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ВВЕДЕНИЕ
При выводе модельных уравнений, описываю-

щих распространение лазерных импульсов в нели-
нейных диспергирующих средах, часто используют
два хорошо известных приближения. Распростра-
нение квазимонохроматических импульсов в сре-
де с керровской нелинейностью в области прозрач-
ности диэлектрика можно описать нелинейным
уравнением Шредингера (НУШ) для огибающей
импульса [1]. При этом соответствующий кри-
терий большого числа осцилляций поля задает-
ся выражением (ω0τp)

2
≫ 1, где ω0 — централь-

ная частота импульса, τp — его длительность. Для
описания импульсов, включающих в себя всего
несколько колебаний светового поля ω0τp∼1 (пре-
дельно короткие импульсы), используют уравне-
ния, записанные непосредственно для электриче-
ского поля импульса или его спектра [2–8]. Для
таких импульсов приближение медленно меняю-
щейся огибающей (ММО) становится непримени-
мо. В обоих случаях, когда спектр импульса лежит
в области оптической прозрачности, соответствую-
щее условие можно записать в виде ∣ω0 − ωR∣ τp ≫ 1,
где ωR — характерная частота линии резонансно-
го поглощения. При этом выражение для диспер-
сионного отклика можно разложить в ряд. Нетруд-

но видеть, что для квазимонохроматических им-
пульсов данное соотношение совпадает с условием
ММО при существенном удалении несущей часто-
ты импульса от резонанса. Однако, в случае мате-
риалов с несколькими узкими линиями поглоще-
ния, например, молекулярных газов, условие опти-
ческой прозрачности может нарушаться даже ко-
гда импульс содержит достаточно большое число
осцилляций поля, хотя существенного поглоще-
ния при этом не происходит и материал можно
с хорошей степенью точности считать прозрачным.
Теоретическому анализу уравнений, описывающих
распространение импульсов в указанных случаях,
и нахождению условий солитоноподобных режи-
мов и посвящена настоящая работа.

МЕТОД МОМЕНТОВ

Уравнение, описывающее однонаправленное
распространение оптических импульсов в нели-
нейной среде с дисперсией, имеет вид

𝜕𝐸(𝑧, τ)
𝜕𝑧

= −2π
𝑐

𝜕

𝜕τ
×

×
⎛
⎝

∞

∫
0

χ (τ′)𝐸(𝑧, τ − τ′) 𝑑τ′ + χ
(3)

4π
𝐸3(𝑧, τ)

⎞
⎠
.

(1)
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где τ = 𝑡 − 𝑧/𝑐, 𝑧 — координата, вдоль кото-
рой распространяется сигнал, χ(τ) = Θ(τ)2𝑒2 ×
×∑𝑙,𝑗 𝑁l𝐴lj sinωijτ/𝑚ωlj — функция импульсного
отклика, связанная с диэлектрической восприим-
чивостью среды преобразованием Фурье

χ(ω) =
∞

∫
0

χ(τ)𝑒𝑖ωτ𝑑τ =
𝑛0 − 1

2π
,

𝑛0(λ) = 1 + 4π𝑒2

𝑚ω2
0

∑
𝑙,𝑗

𝑁l𝐴lj

λ2
lj

λ2
0 − λ

2
lj

,

(2)

Θ(τ) — функция Хевисайда, 𝑒 — заряд электро-
на, 𝑁l — концентрация атомов или молекул сор-
та 𝑙, 𝐴lj — величина, пропорциональная силе ос-
циллятора 𝑗-го резонанса, ωlj — частота соответ-
ствующего резонанса, 𝑐 — скорость света в вакуу-
ме, λ0 — центральная длина волны импульса, χ(3) =
= ∑𝑙 𝑁lχ

(3)
l /∑𝑙 𝑁l — результирующая кубическая

восприимчивость среды, 𝑛2 = ∑𝑙 𝑁l𝑛2,𝑙 /∑𝑝 𝑁𝑙 —
результирующий нелинейный показатель прелом-
ления, χ

(3)
l , 𝑛2,l — кубическая восприимчивость

и нелинейный показатель преломления атомов или
молекул сорта 𝑙. Представим электрическое по-
ле 𝐸 в виде

𝐸(𝑧, τ) = 1
2
ψ(𝑧, τ) exp (−𝑖ω0τ) + к.с. (3)

Подставляя (3) в (1), получаем

𝜕ψ

𝜕𝑧
= −2π

𝑐

∞

∫
0

𝜕χ (τ′)
𝜕τ′

ψ (𝑧, τ − τ′)×

× 𝑒𝑖ω0τ
′

𝑑τ′ + 𝑖γψ∣ψ∣2 − γ

ω0

𝜕

𝜕τ
(ψ∣ψ∣2) .

(4)

Здесь ψ является огибающей электрического поля,
γ = 3χ(3)ω0/8𝑐 = 𝑛2

0ω0𝑛2/8π— коэффициент кубиче-
ской нелинейности, 𝑛0 ≈ 1 + 2πχ— показатель пре-
ломления среды, ω0 — центральная частота сигна-
ла. При переходе от уравнения (1) к (4) мы прене-
брегли генерацией гармоник. В частности, в рабо-
те [9] было показано, что для импульсов, включа-
ющих в себя порядка одного-двух колебаний по-
ля кубическая нелинейность обуславливает генера-
цию четвертой гармоники. Соответствующий эф-
фект генерации нечетных гармоник в среде с квад-
ратичной нелинейность был описан в работе [10].
Отметим, что уравнение (1) описывает как квази-
монохроматические импульсы, так и предельно ко-
роткие [11–13].

Анализ динамики параметров импульса прово-
дится на основе метода моментов [14]. Пробное ре-
шение выберем в виде

ψ = 𝐵 exp (−1
2
(τ−𝑇

2

τp
)

2
(1+𝑖𝐶)+𝑖(ϕ+Ω(τ−𝑇))) , (5)

где 𝐵 — амплитуда сигнала, 𝐶 — параметр, опре-
деляющий частотную модуляцию, ϕ — фаза, Ω —

сдвиг частоты. Все параметры зависят от координа-
ты 𝑧. Определим моменты импульса в виде

𝑊 =
∞

∫
−∞
∣ψ∣2𝑑τ, (6)

τ2
p =

2
𝑊

∞

∫
−∞
(τ − 𝑇)2∣ψ∣2𝑑τ, (7)

𝐶 = 𝑖

𝑊

∞

∫
−∞
(τ − 𝑇) (ψ∗ 𝜕ψ

𝜕τ
− ψ𝜕ψ

∗

𝜕τ
) 𝑑τ, (8)

𝑇 = 𝑖

𝑊

∞

∫
−∞

τ∣ψ∣2𝑑τ, (9)

Ω = − 𝑖

2𝑊

∞

∫
−∞
(ψ∗ 𝜕ψ

𝜕τ
− ψ𝜕ψ

∗

𝜕τ
) 𝑑τ, (10)

фазу найдем из следующего выражения
∞

∫
−∞
(𝜕ψ
𝜕𝑧

ψ∗ − 𝜕ψ
∗

𝜕τ
ψ) 𝑑τ = −2𝑖∑

𝑖,𝑗

𝐷lj×

× Im
∞

∫
0

∞

∫
−∞

ψ∗(τ)ψ (τ − τ′) 𝑒𝑖(ω0−ωlj)τ′𝑑τ𝑑τ′+

+2𝑖γ
∞

∫
−∞
∣ψ∣4𝑑τ − 𝑖 γ

ω0
Im

∞

∫
−∞
∣ψ∣2ψ∗ 𝜕ψ

𝜕τ
𝑑τ.

(11)

Используя метод моментов, получаем

𝑊 = 𝑊0 exp
⎛
⎝

2 − Im
𝑧

∫
0

𝑘s𝑑𝑧
⎞
⎠
, (12)

𝜕τp

𝜕𝑧
= Im

⎡⎢⎢⎢⎢⎣

(1 + 𝑖𝐶)2

2τp

𝜕2𝑘s

𝜕ω2
0

⎤⎥⎥⎥⎥⎦
, (13)

𝜕𝐶

𝜕𝑧
= Re

⎡⎢⎢⎢⎢⎣

(1 + 𝐶2) (1 + 𝑖𝐶)
τ2

p

𝜕2𝑘s

𝜕ω2
0

⎤⎥⎥⎥⎥⎦
+

+ γ𝑊
√

2πτp

(1 − Ω

ω0
) ,

(14)

𝜕𝑇

𝜕𝑧
= Re [(1 + 𝑖𝐶)

𝜕𝑘s

𝜕ω0
] + 3γ𝑊

2
√

2πω0τp

, (15)

𝜕Ω

𝜕𝑧
= Im

⎡⎢⎢⎢⎢⎣

(1 + 𝐶2)
τ2

p

𝜕𝑘s

𝜕ω0

⎤⎥⎥⎥⎥⎦
− γ𝑊𝐶

2
√

2πω0τ
3
p

, (16)

𝜕φ

𝜕𝑧
= Re

⎡⎢⎢⎢⎢⎣
𝑘s +

(1 + 𝑖𝐶)2

4τ2
p

𝜕2𝑘s

𝜕ω2
0

⎤⎥⎥⎥⎥⎦
+

+ γ𝑊

4
√

2πτp

(5 + Ω

ω0
) + Ω𝑇z.

(17)

Здесь 𝑘s = 𝑖 ∑𝑙,𝑗 𝐷ljτp (2𝑖𝐹 (ζlj) +
√
π exp (−ζ2

lj))÷
÷
√

1 + 𝐶2 назовем солитонным волновым чис-
лом, ζlj = τpΔωlj/

√
1 + 𝐶2, Δωlj = ω0 − Ω − ωlj, 𝐷lj =

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



О ДИНАМИКЕ ПАРАМЕТРОВ ИМПУЛЬСОВ, РАСПРОСТРАНЯЮЩИХСЯ В СРЕДЕ 81

= 2π𝑒2𝑁l𝐴lj/𝑚𝑐, 𝑊 = 𝐵2τp
√
π, 𝑊0 = 𝐵2

0 τ0
√
π, 𝐵0, τ0 —

начальные значения соответствующих параметров
𝐹(ζ) = exp (−ζ2) ∫

ζ

0 exp (𝑡2) 𝑑𝑡 — функция Доусона.

СОЛИТОНОПОДОБНЫЙ РЕЖИМ
РАСПРОСТРАНЕНИЯ

В качестве среды будем рассматривать воздух,
который на 21% состоит из кислорода O2 и на 79%
из азота N2. На аргон Ar, водяные пары H2O
и углекислый газ CO2 приходится меньше одного
процента от концентрации всех молекул. Показате-
лем преломления воздуха представлен в работе [15].
Рассмотрим окно прозрачности воздуха, принад-
лежащее диапазону от 3.5–4.1 мкм, в котором
дисперсия групповой скорости β2 аномальна.
Основной вклад в аномальную дисперсию воздуха
дают две резонансные длины волны углекислого
газа λ1 = 4.223 мкм, λ2 = 4.291 мкм, и поэтому
в выражении для коэффициента групповой дис-
персии β2 = (λ3

0/2π𝑐
2)𝑑2𝑛0(λ0)/𝑑λ2 = 𝜕2𝑘/𝜕ω2

0 (где
𝑘 = ω0𝑛0/𝑐 — волновое число) можно учитывать
только эти слагаемые.

В нелинейный показатель преломления воздуха
дает наибольший вклад кислород и азот [16]

𝑛2 = 0.79𝑛2,N2
+ 0.21𝑛2,O2

,

𝑛2,O2,N2
=

𝑃−1
O2,N2

λ−2
O2,N2

− λ−2
0

.
(18)

Здесь 𝑃N2
= 14.63 ГВт, λN2

= 0.3334 мкм для азота
и 𝑃O2

= 14.62 ГВт, λN2
= 0.3360 мкм для кислоро-

да. Аппроксимация (18) справедлива в диапазоне
1–4 мкм.

Для рассмотрения солитоноподобного режима
положим 𝐶 = 0, 𝜕𝐶/𝜕𝑧 = 0. Кроме того, будем рас-
сматривать предел

Δωτp ⩾ 2.67, (19)

гдеΔω = ω0−ω1,ω1 — ближайшая к центральной ча-
стоте импульса резонансная частота среды. В этом
пределе справедливо асимптотическое разложение
функции Доусона в ряд [17]

𝐹(𝑥) = 1
2𝑥
+ 1

4𝑥3 +
3

8𝑥5 +
1 ⋅ 3 ⋅ 5 ⋅ ..(2𝑛 − 1)

2n+1𝑥2n+1
. (20)

Из системы (12)–(17) получаем

𝑊 = 𝐵2
0 τ0
√
π = 8π𝐼0τ0

√
π/𝑐𝑛0, Ω = 0,

𝐼0 =
𝑐
√

2
τ2

0ω0𝑛0𝑛2

RRRRRRRRRRRR

𝜕2𝑘sR

𝜕ω2
0

RRRRRRRRRRRR
, (21)

𝑇 = (
𝜕𝑘sR

𝜕ω0
+

3𝑛0𝑛2𝐼0

2
√

2𝑐
) 𝑧, (22)

φ =
⎛
⎝
𝑘sR +

1
4τ0

𝜕2𝑘sR

𝜕ω2
0

+
5𝑛0𝑛2ω0𝐼0

4
√

2𝑐
⎞
⎠
𝑧. (23)

𝑘sR = Re 𝑘s — действительная часть солитонно-
го волнового числа, величину 𝜕2𝑘s𝑅/𝜕ω2

0 мож-
но назвать солитонным коэффициентом группо-
вой дисперсии. Зависимость интенсивности им-
пульса от его длительности, описываемая выра-
жением (21), представлена на рис. 1а и 1б. Для
рис. 1а условие (19) выполняется если τp > 35 фс,
а для рис. 1б — если τp > 72 фс.

Из уравнения (4) можно получить уравнение
с дисперсией в виде ряда, если разложить подын-
тегральную функцию ψ (𝑧, τ − τ′) в ряд и восполь-

tp, фс tp, фс

10
, В

т/
см

2

10
, В

т/
см

2

ба

6 × 1011

5 × 1011

4 × 1011

3 × 1011

2 × 1011

1 × 10115 × 1010

3 × 1011

2.5 × 1011

2 × 1011

1.5 × 1011

1 × 1011

20 40 6030 50 70 8040 60 9050 70 110 120100

Рис. 1. Зависимость интенсивности импульса от его длительности на центральной длине волны сигнала λ = 3.6 (а),
3.9 мкм (б).
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зоваться преобразованием Фурье 𝜕nχ(ω)/𝜕ωn =
= (𝑖)n ∫ ∞

0 τnχ(τ)𝑒𝑖ωτ𝑑τ.
Выполнив преобразования, получим

𝜕ψ

𝜕𝑧
= 𝑖 (𝑘 −

ω0

𝑐
)ψ −∑

𝑛

(𝑖)n−1

𝑛!
βn
𝜕nψ

𝜕τn +

+ 𝑖γψ∣ψ∣2 − γ

ω0

𝜕

𝜕τ
(ψ∣ψ∣2) .

(24)

Здесь β1 = 𝜕𝑘/𝜕ω0 − 1/𝑐, βn = 𝜕n𝑘/𝜕ωn
0 (𝑛 ⩾ 2),

𝑘 = 𝑛0ω0/𝑐. Решение этого уравнения совпадает
с (21)–(23), если функцию Доусона представить
в виде асимптотического ряда (20). Таким об-
разом, разложение дисперсии (24) справедливо,
если выполняется условие (19). В противном
случае для описания динамики импульсов нужно
рассматривать уравнения (1) или (4).

Определим пределы применимости пробного
решения (5) с помощью правила сохранения элек-
трической площади [18]

∞

∫
−∞

𝐸(τ, 𝑧)𝑑τ = 𝑐𝑜𝑛𝑠𝑡. (25)

Очевидно, что если электрическое поле им-
пульса можно представить в виде производной
по времени 𝐸 = 𝜕Φ/𝜕τ от функции, убывающей
на бесконечности, то условие (25) выполняется
и площадь импульса равна нулю [4]. Представим
функцию Φ в виде [19]

Φ(τ, 𝑧) = − ψ

2𝑖ω0
exp (−𝑖ω0τ) + к.с., (26)

тогда

𝐸(τ, 𝑧)= 1
2
(ψ exp (−𝑖ω0τ)−

1
𝑖ω0

𝜕ψ

𝜕τ
exp (−𝑖ω0τ)+к.с.).

(27)
Вклад второго слагаемого в (27) пропорциона-

лен 1/ω0τp и им можно пренебречь, если импульс
включает в себя порядка пяти и более осцилляций
поля [19]. В этом случае (27) переходит в (3) с огиба-
ющей в виде (5). Таким образом, правило сохране-
ния площади импульса накладывает ограничения
на применимость пробного решения вида (5). Сле-
дует отметить, что приближение однонаправленно-
го распространения следует применять с осторож-
ностью, поскольку оно может приводить к наруше-
нию правила сохранения электрической площади
[20–22].

ЗАКЛЮЧЕНИЕ
С помощью метода моментов аналитически

описано распространения солитоноподобных им-
пульсов в воздухе. Вклад дисперсии учтен посред-
ством интеграла Дюамеля. Найден критерий (19),
отделяющий два режима распространения сигнала.
Показано, что и для импульсов, включающих в себя
порядка десяти колебаний поля, может быть непри-
менимо приближение ММО, если спектр импуль-

са лежит вблизи резонанса среды. Для этих случаев
получена система уравнений на параметры импуль-
са. Найдено частое решение этой системы.

Работа Халяпина В. А. выполнена при фи-
нансовой поддержке гранта Министерства науки
и высшего образования РФ № 075-02-2024-1430.
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On the dynamics of the parameters of pulses propagating in the medium
with anomalous dispersion of the group velocity
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We analyzed the mutual influence of simultaneous processes of second harmonic generation and parametric
down conversion within the framework of a fully quantum approach. The effect of depletion of quantum
pumping has been revealed. The effect of establishing a balance between the processes under consideration
and achieving an equilibrium number of photons in the field modes is found. The generation of a strongly
entangled two-mode field is demonstrated.
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