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Abstract. Improved numerical implementation of the two-dimensional functional
analytical algorithm is proposed. The algorithm is designed to reconstruct spatial
distributions of sound speed and absorption coefficient in a tomography region. The
high accuracy of obtained tomograms is illustrated even with large wave sizes and

complicated internal structure of object under study.
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INTRODUCTION
Let us consider a rigorous wave solution of the inverse problem of acoustic
scattering. It is required to recover the inhomogeneous spatial distributions of sound

velocity ¢(7) and amplitude absorption coefficienta(r,m;) at a given frequencyo,

inside a tomographic object located in the region® . Outside the regionR there is a

homogeneous non-absorbing background medium; its sound velocityc, and wave
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numberk,, =, /¢, . The transmitters and receivers used to obtain experimental data are

outside the region R and surround the object under investigation on all sides. The object

is probed by a fixed incident acoustic pressure field«,(#) . Upon reaching the object,
this fieldu,(7) is scattered on acoustic inhomogeneities inside® . This creates a total
fieldu(7) , which is detected by all receivers. The direction of the incident field is then
changed, and the corresponding fieldsu(7) are again received. The complete data set
is obtained by enumerating all possible sensing and receiving directions. This data set
is processed, i.e. the inverse problem is solved. As a result, the desired functionsc(7)

ando(7,w;) are recovered quantitatively. The possibility of obtaining quantitative

estimates at each point of 7 space is a fundamental difference between inverse acoustic
problems of tomographic type and inverse problems of ultrasound type. This possibility
is provided, firstly, by the availability of experimental data at the most different angles
and, secondly, by a sufficiently rigorous algorithm for processing such data. Below,
for processing purposes, we consider a two-dimensional wave functional-analytic
algorithm [1 -5 ] in the monochromatic version. This algorithm is based on the ideas

of solving inverse scattering problems on quantum mechanical potentials [1-3, 6, 7].

The total fieldu(7) at each fixedu,(7) obeys the Helmholtz equation

a(F,0.) .
VZu(F)+ky; u(F) = v(F)u(r) , wherev(7,0,) = o Lz— 21q —i2m,¥ is the scatterer
‘ Neg () Toe(r)

function for time-dependent fields ~ exp(-io7) . The functionv(7,®,) [8 ] must first be
recovered, after which the separate functions ¢(7) anda(F,w;) [9 ] can be extracted from

it. The input data for the functional algorithm are the complex values of the classical



scattering amplitude f(k,/; ©,) . They are assumed to be known for all valid wave
vectorsk,/ e R> , wherek” =1 =k, . Let the incident field be a classical plane wave
u,(7,k; © ) = exp(ikF) (1)

with wave vectork , and the fieldu(7,k; o ;) 1s taken in the far field in the direction co-
directional to the wave vector/ , i.e.7TT/ . Then the valuesf(k,/;»,) are
proportional to the scattered fieldu(7,k; © j)—uO(F,E; ;) . At the same time, the values
of f(k,l; ;) can be recalculated from the fields taken in the near zone outside the
region of the tomographic object [8, 10].

TWO-DIMENSIONAL FUNCTIONAL ALGORITHM AND ANGULAR

HARMONIC APPARATUS

The two-dimensional functional algorithm for recovering the scatterer function
v(F,w;) consists of several successive steps, which are given below in terms of angles
and angular harmonics [4, 5]. Namely, the angular spectrumg(g) for an arbitrary
periodic function g(¢) with period2r is defined by the relations (angular harmonics

have integer numbersg =0, 1, +2, ... ,1.e.,)iqgeZ

79 = [ 2@ exp-ig0)de, ()= Y. E@explige), q<Z. )

g=—0
For the two-dimensional vectorsk and/ in the polar coordinate system we have:
k:{koja(p} 9 i:{kOj’(p’} 5 (3)
then f(k,l; )= f(¢,9'; o,) . First, two functions #*(¢,¢; ®,) - the so-called generalized

scattering amplitude - are found based on the known values of the classical scattering



amplitude /(¢,¢’; ®,) . For this purpose, for each fixed value of , a linear system of

equations is solved, which is obtained by enumerating all angles ¢’ :
2n
B (0,05 0,) =i [h*(0,9" ®,) O£ sin(0" - 0)] £ (0", 0" ®,)do" = f(0.050,) , (4)
0

where0(t) = {1 mpu #>0; Omnpu <0 } is the Heaviside function. After that, for each

fixed point7 with Cartesian coordinates7 = {x,y} we construct auxiliary functions

0" (79,05 0)) =
+ . | )
=h (9,0 ®;) exp[ikoj {x(cos@'—cos@)+ y(sin@'—sin@)} ] - O[xsin(op" — )] .
Their dual angular spectrum is calculated by the Fourier transform in angles:
~ 2n 2n
0*(7,q,q' ;) = ) ! de !dcp’ 0" (7,9,9"; ®,) exp(-ige) exp(-ig'¢’) ,  (6)

and for all¢' € Z the function

~ inQ*(F,q, q5 ;) npu ¢=0,1,2,3,...;
B(7,q,q50;) =1 (7
iTcQ+(F’Q9 q'J ('0_1') 1pu g = _15 _25

Knowing B(7,q,q"; »,) allows us to find the angular harmonicsii(7,q; ®,) of a
classical field with the "carrier" wave removed:p(7,k; o,) = exp(=ik F) u(F,k; ®,) .
These angular harmonics are found at each fixed point7 from the system of linear

equations:

0(F.q; 0,)+2n Y. B(F.q.—q50,) i (F.q50,) =35, , (8)

q'=—0

whered ,={l npu ¢=0; 0 mpu ¢g=0} . Finally, the desired scatterer function is

calculated from the relation



v(r,o;) =

ox Oy

o o ©, €))
= k,, (i—+—j {ﬁ“(?,q =L o, +2m2q§w O (F.gq=—1,—q" 0,) 5" (F.q"; mj)} .

The described two-dimensional functional algorithm allows to take into account
the processes of multiple wave scattering on inhomogeneities of the medium almost
strictly (with accuracy up to the effects associated with backscattering). In this case, all
solved systems of equations (4 ) and (8 ) remain linear with respect to the unknowns.
Nevertheless, the numerical realization of the algorithm [4, 5] is very nontrivial. In the
numerical realization it turns out to be convenient to use the apparatus of angular
harmonics, which has already been used earlier to record the relations (6 )-(9 ) of this
algorithm [4, 5], as well as to correct the experimental data in the case of non-ideal
positions of transmitters and receivers [11 ].

In previous numerical implementations [4, 5], the generalized scattering

amplitude 7*(9,¢"; ®;) was found from the system (4 ) directly in terms of the angles¢
and¢’ . The auxiliary functions 0*(7,¢,¢’; ®,) were formed, according to (5 ), also in

terms of angles, followed by a double Fourier transform on the angles (6 ). Subsequent
actions (7 )-(9 ) were performed already in terms of angular harmonics [4, 5].

Below it is proposed to solve the system (4 ) and to consider the relation (5 ) at
once with the help of angular harmonics. Such a technique allows, first, to increase the
accuracy of numerical realization when passing from continuous values of angles o

and ¢’ to discrete numbers of angular harmonics¢ andg’ . Secondly, the relations (4 )

and (5 ) contain Heaviside functions

0*(¢) = B(Zsin ¢) (10)



which change discontinuously from 1 to 0 in the infinitesimal neighborhood of the zero

value of its argument. Therefore, the angular discretization step for the functions 6* (¢)

should be much shallower than for f(¢,¢"; ©,) andA*(¢,¢’; ,) . This is related to the
fact that the angular spectrum6®(q) EzL I 0" (o) exp(—igp)de of the functionso* ()
n 0

decays slowly:

i

0°(q) = %(ii)qsincgqj = {% mpu ¢ =0; = {(—l)q —1} npu g # 0 } ;

2nq

(1)

and ,0 (q) = {6+(q)}* Vq . At the same time, there is a function in () 5

E(F,0,05 ;) = exp[ikoj{x(coscp'—cos<p)+y(sin(p’ —sin(p)}] = exp{i(i —E)?} , (12)
where (3 ) is taken into account. The function E£(7,¢,¢’; ®,) oscillates with changes ing
and¢’ the stronger the larger the fixed value ofk, || . As a consequence, the angular

spectrum of this function will have the higher significant angular harmonics the larger

ko,|7| . Thus, the introduction of discrete analogs of both functions (10 ) and (12 )

requires increased attention in the numerical implementation of the considered
functional algorithm.

Thirdly, the consideration of functions in terms of angular harmonics makes it
convenient to control the sufficiency of the volume of discretized function values
involved at each stage of the restoration procedure. Such control, starting from the

volume of initial discretized data (9,9 ©;,) , i1s fundamental for ensuring the

uniqueness, stability and, ultimately , adequacy of the solution of the considered



inverse problem [8 ]. This will be briefly mentioned at the stage of numerical
simulation.

To transform the integral term of the equations (4 ), the functions 2" (¢,¢"; ;) and

f(9",¢"; ®,) can be represented according to (2 ) as
F (0.0 0) =Y h*(¢.q" ®,) exp(ig"e") ,
q"=—x

f@.950)=> f@"¢;0,) expig"y") .

qm:—oo

This brings the equation (4 ) into the form:

o0

R (o0 0)-m Y, Y hi(e.q50) f(@"e;o,)x

¢"=—0 g¢"=—o0

+

x 21 expli(g”+q™Mo] -0 [-(¢"+4")] = f(¢.9; ®,).

The Fourier transform of this expression over the angle¢’ gives:

h (9.9 0)-2in" Y {Z 0°(-q"-4") f(q".q" ©,) eXp(iq’”cp)}x

¢'=o |g¢"=—o0

(13)

xexp(iq"p) h(0,q"; ®,) = f(9,q;®,); ¢ €Z .
The system of equations (13 ) obtained by enumeratingq’' e Z , is solved with
respect to the single angular harmonics 7 *(¢,¢’; ;) at each fixed angleo . In the right-

hand side (13 ) stands the single angular spectrum of the classical scattering amplitude
- 1 2n
f@qs0,)=— [ f(@.05 ) expl-ig)dy', q'€Z, (14)
0

and in the left part - the double angular spectrum

~ 27 2
fg.q5 ;)= ) [do [do' (9,0 ®,) exp(=ige) exp(=ig'e") , ¢.9'€Z. (15)
0 0

After finding 5 *(¢,q"; ® ;) » the double angular spectrum is calculated



= ' 1 T 7+ ' .
(445 0,) =~ [ (0,4 0,) exp(=ige) do . (16)
0

On the other hand, it is possible to find at once the dual angular harmonics
h(q,q; ® ;) from a system that is obtained by the Fourier transform of the equations

(13 ) on the angle ¢ followed by substitution of the variables:

h*(q.q'; ,)=2in* Y { > f(-q"+q-4". ¢ mj)-ﬁi(q"’—q)} x

g'=n | g¢"=—0

(17)

xh*(q".q"0,) =f(q.9:0); qqZ .
However, unlike the system (13 ), which is solved at each fixed , the system
(17 ) requires finding i “(¢,¢'; ;) for all values of(q,q") , 1.e., none of the arguments g

orqg’ can be fixed. Thus, the transition from (13 ) to (17 ) is not always reasonable,
since there may be difficulties due to matrices of huge dimension when solving the
system (17 ) - similar to the situation described in [12 ].

Instead of performing the sequence of operations (5 ) and (6 ), the expression (5
) can be transformed immediately in terms of angular harmonics. Taking into account
(1),(3)and (12), we have: E(7,¢,¢; »,) = exp(—ikr) exp(il7) = P(F,p + T ®,) P(F,9 0,)
. Here, for convenience, the notationu,(7,k; ®,) = P(7,¢; ©,) = exp(ik7) is introduced,
and then

—k = {koj, (p+n} ,P(F,o+m 0;) = exp(—ik7) 3 , . f:{koj,(p'}
P(7,9'; o) = exp(il )

The expression (5 ) is rewritten as



O (70,9’ ©,) = h*(0,0'; ®,) expli(l k)7 | - 0% (o'~ ) =
(18)

=1 (0,0 0,) P(F,o+m 0,) P(F,0'; 0,) 0% (¢'-0).
Each of the functions#® andP in (18 ) is represented as a sum of angular

harmonics:

0

~

R (0,9050,)= > > h'(q,q,; »,) expig,e) exp(ig,¢') ,

|=—0 @y =—00

)

PF,o+mo,)= Y P(F,q;0,) explig,(o+m)},

q3==%
o0

P(F,05m,) =Y P(F,q,; ;) explig,9) , (19)

q4=—0
and a double Fourier transform of the expression (18 ) is performed on the corners ¢

and¢’' , according to (6 ). This leads (18 ) to the form:

Qi(;’q’q’; wj) - Z z {Z (=D ]3(’7, q—q,+q5;®;) %
G==0 (Gr="%0 [{g3="P (20)
X 13(]-;’ q' =9, —qs; mj)'ei(%) } h* (4,595 ®;) .
v

Since in the polar coordinate system7 = { , (pF} , then

P(F.; 0,) = exp(ik7) = expl ik, [Flcos(@, —9) | = i J, (ky 7)) expliglo—o,)] , (21)

g=—0

where s, is the Bessel function ofg -th order. From the comparison of (19 ) and (21 )
it follows that
P(F,q; 0,) = 1" exp(-igg;) J, (ky,|F]) - (22)

Substituting (22 ) into (20 ) results in the final expression:



0" (F.q.qs ®,) = (=) exp{-ip.(q+q')}x

z z (=)™ exp l(Pr(Q1+q2)} Ki(q_q“ q'_CI2ak0j|’_;|) gi(ql,qz;o)j),

N==0 gr==—®

X

(23)

where
K*(n,n', k0j|l_;|) = Z (-D* Jn+q3 (k0j|;|) Jn'—q3 (k0j|’7|) . 61(%); nn'el. (24)

q3==%

The expression for8*(g) is given in (11 ). It allows you to transform the

expression (24 ) to take into account that 6*(¢) =0 atlg| = 2,4,6,8, ...

+ ' - 1 7 7
K (n,n, k0j|r|) - EJ”(k01|r|) Jn'(kO.i|r|) *
(25)

nn'meZ .

. % 1 - 7
+ i Z m J"+2m+1 (k0j|r|) J,,',mel (k0j|r) ’

It is directly apparent from (25 ) that, « (n,n', k,,|F|) = {K+(n,n',k0j|7|) } Vn,n'eZ

Thus, the sequence of actions in restoring the scatterer function using the angular

harmonic apparatus has the following schematic form:

f(0,0 ®)) ———*fwﬂhmxﬂ%ﬁw) ——*’ﬁWMNw

(14),(15) (17) (£13 (16)
.................... ;}:l*(q,q’; (,0/) _——
0 (F.q.q'; ©,) i (Fags ) V(7o)
----- > — —
(25),()23 (7),()8 ()9

10



NUMERICAL MODELING
The effectiveness of the proposed new variant of the numerical implementation
of the two-dimensional functional algorithm was verified by reconstruction of the
model acoustic scatterer. Two MRI images of two-dimensional cross-sections of the
breast [13 ] were taken to specify the scatterer model. One of the images became

conventionally interpreted as sound velocity valuesc(7) (Fig.1 a), the other image as
absorption coefficient valueso(7,»;) (Fig.l b). In the background non-absorbing
medium (water) surrounding the mammary gland, ¢, =1500 m/s was assumed; then the
wavelength i, =2n/k, =10~ m at the chosen frequency of 1.5 MHz. The sampling step
of the images under consideration was set equal to0.54, . In this case, the entire
tomography area was106%, along each Cartesian axis, and the linear dimension of the
breast cross-section proper was~80%, . Quantitative values in the images were set
based on the characteristic ranges ofc(7) ando(7,w;) [14, 15]: assumed to be 1460--

1535 m/s forc and 15--34 Np/m, i.e., 1.3--3.0 Db/cm, fora . The values ofc anda are
largest in skin, and much smaller in subcutaneous adipose tissue.
When the wave travels along the trajectories parallel to the abscissa and ordinate

axes, the largest positive additional run-up of the wave phase Ay > 0 is acquired at sites
withe(7) > ¢, [4, 8, 12] along the cross section y =-2, and isAy ~1.25% . The largest
(modulo) negative run-up Ay <0 is acquired at sites withc(7) < ¢, [4, 8, 12] along the

cross section y = 312, and is Ay ~ -1.27 = . The maximum absorption is observed along

11



the cross sectionx=-16.5 %, , while the wave amplitude decreases by a factor of~8 .
Thus, the effects of multiple wave scattering are quite strong.

The 800 quasi-dot transducers were placed uniformly on a circle of radius 0.1536
m around the tomography region. From such data the scattering amplitude was

recalculated f(¢,¢"; ®,) with the angular sampling step 27/800 . It should be noted that

the number of transducers in modern ultrasound tomographs, which are designed
primarily for layer-by-layer diagnosis of the breast, can reach one and a half to two
thousand [16, 17]. Moreover, additional rotation of the antenna array allows, in

principle, to significantly increase the effective volume of experimental information [8
].

The double angular spectrum of the scattering amplitude ?(q,q'; ®;) 18
concentrated near the antidiagonal ¢' = —¢ . The angular spectrum decreases with high
precision to almost zero values at the largest|g| and|q| (Fig.2 a). This means that the
mentioned volume of discretized data f(¢,9; »;) encloses almost all the information

about the object that can be obtained by off-object field measurements at a given

frequency o, . This amount of data turns out to be sufficient to reconstruct with good

quality the complex spatial structure of the considered scatterer, as well as the values
of the sound velocity (Fig.2 b) and absorption coefficient (Fig.2 ¢). A one-dimensional
cross-section of the mammary gland is shown in Fig.2 b and 2c to illustrate the high

accuracy of the reconstruction.

12



CONCLUSION

Thus, the numerical realization of the functional algorithm using the angular
harmonic apparatus turned out to be effective. At the same time, in practice, the linear
size of the scatterer can be even larger, and the contrast of the sound velocity and
absorption coefficient is even stronger than in the considered model. In turn, this
further amplifies the effects of multiple wave scattering. Then, in general, a multi-
frequency mode is required to ensure stable recovery of the scatterer [5 ].
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FIGURE CAPTIONS

Fig.1 . Initial model of the acoustic scatterer: spatial distributions of sound velocity (a)

and absorption coefficient (b) in a two-dimensional cross-section of the mammary

gland.

Fig.2 . Double angular spectrum of the scattering amplitude (a) and the result of the

reconstruction (thick dashed line) of the sound velocity (b) and absorption coefficient

(c) atx =0 compared to the true values (solid thin line).
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