~~

jqqf ω′  is 

concentrated near the antidiagonal qq −=′  . The angular spectrum decreases with high 

precision to almost zero values at the largest q  and q′   (Fig.2 a). This means that the 

mentioned volume of discretized data );,( jf ωϕ′ϕ  encloses almost all the information 

about the object that can be obtained by off-object field measurements at a given 

frequency jω  . This amount of data turns out to be sufficient to reconstruct with good 

quality the complex spatial structure of the considered scatterer, as well as the values 

of the sound velocity (Fig.2 b) and absorption coefficient (Fig.2 c). A one-dimensional 

cross-section of the mammary gland is shown in Fig.2 b and 2c to illustrate the high 

accuracy of the reconstruction.  
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CONCLUSION 

Thus, the numerical realization of the functional algorithm using the angular 

harmonic apparatus turned out to be effective. At the same time, in practice, the linear 

size of the scatterer can be even larger, and the contrast of the sound velocity and 

absorption coefficient is even stronger than in the considered model. In turn, this 

further amplifies the effects of multiple wave scattering. Then, in general, a multi-

frequency mode is required to ensure stable recovery of the scatterer [5 ].  
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FIGURE CAPTIONS 

 

Fig.1 . Initial model of the acoustic scatterer: spatial distributions of sound velocity (a) 

and absorption coefficient (b) in a two-dimensional cross-section of the mammary 

gland.  

 

Fig.2 . Double angular spectrum of the scattering amplitude (a) and the result of the 

reconstruction (thick dashed line) of the sound velocity (b) and absorption coefficient 

(c) at 0=x  compared to the true values (solid thin line).  
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Fig. 2. 
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