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Abstract. The process of propagation and formation of pulse pairs in a quadratically
nonlinear crystal with two waveguides is investigated when parameters related to the
position of the waveguides relative to each other, delay and phase ratio between pulses
change. A change in the pulse propagation mode during the approach of waveguides
and the dependence of the nature of the interaction between the pulses on the initial

phase ratio were found.
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INTRODUCTION
One of the most intriguing areas of optical research is nonlinear optics, where
solitons occupy a special place. An optical soliton is a solitary laser pulse of a certain
duration (from nano- to femtoseconds) possessing a carrier frequency of the visible
range and capable of propagating in a nonlinear dispersing medium without changing
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its shape over long distances. Of particular interest are optical solitons in the Kerr
medium, which is described by the nonlinear Schrédinger equation (NSE) possessing
a soliton solution [1]. Light bullets or multidimensional solitons in a homogeneous
Kerr medium experience self-focusing collapse when a certain threshold related to the
pulse amplitude is exceeded. In particular, two-dimensional NUS leads to the so-called
Townes soliton [2], which is degenerate in free space in the sense that it occurs at only
one value of energy. From a physical point of view, the Townes soliton is an unstable
state that shares two modes of light propagation: the blurring of the pulse-beam caused
by diffraction and its unbounded self-focusing due to nonlinearity [3,4]. This shows
that nonlinearity is important for the formation of solitons but does not guarantee their
stability.

Many configurations of optical media in which solitons are stable have been
found. These configurations include materials accounting for higher orders of
nonlinearity and dispersion [5], media with a combined type of nonlinearity [6], and
media with inhomogeneities that can compensate for diffraction blurring [7]. Solitons
have also been obtained in an artificial optical medium described by the fractional
Schrodinger equation [8]. Some results related to the consideration of fractional media
are the subject of a mini-review [9]. Since unbounded self-focusing is the main obstacle
to the formation of solitons in the Kerr medium, quadratic nonlinear media [10], in
which collapse is absent, have also been considered. Another interesting approach to
soliton generation is to take into account the coupling dispersion between planar
waveguides with Kerr nonlinearity as an analog of spin-orbit coupling in a Bose-

Einstein condensate [11].



In our work, we considered a quadratically nonlinear medium with two planar
waveguides. By varying the parameters related to the position and size of the
waveguides, as well as by varying the parameters of the trial solution, we wanted to
achieve stable propagation of the pulse pair over long distances or, in other words, to
obtain a soliton solution. As mentioned above, we consider the propagation of a pair
of pulse beams whose initial parameters can be controlled. The consideration is carried
out in the second harmonic generation (SHG) regime under normal dispersion, where
each pulse from the trial solution is assigned its own waveguide with specially defined
characteristics. The coupling between them is accomplished by a fraction of the pulse-
beam energy that can penetrate the region between the waveguides. This work is based

on the results of earlier studies [12,13].

BASIC EQUATIONS
The description of the process of generation of the second optical harmonic is
carried out in the quasi-optical approximation with the dependence of the linear

susceptibility of the medium on the coordinatey,(r;) in the form: y,(r) =

)(((UO) [1+ f,(r )], wherer, is the radius-vector perpendicular to the central axis of the

waveguide, )((E)O) is the linear susceptibility of the medium at the center of the cross-

section of one of the waveguides, andf,, (1, ) is a dimensionless function that describes
the profile of the waveguide. In this case, the system of equations to describe the GWG

process in a system of two planar waveguides takes the form:
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the coefficients of the second-order nonlinear susceptibility at the center of the
waveguide. The wave numbers for the first second harmonic are given byk; = k(w)

andk, = k(2w) . Diffraction is described by the second summand in the right-hand
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side of each equation, wheren(?)? (x)=1+ (n(o)z — 1) (1 + fw,Zw(x)) . - are the
refractive indices of the harmonics, ¢ is the speed of light in vacuum. The first
summand in the right part of both equations is responsible for the influence of

inhomogeneity, where :g4 , (x)
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wheref,, ., (x) is a one-dimensional dimensionless function defining the waveguide
profile. In the following we will consider the case of group and phase synchronism,
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To perform numerical simulations, the system needed to be depersonalized, so
the following dimensionless parameters were introduced: Ay, = Ay 24in, » » » ,Z2 =
Zlyx = XR;y T = T3k = Aklyly = (@A) 10w 20 = Rinlw20Ain - His the
peak amplitude at the center of one of the waveguides,L,,; is the nonlinear length equal
to the distance at which full energy transfer between harmonics occurs,R;,,, T;, is the
initial radius and duration of the beam pulse. Dimensionless expressions for the

coefficients from (1) responsible for diffraction, dispersion, inhomogeneity, and

. . . . clyg _ clyg _
nonlinearity were also introduced: D,; = m, N mDﬂ =
Bwln ﬁzwlnl _ 2”“)1111 (0) _ Anwly  (0). A2 :

2, D, 2, Dgq = @z Lo D gz X2 = JIntroducing, the
above dimensionless parameters, we obtain:
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The trial solution that was fed to the input of the medium is as follows:
Ai(z =0) = Eyg exp(—(x — x,,)* = (T — 719)* + i911)
+ Epp exp(—(x + x,)? — (T — 750)* + i15)
4)

Ay(z = 0) = Epy exp(—(x — x,)° — (T — 710)* + i21)
+ Epp exp(—(x + x,,)% — (T — T20)° + i932),
HereE;, 1, andEj;,, define the initial amplitude values for the beams at the

fundamental and doubled frequencies, respectively. Parameters@qq 1, and@,q,, -

define the initial phase ratio between the pulses, and7, ,o for the time delay between
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them. The parameterx,, , which is also included in the expression for the waveguide
profile function (3), is responsible for the position of the waveguide centers.

The waveguide function view (3) provides the waveguide refractive index
minima nearx = +x,, . The optical beam is trapped near the center of the waveguide,
but its tails penetrate the zone between them, providing coupling of pulse-beam pairs.
The characteristic width of the waveguides is a,, 5, .

Numerical calculations are based on the method developed in [12], which
ensures that the integrals of motion inherent in the system of equations (2) are
preserved. Checking the conservation of integrals during the calculation guarantees the

accuracy of the results.

NUMERICAL SIMULATION RESULTS

To investigate the process of pulse-beam formation and propagation in a
quadratically nonlinear medium with two planar waveguides, we numerically
simulated system (2) with boundary condition (4). The propagation of pulses occurred
in the GWG regime, when E;; 5, = 0, 1.e., only beams of fundamental frequency were
fed to the input. In order to follow the effect of the initial phase ratio on the propagation
of the pulse-beam pair, we varied ¢4 1, , and the signals could have both the same
phase(¢p;; = @1, = 0), and different phases when¢,, was smoothly varied between
0 and &. In addition, the signals could have a time delay between each other when t,, #
Ty0 -

The diffraction coefficients were taken as ,D,; = 0.1D,, = 0.05 . Dispersion

coefficients were equal to ,D;; = 0.05D,, = 0.1 , which corresponds to normal
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dispersion (Dy1 , > 0 ). The nonlinearity coefficient was assumed to bey = 0.5 . The
parameters responsible for characteristics of the waveguides were assumed to be equal

to,,a, = Ay, = 2Dg; = 10D, = 10 . The parameter responsible for the position of

the waveguide centersx,, , could be changed during the calculation. The values of
dimensionless parameters that set the characteristics of the modeled medium remained
constant for all calculations.

Based on the results of [13], a soliton-like solution for a pair of pulse-beams
was obtained. This solution is not exactly soliton-like, since it does not have constant
characteristics, but changes its spatial and temporal dimensions and intensity
periodically, which is sometimes called "breathing". However, it is localized, since
most of the intensity is confined in a small region of space-time.

The soliton pair is formed not immediately, but only after the completion of the
process of energy transfer between the main and second harmonics in each waveguide,
which approximately corresponds to the passage of a distance equal to 20 nonlinear
lengths by the pair of signals. The resulting "breathing" pulse pair propagated over a
distance of 600 nonlinear lengths with preservation of the spatiotemporal shape, which
can be observed in Fig. /a. The signal profile at the left boundary of the modeled crystal
retains its shape at the end of the propagation distance, but loses in intensity, which can
be seen in Fig. /g-1e. However, the main loss of intensity occurs at the initial stage,
when the energy is pumped into the second harmonic, and in addition, a part of the
energy not yet captured in the soliton moves away from the main beam. A comparison
of the profiles at the distances z = 100 and z = 200 (Fig. 1 e,f) shows that at this stage

the peak intensity not only did not drop, but also slightly increased due to focusing.
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Analysis of the peak intensity in Fig. /a shows that this soliton-like solution generally
persists up to z = 600 .

It is also worth noting that in the region between the waveguides a non-zero
intensity level is observed over the entire propagation distance. As mentioned earlier,
part of the energy seeps through the waveguide walls, which indicates that the pulses
in the individual waveguides interact with each other. Figs. /b6 and Ic show the
dependence of the position of the spatial and temporal centers of the pulse-beam pair
on the propagation distance. It can be seen that in Fig. /c the position of the pulse
maxima along the axis up tox oscillates with a small amplitude near the center of the
waveguide. The temporal maxima along with propagation move away from the given
initial position, which means that the pulses repel each other.

Fig. 2 shows the calculation data for a pair of pulses launched with a delay
T10 = 0.5,759 = —0.5, where the boundary condition gradually changes the phase of
the pulse in the second waveguide@,, in the range from 0 to & in steps of 0.1w. The
phase change does not affect the propagation distance, the pulse pair propagates stably
for 600 nonlinear lengths, as in the first calculation for signals with the same phase.
The effect of the initial phase ratio is to change the nature of the motion of the time
centers of the pulses as well as the nature of their interaction, which can be seen in
Figs. 2a and 2b. When gradually increases the phase ¢, from 0 to m, the pulse pair
gradually moves from mutual repulsion at@;; = ¢,, =0 to mutual attraction
at 1 = 0,01, = m . In the intermediate regime at ¢, = 0.6 , the time center
oscillates around the equilibrium position untilz = 300 . After that, depending on the

initial phase ratio and the phase value of each pulse, the time centers of the pulses at
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the fundamental frequency begin to repel, as in the case with the same phase, but in
this case the movement of the centers occurs at different speeds (Fig. 2c¢). In the signal
with a smaller initial phase, the center moves faster, while the center of the second
pulse moves slower. The moment of the beginning of the movement of the pulse
centers along the time axis coincides with the end of the half-period of the energy
transfer process between the pulses, which became especially pronounced at the
selected phase ratio (¢;; = 0,9, = 0.6m) , which can be seen in Fig. 2c and 2d. It is
worth noting that the time delay was introduced so that the effect of attraction and
repulsion of the time centers of the pulses could be clearly observed. When the pulses
are launched synchronously, the effect is preserved, but for the distances considered,
the deviation of the pulse centers is very small and will become noticeable only at a
sufficiently large propagation distance.

The results obtained when investigating the influence of the waveguide position
on the propagation mode of the soliton-like solution are shown in Fig. 3. By changing
the parameter x,, , which is included both in the initial solution (4) and in the
dimensionless function defining the waveguide profile (3), we changed the position of
the centers of the gradient waveguides. In Fig. 3 we can see that at parameter x,, =
1.9 (ay 2, = 2) the waveguides start to partially overlap, which increases the
influence of pulses in different waveguides on each other. This is manifested in the
increased amplitude of the oscillation of the spatial centers of the pulses compared to
the results for non-overlapping waveguides at x,, = 2.0 . The energy of the pulse
"tails" that previously leaked into the region between the waveguides begins to

accumulate in the overlapping region, which can be seen in Fig. 3¢ in the plots for
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signal profiles at different values of propagation distance z. With further convergence
of the waveguides, the amplitude of oscillations of the spatial centers continues to
increase, and when reaching x,, = 1.7 , the soliton-like mode is broken: the pulse pair
decays at a distance of 40 nonlinear lengths.

CONCLUSION

Thus, the process of formation and propagation of a soliton-like solution in a

pair of coupled optical waveguides in a planar quadratic-nonlinear crystal under
changing parameters related to the position of the waveguide centers and the phase
ratio between pulses is considered. It was found that the character of pulse interaction
depends on the initial phase ratio. At a certain initial phase difference (§¢ = 0.6 ),
energy pumping between the waveguides is observed, which takes about 600 nonlinear
lengths. Overlapping of the waveguides with each other (x,, = 1.9 ) enhances the
coupling between the waveguides, which also affects the spatial position of the signals
during propagation, adding a noticeable oscillation of the pulse centers along the spatial
axis. The peak intensity decreases as some of the pulse energy begins to leak into the
region of overlap between the waveguides, lingering there.
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FIGURE CAPTIONS
Fig. 1. Generation of a pair of coupled solitons by nonsynchronous (t; = —0.5, 7,7 =
0.5) in-phase (911 = @1, = 0) beams of the fundamental frequency E;; = 0.5,E;, =
0.5,E,; =0,E,, = 0. Peak intensities (a) of the fundamental frequency (black and
red for the left and right waveguides, respectively) and the second harmonic (blue and
green for the left and right waveguides, respectively). Transverse beam profiles att =
0 of the fundamental frequency (red) and second harmonic (blue) forz = 0 (d),z =
100 (e),z = 200 (f). Dependence of the positions of spatial (b) and temporal (c)
centers on the propagation distance. Waveguide parameters x,, = 2,a, = a,, =
2,D4y = 10,D4, = 10 . Diffraction coefficients D,y = 0.1, D,, = 0.05 , dispersion

coefficients D;; = 0.05,D,, = 0.1, nonlinearity coefficient y = 0.5.

Fig. 2. Generation of a pair of coupled solitons by nonsynchronous (t; = —0.5, 7,y =
0 .5) beams of fundamental frequency E;; = 0.5,E;, = 0.5,E,; = 0,E,, = 0. Peak
intensities (a) of the fundamental frequency in the right waveguide and the position of
time centers of the pulse pair (b) as a function of distance z for different initial phases.
Peak intensities (c) of the main frequency pulse pair and the position of their time
centers (d) for the case ¢;; =0, ¢, = 0.6m. Parameters of the waveguide a,, =
azy = 2,Dq1 = 10,D4, = 10 . Diffraction coefficients D,; = 0.1,D,, = 0.05 ,
dispersion coefficients D,; = 0.05,D,, = 0.1, nonlinearity coefficient y = 0.5.

Fig. 3. Generation of a pair of coupled solitons by nonsynchronous (t; = —0.5,7,¢ =
0 .5) in-phase (@11 = @1, = 0 ) beams of fundamental frequency E;; = 0.5,E;, =

0.5,E,; = 0,E,, = 0. Peak intensities (a) of fundamental frequency and position of
12



spatial centers (b) as a function of distance z for x,, = 1.8, 1.9, 2.0 . Transverse profiles
of the beams at T = 0 and at x,, = 1.9 for the fundamental frequency between z = 20
and z = 40 with a step of z =5 (¢). Waveguide parameters a,, = ay,, = 2,D4 =
10,D4, = 10.  Diffraction  coefficients D,y = 0.1,D,, = 0.05 ,  dispersion

coefficients D;; = 0.05, D, = 0.1, nonlinearity coefficient y = 0.5.
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