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Abstract. A kinetic theory for the radioelectric effect in a superlattice based on a 3D 

Dirac crystal in a constant electric field has been constructed. The current density has 

been shown to get the resonance in the case where the Bloch frequency is a multiple of 

the frequency of the electromagnetic wave. The latter can lead to a change in the 

direction of the current density. The amplitude dependence of the radioelectric current 

density has been studied. 
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INTRODUCTION 

Currently, the electronic properties of three-dimensional (3D) structures based on 

Dirac or graphene-like crystals [1,2], which have a wide range of applications, are 
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being actively studied [2-5]. On the one hand, the charge carriers of 3D Dirac materials 

are characterized by the presence of three degrees of freedom of motion and, on the 

other hand, by the relativistic form of the dispersion law [6,7]. There are various ways 

to fabricate such structures [8,9]. In [10], a 3D structure is proposed, which is a 

superlattice (SL) with graphene sheets separated by semiconductor spacers along the 

growth axis. In [11], a heterostructure consisting of periodically alternating layers of a 

topological insulator and a dielectric playing the role of a quantum barrier was 

considered. Attention to SRs based on Dirac crystals is due, in particular, to the 

possibility of using the latter as a working medium for the generation of solitary 

electromagnetic (EM) waves of a new type predicted in [12] and recently attracting the 

attention of researchers, including those abroad [13-15]. 

The so-called radioelectric effect, which consists in the entrainment of free charge 

carriers by EM radiation in the direction of its propagation [16], can be taken as a basis 

for the methods of diagnostics of semiconductor structures, as well as detection of EM 

waves propagating in them. This effect with respect to standard 3D semiconductor SRs 

has been theoretically studied in [16,17] for different wave polarizations. The 

entrainment of conduction electrons by a solitary wave in a graphene SR was 

considered in [18]. However, the observation of this phenomenon in the latter case 

requires a sufficiently precise orientation of the wave polarization plane along the 

graphene plane, which is a challenging experimental task. In addition, the creation of 

a free graphene sheet is hampered by the inevitable occurrence of surface defects and 

deformations [19], in order to eliminate which special substrates are used. It is easy to 

see that 3D materials are devoid of such necessity. 
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In the present work, a kinetic theory of the radioelectric effect in SRs based on a 

3D Dirac crystal, as well as the influence of this effect on the longitudinal voltammetric 

characteristic (VAC) of the considered structure, is constructed. Note that the WAC of 

SRs in the EM absorption regime was studied in [20], where the emerging areas of 

WAC with absolute negative conductivity (AOP) were interpreted as a result of 

resonant absorption by electrons of EM field quanta and optical phonons, leading to 

the corresponding quantum transitions along the Starkov ladder. Below is shown the 

possibility of AOP in a different situation, and namely in the mode of entrainment of 

charge carriers by an EM wave polarized along a circle. Moreover, in contrast to [20] 

here the conditions for the Starkov quantization will not be required, and the AOP sites 

can be described in the framework of the quasi-classical approach based on the 

relaxation time approximation. 

 

ELECTRON SPECTRUM OF SR 

The SR considered below is a multilayer heterostructure consisting of alternating 

layers of a 3D Dirac crystal and a conventional insulator acting as a spacer material 

(Fig. 1). At this point, such a structure may well be fabricated using available 

techniques [21,22]. The Hamiltonian describing this structure can be written as 

follows: ( )zVpH zx τ+⋅σ⊗τυ=


FSL
ˆ  . Here, the Pauli matricesσ  and τ  are responsible 

for the spin and pseudospin degrees of freedom, respectively [7],⊗ is the Kronecker 

product operation, Fυ  is the velocity on the Fermi surface, p  is the three-dimensional 

momentum operator, ( ) ( )dzVzV +=  is an additional scalar potential due to the 
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alternation of quantum wells and barriers along the Oz axis, and d is the SR period. In 

the low-energy one-minizone approximation, the dispersion law for electrons in the 

conduction minizone can be written in the following form ( 1=  ): 

 ( ) ( ) ( )dppp zcos1−∆+ε=ε ⊥⊥
 , (1) 

where ⊥p  is the electron momentum component transverse to the CP axis, ,

( ) 22
F

2
g ⊥⊥⊥ υ+∆=ε pp g∆  is the half-width of the energy gap between the conduction 

zone and the valence zone,∆  is a structural parameter expressed through integrals of 

the wave function overlap from neighboring quantum wells and has the meaning of the 

half-width of the conduction minizone. It is considered that the inequality is fulfilled: 

. g∆<<∆  

 

INFLUENCE OF THE ENTRAINMENT EFFECT ON THE LONGITUDINAL 

SAC 

Let us place the above considered SR in the field of an EM wave polarized along 

a circle and propagating against the Oz axis as shown in Fig. 1. The projections of the 

EM wave field intensity vectors on the coordinate axes are as follows: 

 ( )qztEEx +ω= cos0 , , , , ( )qztEEy +ω= sin0 yx EH = xy EH −=  (2) 

where E0, q and ω are the amplitude, wave number and frequency of the wave, 

respectively. We consider that the structure has electronic conductivity. According to 

the chosen orientation of the intensity vectors, the wave field transfers momentum to 

the electrons, entraining them against the Oz axis. Consequently, the entrainment 

current density in the absence of a constant field is directed along the Oz axis. Let us 
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calculate the longitudinal to the CP axis component of the current density zj  under the 

condition of simultaneous action of both the wave field and the constant electric field 

with the strength dcE


 , directed along the Oz axis. For this purpose, let us use the 

following formula: 

 ( ) ( )∑υ−=
p

zz tpfpej


 , , (3) 

where , ε∂=υ p
 ( )tpf ,  is the nonequilibrium distribution function that takes into 

account the action of force fields and is a solution of the kinetic Boltzmann equation: 

 ( ) ( )
τ
−

−=
∂
∂
⋅





 υ++−

∂
∂ pftpf

p
fH

c
EEe

t
f 









0dc ,],[1 . (4) 

Here ( )pf 

0  is the equilibrium distribution function, τ is the relaxation time. As in 

[16,17], it is assumed that the EM wavelength significantly exceeds the free path length 

of charge carriers. Therefore, in (4) the summand with the spatial derivative fr∂  is 

omitted. The latter also allows us to neglect the coordinate dependence of the wave 

field strengths (2). Let us introduce the notation: 1−∆=γ cd g  . The parameter γ is of 

order 1~ −υγ c  , whereυ  is the characteristic velocity of charge carriers, and c<<υ  . In 

the zero approximation for the small parameter 1−υc  we can neglect the action of the 

magnetic field so that the solution (4) has the form: 

 ( ) ( )





 −+

τ
= τ

−
−

∞−
∫ AA

c
epfettpf

ttt




101
)0(

1

d1, , (5) 

where ( )tA


 is the vector potential of the EM field, ( )11 tAA


=  . Let us substitute (5) into 

(3) and take into account the parity of the equilibrium distribution function. As a result, 

we arrive at the classical expression describing the longitudinal VAC of SR [23]:
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( ) 122
BB0

)0( 1 −
τΩ+τΩ= jjz  . Here denoted by: ∆= ednj 00 , deEz

dc
B =Ω  is the Bloch 

frequency, 0n  is the concentration of free charge carriers in the conduction band. The 

correction for the distribution function in the following approximation has the form: 

 ( ) ( ) ( )











 −+υ= τ

−
−

∞−
∫ 112

)1( ,d,
1

tHAA
c
epet

c
etpf

ttt


 ( )





 −+

∂
∂

⋅ AA
c
epf

p




 10 . (6) 

After substituting (6) into (3) and some transformations, we arrive at the following 

expression for the correction to the current density: 

( ) ⋅ξτξΩ= ∫
∞

ξ− dcos
0

B
)1( e

c
ejz  

 ( ) ( ) ( ) ( )zz
p

pptA
c
etA

c
epf 20 υ







 ε−





 −τξ−+ε








ε∂
∂

−⋅ ⊥⊥⊥⊥∑ 







. (7) 

Further calculations will be carried out for the case of extremely low temperatures such 

that we can make a substitution: ( ) ( )F0 ε−εδ→∂− ε f , where ( )ξδ  is the delta function,

Fε  is the energy corresponding to the Fermi level. We consider that the latter is located 

inside the conduction band near its bottom so that the inequality is satisfied:

ggF0 ∆<<∆−ε<  . If we take the following characteristic for Dirac and graphene-like 

materials numerical value of the energy gap Δg~ 50 meV, then the concentration of free 

electrons in the conduction band n0~ 1014cm -3corresponds to the Fermi energy equal 

to εF~ 51 meV, which quite satisfies the above inequality. According to the latter, only 

those electrons near the bottom of the minizone, i.e., electrons with small momentum 

values, will participate in electron transfer at low temperatures: gF ∆<<υ⊥p ,

0eEp <<ω⊥  . As a result of the calculations in (7), performed taking into account the 

above conditions, we arrive at the following result: 
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( ) ( ) 



















τω+Ω+
+

τω−Ω+
+

τΩ+∆−ε
∆γ

= ∑
∞

=1
22

B
22

B
22

B

0

gF0

)1(

1
1

1
1

1 n
n

z

nn
SS

j
j , (8) 

where denoted 

 ( ) ( )∫
π

ξξξ+
π

=
2

0

22
00 d2cossin12 naaSn  ,    ( ) ( ) 12 2

000 −−Ε
π

= aaS  , (9) 

( )ξΕ  - is the full elliptic integral of the 2nd kind, 0F
1

g
1

0 2 eEa υ∆ω= −−  is the dimensionless 

amplitude of the electric field strength of the wave. The dependence of the resulting 

current density, equal to )1()0(
zzz jjj +=  , on the intensity dc

zE  is shown in Fig. 2 by a 

solid line. Here also the dashed line shows the longitudinal VAH of SR in the absence 

of EM wave. It can be seen that the areas of negative differential conductivity in both 

cases practically coincide except for resonance situations when the Bloch frequency is 

a multiple of the EM wave frequency: ω=Ω nB  . In the latter case, the current density 

goes sharply into the region of negative values, which corresponds to the AOP. A 

similar situation occurred for SRs with a parabolic transverse spectrum [17], where the 

entrainment current was also calculated in a linear approximation using the parameter

γυ − ~1c  . However, in [17] the resonance corresponding to AOP appeared only in one 

case: ω=ΩB  . The appearance of other AOP regions was a higher order effect of γ in 

[17] and required sufficiently large wave intensities, at which the WAC was 

significantly distorted compared to the WAC in the absence of the entrainment effect. 

According to (8), in the case of SRs based on Dirac crystals, already in the first 

approximation in γ there is a series of resonances, which is a consequence of the 

nonparabolicity of the transverse spectrum of the SR considered here. 
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Let us calculate the current density in the k-th resonance. For this purpose, let's 

put ω=Ω kB  in (8) and leave only the summand with kn =  due to the inequality 1>>ωτ  

. As a result we have: ( )00
res ~ aSjj kz γ−  . The plots of the dependence of the current 

density on the wave amplitude in the first two resonances are shown in Fig. 3. It is easy 

to show that in the case of small wave amplitudes ( 10 <<a  ) the current density in the 

k-th resonance is proportional to ka2
0  . In the case of large amplitudes ( 10 >>a  ), on the 

other hand, the resonance value is linear in amplitude. The latter result distinguishes 

the effect considered here from the analogous one in [17], where in the linear in γ 

approximation the resonance value is quadratic in the amplitude of the wave. The linear 

in amplitude current density at 10 >>a  is a direct consequence of the relativistic 

character of the transverse spectrum of charge carriers. 

 

ENTRAINMENT EFFECT IN THE ABSENCE OF A CONSTANT FIELD 

In the absence of a constant field, the electric current along the CP axis exists only 

due to the entrainment of electrons by the EM wave. Since the momentum of the EM 

wave imparted to the conduction electrons is directed against the Oz axis, the 

corresponding current density has a positive projection zj  . Substituting into (8) 0dc =E


 

, and considering the inequality 1>>ωτ  , we write: 

 ( )
gF

000

∆−ε
∆γ

=
aSjjz . (10) 

The graph of the dependence of the entrainment current density on the dimensionless 

wave amplitude a0, plotted by formula (10), is shown in Fig. 3 with a dashed line. As 
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expected, the plot for the current density at 0dc =E


 lies in the positive region. It follows 

from (10) that for small amplitudes, the entrainment current density is quadratic in 

amplitude: 2
00~ ajjz γ , and for large amplitudes it is linear: 00~ ajjz γ  . Note that the 

amplitude dependence of the radielectric current is similar to the corresponding 

dependence for the EM radiation power absorbed by the graphene-like material [24]. 

This feature can serve as an additional indication of the correctness of the calculation 

results. Indeed, due to the absorption of the radiation energy by charge carriers, the 

impulse of the EM wave field is transmitted to electrons, which ensures the entrainment 

of the latter along the radiation propagation direction. 

 

CONCLUSION 

As a result of the study of the entrainment effect in SRs based on Dirac crystals, 

the following results were obtained. First, the effect of electron entrainment by the EM 

wave modifies the longitudinal SAH of SRs in such a way that a series of resonances 

appears: the current density experiences a sharp change whenever when the Bloch 

frequency is a multiple of the wave frequency ( ω=Ω nB  ). Attention should be paid to 

the following peculiarity in the behavior of the entrainment current density when a 

constant electric field with resonant strength is switched on. As shown above, despite 

the positive value of the DC field strength ( 0dc >zE  ), the projection of the current 

density zj  in resonance, according to the plots in Fig. 3, does not increase, but, on the 

contrary, decreases up to the change of its sign. Moreover, this effect is more noticeable 

the higher the intensity of EM radiation. 
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Second, each of such resonances is a first-order effect in terms of the small 

parameter γ in contrast to [17], where only one resonance appeared for SRs based on 

materials with a quadratic law of dispersion of their carriers in the corresponding 

approximation. Third, for large wave amplitudes, the entrainment current density 

grows linearly with amplitude, which is a direct consequence of the relativistic 

character of the transverse spectrum of the SR considered here. The latter can be used 

as a basis for methods of laboratory diagnostics of the transverse spectrum of charge 

carriers of SRs based on Dirac crystals. 
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FIGURE CAPTIONS  

 

Fig. 1. Schematic of SR and configuration of EM fields: 1) 3D Dirac crystal layer, 2) 

insulator spacer layer, 3) EM wave polarized in a circle. 

 

Fig. 2. Longitudinal VAC of SR modified due to the radioelectric effect (solid line, 

ωτ= 30, a0= 20) and VAC of SR in the absence of EM wave (dashed line). 

 

Fig. 3. Dependence of the radioelectric current density on the dimensionless wave 

amplitude a0: ωτ= 30, 1) ΩB= ω, 2) ΩB= 2ω, 3) Edc= 0. 
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