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ВВЕДЕНИЕ

Проводимые в рамках фрактальной оптики ис-
следования свойств фрактальных спекловых по-
лей дали возможность найти решение ряда важных
вопросов фундаментального характера. Уточнено
применительно к спекловым структурам понятие
скейлинга (масштабной инвариантности) [1], дана
оценка фрактальности расположения дислокаци-
онных образований [2], рассмотрены особенности
перехода от релеевской статистики распределения
интенсивности к нерелеевской [3]. Весьма значи-
мыми оказались и прикладные аспекты выполнен-
ных исследований. К ним в первую очередь следует
отнести биомедицинские приложения. Так, фрак-
тальная спекловая технология позволила разрабо-
тать новые диагностические методы [4–6], повы-
сить информационную емкость систем связи [7],
дала возможность улучшить лечебные методики
в офтальмологии [8–11] и арт-терапии [12–15].

Как правило, на практике световой пучок
со спекловой структурой проходит некоторое рас-
стояние от начальной плоскости, где формирует-
ся спекловая структура, до плоскости, где фиксиру-
ется с целью того или иного применения попереч-
ное распределение интенсивности. Однако в лите-
ратуре нет полноценной информации о характере
и степени трансформации амплитудно-фазовых,
скейлинговых и статистических характеристик из-
лучения в процессе его распространения. Целью
данной работы является оценка самосогласован-
ных изменений указанных характеристик в зависи-

мости от изначально задаваемых параметров. При
этом особое внимание уделяется нахождению сте-
пени адекватности начального поля его изображе-
нию в оптической системе.

ПОСТАНОВКА ЗАДАЧИ И МЕТОД
ЕЕ РЕШЕНИЯ

В качестве постановочной части задачи рас-
смотрим спекловый пучок, падающий на собира-
ющую линзу с фокусным расстоянием 𝑓. Началь-
ную плоскость разместим сразу за линзой, где ра-
диус кривизны 𝑅 волнового фронта пучка равен 𝑓.
Рассмотрим, как будет меняться структура пучка
в процессе фокусировки и какова степень корре-
ляции распределения поля в начальной плоскости
и в плоскости изображения, находящейся от линзы
на расстоянии 2𝑅.

При численном моделировании структуры
фрактального спеклового поля в начальной плос-
кости использовалась функция Вейерштрасса,
имеющая вид

𝑊x,y = σ

𝑉

∑
𝑣=0

𝑁

∑
𝑛=0
[𝑏(D−2)n cos [2π𝑠𝑏𝑛 [(𝑥 − 𝐾 + 1

2
)×

× sin(α𝑣) + (𝑦 − 𝐾 + 1
2
) cos(α𝑣)] + ψn + ψv]] + 𝐴.

(1)

Здесь 𝑊x,y — амплитуда поля излучения;
𝑥, 𝑦 — дискретные поперечные координаты (0 ⩽ 𝑥,
𝑦 ⩽ 𝐾); σ — стандартное отклонение амплитуды
от среднего значения; 𝑁 — количество гармоник;
𝑉 — количество азимутальных парциальных волн;
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𝑛 — номер гармоники; 𝑣 — индекс азимутальной
составляющей волны; α — элементарный азиму-
тальный угол поворота; 𝑏 — параметр скейлинга;
𝑠 — масштабирующий параметр; 𝐷 — фрактальная
размерность графика функции Вейерштрасса
при одномерном представлении; ψn, ψv — фазы
компонент поля; 𝐴 — компонента с однородным
распределением амплитуды поля. При случайных
значениях фаз ψn, ψv формировалось спекловое
поле, плотность распределения интенсивности
в котором подчинялась релеевской статистике.

Для того, чтобы учесть сферичность волнового
фронта пучка на выходе линзы, функция (1) умно-
жалась на корректирующую функцию

𝐹x,y = 𝑒

𝑖 [[𝑥𝑢−
(𝐾+1)𝑢

2
]

2
+[𝑦𝑢−

(𝐾+1)𝑢
2

]

2
]π

λ𝑅 . (2)

Здесь параметр 𝑢 характеризует используемую
степень дискретизации поперечных координат, λ—
длина волны, 𝑅 — радиус кривизны волнового
фронта, 𝑖 =

√

−1. В некоторых случаях для сниже-
ния влияния краевых эффектов использовалась до-
полнительная корректирующая функция 𝑇, играю-
щая роль «мягкой» диафрагмы

𝑇x,y = ξ𝑒
[(𝑥𝑢−

(𝐾+1)𝑢
2

)

2
+(𝑦𝑢−

(𝐾+1)𝑢
2

)

2
]

4

, (3)

где ξ — постоянная величина.
Приведенные ниже результаты численного

моделирования, иллюстрирующие распростране-
ние спеклового пучка, получены для следующего
набора параметров: 𝐾 = 255, α = 2π/48, 𝑉 = 47,
𝑣 = 0…𝑉, 𝑁 = 5, 𝑛 = 0…𝑁, σ = 3.3, 𝑠 = 0.05, 𝑏 = 2,
𝐴 = 0. Случайные фазы ψn, ψv задавались с помо-
щью соотношений

ψn =
rnd(𝑛)4π
𝑛 + 1

, ψv =
rnd(𝑣)4π
𝑣 + 2

. (4)

Будем для наглядности считать, что 𝑅 = 1.5 м,
а длина волны λ = 0.5 ⋅ 10−6 м. Положим также,
что размер рабочего поля, определяемого величи-
ной 𝐾, в метрическом измерении равен 𝑎 = 0.02 м.
В этом же измерении расстояние между значащи-
ми точками рабочего поля составляет 𝑢 = 𝑎 ⁄ 𝐾 =
= 7.812 ⋅ 10−5 м.

Для оценки характеристик светового поля
на разных расстояниях за экраном использовал-
ся cоставляющий основу фурье-оптики метод
разложения изначального поля по плоским вол-
нам [16]. Он реализуется в несколько этапов.
Сначала с помощью процедуры быстрого преоб-
разования Фурье определяется пространственный
комплексный спектр излучения 𝑆 = cfft(𝑊). За-
тем с учетом набегов плоских волн на разных

расстояниях 𝑧 определяется новый комплексный
спектр 𝑄

𝑄x,y = 𝑆x,y ⋅ exp [𝑖2π𝑧T (𝑐(𝑥)
2
+ 𝑐(𝑦)2)] . (5)

Для проведения дальнейших расчетов ему целе-
сообразно придать центрально-симметричный ха-
рактер

𝐻x,y = ∣𝑄mod (𝑥+𝐾+1
2
, 𝐾+1),mod(𝑦+𝐾+1

2
, 𝐾+1)∣ . (6)

В формуле (5) расстояния 𝑧 выражаются в до-
лях так называемой длины Тальбо 𝑇 = 2𝑎2 ⁄ λ, т. е.
𝑧T = 𝑧⁄𝑇. Входящие в эту формулу вспомогательные
функции 𝑐(𝑡) имеют вид

𝑐(𝑡) = mod (𝑡 + 𝐾 + 1
2

, 𝐾 + 1) + 𝐾 + 1
2

. (7)

Наконец, на последнем этапе процедуры по-
средством обратного преобразования Фурье опре-
деляется распределение поля 𝐵x,y на расстоянии 𝑧T

𝐵 = icfft(𝐻). (8)

РЕЗУЛЬТАТЫ РАСЧЕТОВ
Расчет показал, что в соответствии с представ-

лениями волновой оптики изначальный световой
пучок сначала фокусируется вплоть до фокусно-
го расстояния 𝑧 = 𝑅, а затем расходится, форми-
руя на расстоянии 𝑧 = 2𝑅 изображение начально-
го распределения. Такого рода трансформация пуч-
ка показана на рис. 1. На нем показаны распре-
деления ∣𝑊x,y∣. На рис. 1а показано распределе-
ние ∣𝑊x,y∣ сразу за линзой в предположении, что
световой пучок ограничивает квадратная диафраг-
ма, размер которой в 3.2 раза меньше размера ра-
бочего поля. Постепенное уменьшение размеров
пучка в процессе его фокусировки иллюстрирует
рис. 1б, где световое поле приведено на расстоянии
𝑧 = 𝑅 ⁄ 2. Качественное преобразование структуры
пучка происходит в фокальной плоскости, когда
𝑧 = 𝑅 (рис. 1в). В соответствии с положением фурье-
оптики в этой плоскости поле является результатом
фурье-преобразования начального распределения
амплитуды световых колебаний. Сформированный
в фокальной плоскости фурье-образ имел вид си-
стемы концентрических окружностей, которые со-
ответствовали распределению пространственных
частот фрактального спеклового пучка. Наличие
скейлинга в фурье-образе доказывает то, что отно-
шение радиусов окружностей составляли постоян-
ную величину равную присутствующему в форму-
ле (1) параметру 𝑏 = 2. Изменение этого парамет-
ра, являющегося по сути коэффициентом скейлин-
га, приводило к изменению отношения радиусов.
Особенность пространственного спектра, обуслов-
ленная наличием скейлинга, во многом определя-
ет эффективность визуального воздействия фрак-
тальных структур при проведении лечебных про-
цедур в арт-терапии и офтальмологии. Дело в том,
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Рис. 1. Изменение структуры пучка в оптической системе. 𝑧 = 0 (а), 𝑅/2 (б), 𝑅 (в), 2𝑅 (г).

что в коре головного мозга обработка зрительных
сигналов, несущих информацию об изображени-
ях, осуществляется на основе структуры их про-
странственных спектров [14]. Из-за присутствия
скейлинга отсутствует необходимость в обработ-
ке пространственных спектров в широком частот-
ном диапазоне, достаточно зафиксировать лишь
их низкочастотную часть. Это ускоряет и облегча-
ет процесс зрительного восприятия рассматривае-
мых объектов и, как следствие, создает ощущение
комфорта и эстетического наслаждения. Происхо-
дящее при этом укрепление связей между нейрона-
ми в коре головного мозга способствует излечению
ряда глазных болезней (например, глаукомы). Рас-
пространяясь далее от фокальной плоскости пу-
чок увеличивает размеры и формирует на расстоя-
нии 𝑧 = 𝑅 изображение начального распределения
(рис. 1г).

Было обнаружено, что в процессе распростра-
нения спеклового пучка он сохранял фрактальные
признаки независимо от статистически независи-
мых реализаций их структуры. Оцениваемые мето-
дом покрытий [17] фрактальные размерности на-
чального распределения и его изображения оказа-
лись близки между собой и составляли величину
2.5 ∓ 0.1. Минимальная фрактальная размерность,

равная 2.25 ∓ 0.05 соответствовала распределению
поля в фокальной плоскости. Параллельно с оцен-
кой значений фрактальной размерности на разных
расстояниях от начальной плоскости определялись
средние значения спеклов. Делалось это по отсеч-
ке 0.5 от максимального значения рассчитываемой
автокорреляционной функции. Расчет показал, что
размеры спеклов в изображении за счет дифракци-
онного уширения, примерно, на 20% превосходят
свои начальные размеры. Значительное уменьше-
ние спеклов (в 2.5 раза) наблюдалось вблизи фо-
кальной плоскости.

Расчет коэффициента корреляции η распреде-
лений поля в начальной плоскости и в плоскости
изображения (рис. 1а и 1г) дал значение η = 0.53.
Увеличение фрактальной размерности 𝐷 приводи-
ло к снижению η. Это хорошо видно из хода кривой,
приведенной на рис. 2. В наиболее важной области
для практических применений (𝐷 < 1.5) уменьше-
ние величины η относительно максимального зна-
чения не превышает 30%.

ДРУГАЯ СТРУКТУРА ВОЛНОВОГО ФРОНТА

Для того, чтобы учесть влияние на характери-
стики излучения присутствия в начальной плоско-
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Рис. 2. Влияние фрактальной размерности𝐷 на значе-
ние коэффициента корреляции η.

сти сферической аберрации формуле (2) придавал-
ся иной вид

𝐹x,y = 𝑒
𝑖[( 2𝑥

𝐾+1
−1)2+( 2𝑦

𝐾+1
−1)2

⋅[1+ρ[( 2𝑥
𝐾+1
−1)2+( 2𝑦

𝐾+1
−1)2]]]⋅ π(

𝑎
2 )

2

λ𝑅 .
(9)

Входящий в выражение (9) параметр ρ харак-
теризует степень влияния аберрации на структу-
ру изображения. На рис. 3 это влияние графиче-
ски представлено в виде изменения коэффициента
корреляции η изображения и начального распреде-
ления поля. Из рисунка видно, что снижение коэф-
фициента корреляции, превосходящее 10%, проис-
ходит при ∣ρ∣ > 0.1.

Была рассмотрена также возможность исполь-
зования разработанного программного обеспече-
ния для случая распространения спекловой вол-
ны с изначально плоским волновым фронтом. Ис-
пользованный в нем метод плоских волн по срав-
нению с предыдущим случаем потребовал опре-
деленной корректировки. Это связано с тем, что
расходимость спеклового пучка требует увеличе-
ния размеров рабочего поля ввиду необходимо-
сти учета особенностей структуры пучка на его
периферии. Указанная проблема была преодоле-
на путем использования адаптивной схемы пер-
манентного увеличения размеров рабочего поля.
Было показано, что на расстоянии от начальной
плоскости 𝑧1 = 0.0001𝑑2 ⁄ λ, где 𝑑 — размер рабо-
чего поля, распределение интенсивности сохраня-
ет свойства, характерные для спеклового фракталь-
ного пучка. Количественный анализ трансформа-
ции структуры спекловой волны позволил уста-
новить, что такие характеристики поля как плот-

Рис. 3. Влияние сферической аберрации на структуру
изображения.

ность вероятности и радиус корреляции значений
интенсивности, их стандартное отклонение в об-
ласти 0 < 𝑧 < 𝑧1 в зависимости от реализации мо-
гут претерпевать заметные, а иногда значитель-
ные изменения. В то же время, фрактальная раз-
мерность, рассчитанная методом покрытий, испы-
тывала отклонения от среднего значения, равного
2.45, не превышающие 2%. Это говорит об устой-
чивости такой важной характеристики спеклового
поля, как его фрактальная размерность.

ЗАКЛЮЧЕНИЕ
Распространение в оптических системах

и в свободном пространстве фрактальных спек-
ловых пучков рэлеевского типа характеризуется
рядом важных физических закономерностей.
Помимо того, что в процессе распространения
остается неизменной скейлинговая структура
их пространственного спектра, сохраняется как
фрактальная форма, так и плотность вероятно-
сти поперечного распределения интенсивности.
Однако величина фрактальной размерности, фик-
сируемой на различных расстояниях, в общем
случае может меняться в больших пределах. В то же
время фрактальные размерности пучков в началь-
ной плоскости и в плоскости изображения близки
между собой.

Коэффициент корреляции изначального поля
и его изображения зависит от задаваемой в началь-
ной плоскости фрактальной размерности и сни-
жается ее увеличением. Так, увеличения фракталь-
ной размерности от значения 2.25, до значения
2.7 может уменьшить коэффициент корреляции
в 2 раза. Заметным образом влияет на коэффи-
циент корреляции присутствие в сформированном
в начальной плоскости пучке сферической аберра-
ции. Если вклад аберрации в структуру волново-
го фронта превосходит 10%, то следует считаться
с резким падением корреляционного коэффициен-
та. Дополнительный анализ процесса распростра-
нения фрактального спеклового пучка в свободном
пространстве показал, что и в этом случае он сохра-
няет фрактальные свойства.

Авторы выражают благодарность профессору
физического факультета МГУ Боголюбову А. Н.
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Propagation of fractal speckles in optical systems and in free space
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The diffraction transformation of wave fractal fields is considered. It is shown that when light beams with
a speckle structure propagate in optical systems and in free space, their fractal properties have a high degree
of stability.

Keywords: speckles, fractal, optical system, Fourier transform
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