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Abstract. The process of propagation and formation of pulse pairs in a quadratically 

nonlinear crystal with two waveguides is investigated when parameters related to the 

position of the waveguides relative to each other, delay and phase ratio between pulses 

change. A change in the pulse propagation mode during the approach of waveguides 

and the dependence of the nature of the interaction between the pulses on the initial 

phase ratio were found. 
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INTRODUCTION 

One of the most intriguing areas of optical research is nonlinear optics, where 

solitons occupy a special place. An optical soliton is a solitary laser pulse of a certain 

duration (from nano- to femtoseconds) possessing a carrier frequency of the visible 

range and capable of propagating in a nonlinear dispersing medium without changing 
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its shape over long distances. Of particular interest are optical solitons in the Kerr 

medium, which is described by the nonlinear Schrödinger equation (NSE) possessing 

a soliton solution [1]. Light bullets or multidimensional solitons in a homogeneous 

Kerr medium experience self-focusing collapse when a certain threshold related to the 

pulse amplitude is exceeded. In particular, two-dimensional NUS leads to the so-called 

Townes soliton [2], which is degenerate in free space in the sense that it occurs at only 

one value of energy. From a physical point of view, the Townes soliton is an unstable 

state that shares two modes of light propagation: the blurring of the pulse-beam caused 

by diffraction and its unbounded self-focusing due to nonlinearity [3,4].  This shows 

that nonlinearity is important for the formation of solitons but does not guarantee their 

stability. 

Many configurations of optical media in which solitons are stable have been 

found. These configurations include materials accounting for higher orders of 

nonlinearity and dispersion [5], media with a combined type of nonlinearity [6], and 

media with inhomogeneities that can compensate for diffraction blurring [7]. Solitons 

have also been obtained in an artificial optical medium described by the fractional 

Schrödinger equation [8]. Some results related to the consideration of fractional media 

are the subject of a mini-review [9]. Since unbounded self-focusing is the main obstacle 

to the formation of solitons in the Kerr medium, quadratic nonlinear media [10], in 

which collapse is absent, have also been considered. Another interesting approach to 

soliton generation is to take into account the coupling dispersion between planar 

waveguides with Kerr nonlinearity as an analog of spin-orbit coupling in a Bose-

Einstein condensate [11]. 
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In our work, we considered a quadratically nonlinear medium with two planar 

waveguides. By varying the parameters related to the position and size of the 

waveguides, as well as by varying the parameters of the trial solution, we wanted to 

achieve stable propagation of the pulse pair over long distances or, in other words, to 

obtain a soliton solution. As mentioned above, we consider the propagation of a pair 

of pulse beams whose initial parameters can be controlled. The consideration is carried 

out in the second harmonic generation (SHG) regime under normal dispersion, where 

each pulse from the trial solution is assigned its own waveguide with specially defined 

characteristics. The coupling between them is accomplished by a fraction of the pulse-

beam energy that can penetrate the region between the waveguides. This work is based 

on the results of earlier studies [12,13]. 

 

BASIC EQUATIONS 

The description of the process of generation of the second optical harmonic is 

carried out in the quasi-optical approximation with the dependence of the linear 

susceptibility of the medium on the coordinate𝜒𝜒𝜔𝜔(𝑟𝑟⊥) in the form:  𝜒𝜒𝜔𝜔(𝑟𝑟⊥) =

𝜒𝜒𝜔𝜔
(0)[1 + 𝑓𝑓𝜔𝜔(𝑟𝑟⊥)], where𝑟𝑟⊥ is the radius-vector perpendicular to the central axis of the 

waveguide,𝜒𝜒𝜔𝜔
(0) is the linear susceptibility of the medium at the center of the cross-

section of one of the waveguides, and𝑓𝑓𝜔𝜔(𝑟𝑟⊥) is a dimensionless function that describes 

the profile of the waveguide. In this case, the system of equations to describe the GWG 

process in a system of two planar waveguides takes the form: 

𝑖𝑖 𝜕𝜕𝐴𝐴1
𝜕𝜕𝜕𝜕

+ 𝛽𝛽𝜔𝜔
2
𝜕𝜕2𝐴𝐴1
𝜕𝜕𝜏𝜏2

− 𝛼𝛼𝜔𝜔𝐴𝐴1∗𝐴𝐴2𝑒𝑒𝑖𝑖(2𝑘𝑘1−𝑘𝑘2)𝑧𝑧 = 𝜔𝜔𝑔𝑔1(𝑥𝑥)𝐴𝐴1 + 𝑐𝑐

2𝑛𝑛𝜔𝜔
(0)𝜔𝜔

𝜕𝜕2𝐴𝐴1
𝜕𝜕𝑥𝑥2

,  (1) 
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𝑖𝑖 𝜕𝜕𝐴𝐴2
𝜕𝜕𝜕𝜕

+ 𝛽𝛽2𝜔𝜔
2

𝜕𝜕2𝐴𝐴2
𝜕𝜕𝜏𝜏2

− 𝛼𝛼2𝜔𝜔𝐴𝐴12𝑒𝑒−𝑖𝑖(2𝑘𝑘1−𝑘𝑘2)𝑧𝑧 = 2𝜔𝜔𝑔𝑔2(𝑥𝑥)𝐴𝐴2 + 𝑐𝑐

4𝑛𝑛2𝜔𝜔
(0)𝜔𝜔

𝜕𝜕2𝐴𝐴2
𝜕𝜕𝑥𝑥2

. 

Here𝐴𝐴1,2 is the envelope amplitude of the first and second harmonic, respectively,𝜏𝜏 is 

the local time, which is𝜏𝜏 = 𝑡𝑡 − 𝑧𝑧
2
� 1

𝑣𝑣𝑔𝑔
(𝜔𝜔) + 1

𝑣𝑣𝑔𝑔
(2𝜔𝜔)� , where t is time, z is the propagation 

direction, x is the transverse coordinate,𝑣𝑣𝑔𝑔
(𝜔𝜔,2𝜔𝜔) is the group velocities for the 

corresponding harmonics at the center of the waveguide, where�𝑣𝑣𝑔𝑔
(2𝜔𝜔) − 𝑣𝑣𝑔𝑔

(𝜔𝜔)� <<

𝑣𝑣𝑔𝑔
(2𝜔𝜔), 𝑣𝑣𝑔𝑔

(𝜔𝜔) . The coefficient𝛽𝛽𝜔𝜔,2𝜔𝜔 is responsible for the dispersion of the group 

velocity at the center of the waveguide, the nonlinearity effects are responsible for𝛼𝛼𝜔𝜔 =

2𝜋𝜋𝜋𝜋

𝑐𝑐𝑛𝑛𝜔𝜔
(0) 𝜒𝜒(2)(2𝜔𝜔,−𝜔𝜔) and𝛼𝛼2𝜔𝜔 = 4𝜋𝜋𝜋𝜋

𝑐𝑐𝑛𝑛2𝜔𝜔
(0) 𝜒𝜒(2)(𝜔𝜔,𝜔𝜔) , where ,𝜒𝜒(2)(2𝜔𝜔,−𝜔𝜔)𝜒𝜒(2)(𝜔𝜔, 𝜔𝜔) are 

the coefficients of the second-order nonlinear susceptibility at the center of the 

waveguide. The wave numbers for the first second harmonic are given by𝑘𝑘1 = 𝑘𝑘(𝜔𝜔) 

and𝑘𝑘2 = 𝑘𝑘(2𝜔𝜔) . Diffraction is described by the second summand in the right-hand 

side of each equation, where𝑛𝑛𝜔𝜔,2𝜔𝜔
(0)2 (𝑥𝑥) = 1 + �𝑛𝑛𝜔𝜔,2𝜔𝜔

(0)2 − 1� �1 + 𝑓𝑓𝜔𝜔,2𝜔𝜔(𝑥𝑥)� . - are the 

refractive indices of the harmonics, c is the speed of light in vacuum. The first 

summand in the right part of both equations is responsible for the influence of 

inhomogeneity, where :𝑔𝑔1,2(𝑥𝑥) 

𝑔𝑔1(𝑥𝑥) =
𝑛𝑛𝜔𝜔

(0)2 − 1

2𝑐𝑐𝑛𝑛𝜔𝜔
(0) 𝑓𝑓𝜔𝜔(𝑥𝑥), 𝑔𝑔2(𝑥𝑥) =

𝑛𝑛2𝜔𝜔
(0)2 − 1

2𝑐𝑐𝑛𝑛2𝜔𝜔
(0) 𝑓𝑓2𝜔𝜔(𝑥𝑥), 

where𝑓𝑓𝜔𝜔,2𝜔𝜔(𝑥𝑥) is a one-dimensional dimensionless function defining the waveguide 

profile. In the following we will consider the case of group and phase synchronism, 

so𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑔𝑔
(2𝜔𝜔) = 𝑣𝑣𝑔𝑔

(𝜔𝜔) and . 2𝑘𝑘1 = 𝑘𝑘2 
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To perform numerical simulations, the system needed to be depersonalized, so 

the following dimensionless parameters were introduced: 𝐴𝐴1,2 = 𝐴̄𝐴1,2𝐴𝐴𝑖𝑖𝑖𝑖, , , , ,𝑧𝑧 =

𝑧𝑧𝑙𝑙𝑛𝑛𝑛𝑛𝑥𝑥 = 𝑥𝑥𝑅𝑅𝑖𝑖𝑖𝑖𝜏𝜏 = 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝛥𝛥𝑘̄𝑘 = 𝛥𝛥𝛥𝛥𝑙𝑙𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 = (𝛼𝛼𝜔𝜔𝐴𝐴𝑖𝑖𝑖𝑖)−1𝑎𝑎𝜔𝜔,2𝜔𝜔 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑎̄𝑎𝜔𝜔,2𝜔𝜔𝐴𝐴𝑖𝑖𝑖𝑖  . ,is the 

peak amplitude at the center of one of the waveguides,𝐿𝐿𝑛𝑛𝑛𝑛 is the nonlinear length equal 

to the distance at which full energy transfer between harmonics occurs,𝑅𝑅𝑖𝑖𝑖𝑖, 𝜏𝜏𝑖𝑖𝑖𝑖 is the 

initial radius and duration of the beam pulse. Dimensionless expressions for the 

coefficients from (1) responsible for diffraction, dispersion, inhomogeneity, and 

nonlinearity were also introduced: 𝐷𝐷𝑥𝑥1 = 𝑐𝑐𝑙𝑙𝑛𝑛𝑛𝑛
2𝜔𝜔𝑛𝑛𝜔𝜔

(0)𝑅𝑅𝑖𝑖𝑖𝑖
2 , , , , ,𝐷𝐷𝑥𝑥2 = 𝑐𝑐𝑙𝑙𝑛𝑛𝑛𝑛

4𝜔𝜔𝑛𝑛2𝜔𝜔
(0)𝑅𝑅𝑖𝑖𝑖𝑖

2 𝐷𝐷𝜏𝜏1 =

𝛽𝛽𝜔𝜔𝑙𝑙𝑛𝑛𝑛𝑛
2𝜏𝜏𝑖𝑖𝑖𝑖

2 𝐷𝐷𝜏𝜏2 = 𝛽𝛽2𝜔𝜔𝑙𝑙𝑛𝑛𝑛𝑛
2𝜏𝜏𝑖𝑖𝑛𝑛

2 𝐷𝐷𝑞𝑞1 = 2𝜋𝜋𝜋𝜋𝑙𝑙𝑛𝑛𝑛𝑛
𝑐𝑐𝑛𝑛𝜔𝜔

(0)𝑎̄𝑎𝜔𝜔2
𝜒𝜒𝜔𝜔

(0)𝐷𝐷𝑞𝑞2 = 4𝜋𝜋𝜋𝜋𝑙𝑙𝑛𝑛𝑛𝑛
𝑐𝑐𝑛𝑛2𝜔𝜔

(0)𝑎̄𝑎2𝜔𝜔2
𝜒𝜒2𝜔𝜔

(0)𝛾𝛾 = 𝛼𝛼2𝜔𝜔
𝛼𝛼𝜔𝜔

 .  ,Introducing, the 

above dimensionless parameters, we obtain: 

𝑖𝑖 𝜕𝜕𝐴̄𝐴1
𝜕𝜕𝑧̄𝑧

= 𝐷𝐷𝑞𝑞1𝑝𝑝1(𝑥̄𝑥)𝐴̄𝐴1 − 𝐷𝐷𝜏𝜏1
𝜕𝜕2𝐴̄𝐴1
𝜕𝜕𝜏̄𝜏2

+ 𝐴̄𝐴1∗𝐴̄𝐴2 + 𝐷𝐷𝑥𝑥1
𝜕𝜕2𝐴̄𝐴1
𝜕𝜕𝑥̄𝑥2

, 
(2) 

𝑖𝑖 𝜕𝜕𝐴̄𝐴2
𝜕𝜕𝑧̄𝑧

= 𝐷𝐷𝑞𝑞2𝑝𝑝2(𝑥̄𝑥)𝐴̄𝐴2 − 𝐷𝐷𝜏𝜏2
𝜕𝜕2𝐴̄𝐴2
𝜕𝜕𝜏̄𝜏2

+ 𝛾𝛾𝐴̄𝐴12 + 𝐷𝐷𝑥𝑥2
𝜕𝜕2𝐴̄𝐴2
𝜕𝜕𝑥̄𝑥2

. 

𝑝𝑝1,2 = 𝑎𝑎𝜔𝜔,2𝜔𝜔
−2 �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑥𝑥−𝑥𝑥𝑤𝑤)2

𝑎𝑎𝜔𝜔,2𝜔𝜔
2 � − 𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑥𝑥+𝑥𝑥𝑤𝑤)2

𝑎𝑎𝜔𝜔,2𝜔𝜔
2 ��. (3) 

The trial solution that was fed to the input of the medium is as follows: 

𝐴𝐴1(𝑧𝑧 = 0) = 𝐸𝐸11 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥 − 𝑥𝑥𝑤𝑤)2 − (𝜏𝜏 − 𝜏𝜏10)2 + 𝑖𝑖𝜑𝜑11)  

+ 𝐸𝐸12 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥 + 𝑥𝑥𝑤𝑤)2 − (𝜏𝜏 − 𝜏𝜏20)2 + 𝑖𝑖𝜑𝜑12) 
(4) 

𝐴𝐴2(𝑧𝑧 = 0) = 𝐸𝐸21 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥 − 𝑥𝑥𝑤𝑤)2 − (𝜏𝜏 − 𝜏𝜏10)2 + 𝑖𝑖𝜑𝜑21)

+ 𝐸𝐸22 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥 + 𝑥𝑥𝑤𝑤)2 − (𝜏𝜏 − 𝜏𝜏20)2 + 𝑖𝑖𝜑𝜑22), 

Here𝐸𝐸11,12 and𝐸𝐸21,22 define the initial amplitude values for the beams at the 

fundamental and doubled frequencies, respectively. Parameters𝜑𝜑11,12  and𝜑𝜑21,22  - 

define the initial phase ratio between the pulses, and𝜏𝜏10,20 for the time delay between 
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them. The parameter𝑥𝑥𝑤𝑤 , which is also included in the expression for the waveguide 

profile function (3), is responsible for the position of the waveguide centers. 

The waveguide function view (3) provides the waveguide refractive index 

minima near𝑥𝑥 = ±𝑥𝑥𝑤𝑤 . The optical beam is trapped near the center of the waveguide, 

but its tails penetrate the zone between them, providing coupling of pulse-beam pairs. 

The characteristic width of the waveguides is 𝑎𝑎𝜔𝜔,2𝜔𝜔. 

Numerical calculations are based on the method developed in [12], which 

ensures that the integrals of motion inherent in the system of equations (2) are 

preserved. Checking the conservation of integrals during the calculation guarantees the 

accuracy of the results. 

 

NUMERICAL SIMULATION RESULTS 

To investigate the process of pulse-beam formation and propagation in a 

quadratically nonlinear medium with two planar waveguides, we numerically 

simulated system (2) with boundary condition (4). The propagation of pulses occurred 

in the GWG regime, when 𝐸𝐸21,22 = 0 , i.e., only beams of fundamental frequency were 

fed to the input. In order to follow the effect of the initial phase ratio on the propagation 

of the pulse-beam pair, we varied 𝜑𝜑11,12  , and the signals could have both the same 

phase(𝜑𝜑11 = 𝜑𝜑12 = 0) , and different phases when𝜑𝜑12  was smoothly varied between 

0 and π. In addition, the signals could have a time delay between each other when 𝜏𝜏10 ≠

𝜏𝜏20 . 

The diffraction coefficients were taken as ,𝐷𝐷𝑥𝑥1 = 0.1𝐷𝐷𝑥𝑥2 = 0.05 . Dispersion 

coefficients were equal to ,𝐷𝐷𝜏𝜏1 = 0.05𝐷𝐷𝜏𝜏2 = 0.1 , which corresponds to normal 
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dispersion (𝐷𝐷𝜏𝜏1,2 > 0 ). The nonlinearity coefficient was assumed to be𝛾𝛾 = 0.5 . The 

parameters responsible for characteristics of the waveguides were assumed to be equal 

to , ,𝑎𝑎𝜔𝜔 = 𝑎𝑎2𝜔𝜔 = 2𝐷𝐷𝑞𝑞1 = 10𝐷𝐷𝑞𝑞2 = 10 . The parameter responsible for the position of 

the waveguide centers𝑥𝑥𝑤𝑤 , could be changed during the calculation. The values of 

dimensionless parameters that set the characteristics of the modeled medium remained 

constant for all calculations. 

Based on the results of [13], a soliton-like solution for a pair of pulse-beams 

was obtained. This solution is not exactly soliton-like, since it does not have constant 

characteristics, but changes its spatial and temporal dimensions and intensity 

periodically, which is sometimes called "breathing". However, it is localized, since 

most of the intensity is confined in a small region of space-time.  

The soliton pair is formed not immediately, but only after the completion of the 

process of energy transfer between the main and second harmonics in each waveguide, 

which approximately corresponds to the passage of a distance equal to 20 nonlinear 

lengths by the pair of signals. The resulting "breathing" pulse pair propagated over a 

distance of 600 nonlinear lengths with preservation of the spatiotemporal shape, which 

can be observed in Fig. 1a. The signal profile at the left boundary of the modeled crystal 

retains its shape at the end of the propagation distance, but loses in intensity, which can 

be seen in Fig. 1g-1e. However, the main loss of intensity occurs at the initial stage, 

when the energy is pumped into the second harmonic, and in addition, a part of the 

energy not yet captured in the soliton moves away from the main beam. A comparison 

of the profiles at the distances 𝑧𝑧 = 100 and 𝑧𝑧 = 200 (Fig. 1 e,f) shows that at this stage 

the peak intensity not only did not drop, but also slightly increased due to focusing. 

https://kak-pishetsya.com/%D0%B4%D1%8B%D1%88%D0%B0%D1%89%D1%83%D1%8E
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Analysis of the peak intensity in Fig. 1a shows that this soliton-like solution generally 

persists up to 𝑧𝑧 = 600 .  

It is also worth noting that in the region between the waveguides a non-zero 

intensity level is observed over the entire propagation distance. As mentioned earlier, 

part of the energy seeps through the waveguide walls, which indicates that the pulses 

in the individual waveguides interact with each other. Figs. 1b and 1c show the 

dependence of the position of the spatial and temporal centers of the pulse-beam pair 

on the propagation distance. It can be seen that in Fig. 1c the position of the pulse 

maxima along the axis up to𝑥𝑥 oscillates with a small amplitude near the center of the 

waveguide. The temporal maxima along with propagation move away from the given 

initial position, which means that the pulses repel each other. 

Fig. 2 shows the calculation data for a pair of pulses launched with a delay 

𝜏𝜏10 = 0.5, 𝜏𝜏20 = −0.5 , where the boundary condition gradually changes the phase of 

the pulse in the second waveguide𝜑𝜑12  in the range from 0 to π in steps of 0.1π. The 

phase change does not affect the propagation distance, the pulse pair propagates stably 

for 600 nonlinear lengths, as in the first calculation for signals with the same phase. 

The effect of the initial phase ratio is to change the nature of the motion of the time 

centers of the pulses as well as the nature of their interaction, which can be seen in 

Figs. 2a and 2b. When gradually increases the phase 𝜑𝜑12  from 0 to π, the pulse pair 

gradually moves from mutual repulsion at 𝜑𝜑11 = 𝜑𝜑12 = 0 to mutual attraction 

at 𝜑𝜑11 = 0,𝜑𝜑12 = π . In the intermediate regime at 𝜑𝜑12 ≅ 0.6π , the time center 

oscillates around the equilibrium position until𝑧𝑧 = 300 . After that, depending on the 

initial phase ratio and the phase value of each pulse, the time centers of the pulses at 
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the fundamental frequency begin to repel, as in the case with the same phase, but in 

this case the movement of the centers occurs at different speeds (Fig. 2c). In the signal 

with a smaller initial phase, the center moves faster, while the center of the second 

pulse moves slower. The moment of the beginning of the movement of the pulse 

centers along the time axis coincides with the end of the half-period of the energy 

transfer process between the pulses, which became especially pronounced at the 

selected phase ratio (𝜑𝜑11 = 0, 𝜑𝜑12 = 0.6π) , which can be seen in Fig. 2c and 2d. It is 

worth noting that the time delay was introduced so that the effect of attraction and 

repulsion of the time centers of the pulses could be clearly observed. When the pulses 

are launched synchronously, the effect is preserved, but for the distances considered, 

the deviation of the pulse centers is very small and will become noticeable only at a 

sufficiently large propagation distance. 

The results obtained when investigating the influence of the waveguide position 

on the propagation mode of the soliton-like solution are shown in Fig. 3. By changing 

the parameter 𝑥𝑥𝑤𝑤 , which is included both in the initial solution (4) and in the 

dimensionless function defining the waveguide profile (3), we changed the position of 

the centers of the gradient waveguides. In Fig. 3 we can see that at parameter 𝑥𝑥𝑤𝑤 =

1.9 (𝑎𝑎𝜔𝜔,2𝜔𝜔 = 2) the waveguides start to partially overlap, which increases the 

influence of pulses in different waveguides on each other. This is manifested in the 

increased amplitude of the oscillation of the spatial centers of the pulses compared to 

the results for non-overlapping waveguides at 𝑥𝑥𝑤𝑤 = 2.0 . The energy of the pulse 

"tails" that previously leaked into the region between the waveguides begins to 

accumulate in the overlapping region, which can be seen in Fig. 3c in the plots for 
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signal profiles at different values of propagation distance z. With further convergence 

of the waveguides, the amplitude of oscillations of the spatial centers continues to 

increase, and when reaching 𝑥𝑥𝑤𝑤 = 1.7 , the soliton-like mode is broken: the pulse pair 

decays at a distance of 40 nonlinear lengths. 

CONCLUSION 

Thus, the process of formation and propagation of a soliton-like solution in a 

pair of coupled optical waveguides in a planar quadratic-nonlinear crystal under 

changing parameters related to the position of the waveguide centers and the phase 

ratio between pulses is considered. It was found that the character of pulse interaction 

depends on the initial phase ratio. At a certain initial phase difference (𝛿𝛿𝛿𝛿 = 0.6π ), 

energy pumping between the waveguides is observed, which takes about 600 nonlinear 

lengths. Overlapping of the waveguides with each other (𝑥𝑥𝑤𝑤 = 1.9 ) enhances the 

coupling between the waveguides, which also affects the spatial position of the signals 

during propagation, adding a noticeable oscillation of the pulse centers along the spatial 

axis. The peak intensity decreases as some of the pulse energy begins to leak into the 

region of overlap between the waveguides, lingering there. 

REFERENCES 

1. Kivshar Y.S., Agrawal G.P. Optical Solitons: From Fibers to Photonic Crystals. 

New York: Academic Press, 2005. 

2. Chiao R.Y., Garmire E., Townes C.H. // Phys. Rev. Lett. 1964. V. 13. P. 479. 

3. Bergé L. // Phys. Reports. 1998. V. 303. P. 259. 

4. Kuznetsov E.A., Dias F. // Phys. Reports. 2011. V. 507. P. 43. 

5. Muniyappan A., Parasuraman E., Seadawy A.R., Ramkumar S.  // Opt. Quant. 

https://link.springer.com/article/10.1007/s11082-023-05965-5#auth-E_-Parasuraman-Aff2
https://link.springer.com/article/10.1007/s11082-023-05965-5#auth-S_-Ramkumar-Aff4


11 
 

Electron. 2024. V. 56. No. 3. Art. No. 440. 

6. Sudipta Das, Dey K. K., Sekh G. A.// Optik. 2021. V. 247. Art. No. 167865. 

7. Sazonov S.V., Kalinovich A.A., Komissarova M.V., Zakharova I.G.// Phys. Rev. A. 

2019. V. 100. No. 3.  Art. No. 033835. 

8. Longhi S. // Opt. Lett. 2015. V. 40. P. 1117. 

9. Malomed B.A. // Photonics. 2021. V. 8. No. 9. P. 353. 

10. Sakaguchi H., Malomed B.A. // J. Opt. Opt. Soc. Amer. B. 2012. V. 29. P. 2741. 

11. Kartashov Y.V., Malomed B.A., Konotop V.V. et al. // Opt. Letters. 2015. V. 40. No. 

6. P. 1045. 

12. Kalinovich A.A., Zakharova I.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 

12. P. 1785. 

13. Kalinovich A.A., Komissarova M.V., Sazonov S.V. et al. // PLoS One. 2019. V. 14. 

No. 8. Art. No. e0220840. 

 

 

 

 

 

 

 

 

 

 



12 
 

FIGURE CAPTIONS 

Fig. 1. Generation of a pair of coupled solitons by nonsynchronous (𝜏𝜏10 = −0.5, 𝜏𝜏20 =

0 .5) in-phase (𝜑𝜑11 = 𝜑𝜑12 = 0 ) beams of the fundamental frequency  𝐸𝐸11 = 0.5, 𝐸𝐸12 =

0.5, 𝐸𝐸21 = 0, 𝐸𝐸22 = 0 . Peak intensities (a) of the fundamental frequency (black and 

red for the left and right waveguides, respectively) and the second harmonic (blue and 

green for the left and right waveguides, respectively). Transverse beam profiles at𝜏𝜏 =

0 of the fundamental frequency (red) and second harmonic (blue) for𝑧𝑧 = 0 (d),𝑧𝑧 =

100 (e),𝑧𝑧 = 200  (f). Dependence of the positions of spatial (b) and temporal (c) 

centers on the propagation distance. Waveguide parameters 𝑥𝑥𝑤𝑤 = 2, 𝑎𝑎𝜔𝜔 = 𝑎𝑎2𝜔𝜔 =

2,𝐷𝐷𝑞𝑞1 = 10,𝐷𝐷𝑞𝑞2 = 10 .  Diffraction coefficients 𝐷𝐷𝑥𝑥1 = 0.1, 𝐷𝐷𝑥𝑥2 = 0.05 , dispersion 

coefficients 𝐷𝐷𝜏𝜏1 = 0.05, 𝐷𝐷𝜏𝜏2 = 0.1 , nonlinearity coefficient 𝛾𝛾 = 0.5. 

 

Fig. 2. Generation of a pair of coupled solitons by nonsynchronous (𝜏𝜏10 = −0.5, 𝜏𝜏20 =

0 .5) beams of fundamental frequency 𝐸𝐸11 = 0.5, 𝐸𝐸12 = 0.5, 𝐸𝐸21 = 0, 𝐸𝐸22 = 0 . Peak 

intensities (a) of the fundamental frequency in the right waveguide and the position of 

time centers of the pulse pair (b) as a function of distance z for different initial phases. 

Peak intensities (c) of the main frequency pulse pair and the position of their time 

centers (d) for the case 𝜑𝜑11 = 0, 𝜑𝜑12 = 0.6𝜋𝜋. Parameters of the waveguide 𝑎𝑎𝜔𝜔 =

𝑎𝑎2𝜔𝜔 = 2,𝐷𝐷𝑞𝑞1 = 10, 𝐷𝐷𝑞𝑞2 = 10 . Diffraction coefficients 𝐷𝐷𝑥𝑥1 = 0.1, 𝐷𝐷𝑥𝑥2 = 0.05 , 

dispersion coefficients 𝐷𝐷𝜏𝜏1 = 0.05,𝐷𝐷𝜏𝜏2 = 0.1 , nonlinearity coefficient 𝛾𝛾 = 0.5. 

Fig. 3. Generation of a pair of coupled solitons by nonsynchronous (𝜏𝜏10 = −0.5, 𝜏𝜏20 =

0 .5) in-phase (𝜑𝜑11 = 𝜑𝜑12 = 0 ) beams of fundamental frequency 𝐸𝐸11 = 0.5, 𝐸𝐸12 =

0.5, 𝐸𝐸21 = 0, 𝐸𝐸22 = 0 . Peak intensities (a) of fundamental frequency and position of 
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spatial centers (b) as a function of distance z for 𝑥𝑥𝑤𝑤 = 1.8, 1.9, 2.0 . Transverse profiles 

of the beams at 𝜏𝜏 = 0 and at 𝑥𝑥𝑤𝑤 = 1.9 for the fundamental frequency between 𝑧𝑧 = 20 

and 𝑧𝑧 = 40 with a step of 𝑧𝑧 = 5 (c). Waveguide parameters 𝑎𝑎𝜔𝜔 = 𝑎𝑎2𝜔𝜔 = 2,𝐷𝐷𝑞𝑞1 =

10, 𝐷𝐷𝑞𝑞2 = 10. Diffraction coefficients 𝐷𝐷𝑥𝑥1 = 0.1, 𝐷𝐷𝑥𝑥2 = 0.05 , dispersion 

coefficients 𝐷𝐷𝜏𝜏1 = 0.05,𝐷𝐷𝜏𝜏2 = 0.1 , nonlinearity coefficient 𝛾𝛾 = 0.5. 
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