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Abstract. The spectral method was used to solve the problem of interaction of short
optical pulses with RT-symmetric photonic crystals under conditions of frequency
singularity. It is shown that with a small deviation from the singular point of
spontaneous decay of PT-symmetric field modes, a frequency singularity of the
transmission and reflection coefficients of the structure arises. This leads to a
significant narrowing of the pulse spectra and an increase in their amplitude and

duration with unidirectional Bragg reflection.
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INTRODUCTION
After states with real eigenvalues of energy [1, 2] were found in non-hermitian
quantum-mechanical systems with parity-time (parity-time, PT-symmetry), this idea
was generalized to various physical wave processes - optical [3-6], acoustic [7], in

coupled mechanical oscillators [8], in electric circuits [9] and others. In optics, in non-
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hermitian media with PT-symmetric complex function of dielectric permittivity
e(F)=¢"(-7) , i.e., in media with amplification and absorption (Fig. /a), PT-
symmetric field modes with real values of wave numbers can propagate [3, 4].
Examples of periodic media of this type are described in detail, for example, in [10-
13]. An important feature of PT-symmetric media is the presence of a special point
(SP) of spontaneous decay of PT-symmetric states [14, 15], in which the degeneracy
of eigenwaves occurs and PT-unsymmetric modes propagating with amplification and
absorption appear when the balance of amplification and absorption changes. In the
vicinity of the OT, new optical phenomena are observed, such as: unidirectional Bragg
reflection, or unidirectional invisibility [16-18]; increased transparency of passive PT-
symmetric media with an increase in their absorption capacity [14, 19]; asymmetric
fission of short laser pulses at a special point in a dispersing RT-symmetric medium
[20]; changes in the radiation structure of high-power diode lasers at the appearance of
RT-symmetric modes in a laser resonator [21]; frequency singularity [22, 23].
However, the interaction of monochromatic waves or extended nanosecond pulses with
PT-symmetric media has been considered so far. The propagation of short picosecond
and subpicosecond pulses, especially near the frequency singularity, has remained
poorly studied.

This paper studies the interaction of short optical pulses with PT-symmetric
periodic structures, or photonic crystals (PCs), in the case of frequency singularity of

spectral reflection coefficients R(®w) and passage 7' (®) , including material dispersion.

The problem of linear dynamic Bragg pulse diffraction in FCs is solved by the spectral

method in the two-wave approximation. The method of broadband quasi-RT symmetry
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[24] was used to recover the PT-symmetric properties of the medium. It is shown that
at the special point of decay of RT-symmetric field modes, the reflection and
transmission coefficients of photonic crystals of finite thickness do not have
singularities, and the durations of reflected and transmitted pulses change
insignificantly. However, even at a small deviation from the OT at a certain thickness
of'the FC, frequency singularities of the coefficients R(®w) and 7'(w) appear. As aresult,
there is a significant narrowing of the spectra of pulses and an increase in their duration.
There is also unidirectional Bragg reflection and amplification of pulses in the case of

broadband quasi-RT symmetry in the FC with material dispersion.

THEORY
Let a short optical pulse (wave packet) fall on the surface ofz =0 bounded one-

dimensional resonant PT-symmetric FC (Fig. 1)

E. (7,t)= 4, (x,t)exp(iky - ¥ —iogt), (1)
where 4, (x,t) is the complex slowly varying amplitude, ,k, = (k, sin 6, sk, cos0) 0 is
the angle of incidence, k, =®,/c, ®, is the center frequency,c is the speed of light,

s =+1 when falling on the left,s = —1 when falling on the right (Fig. 1b).
The dielectric permittivity of a PT-symmetric PC is described by a function of
the form
e(z,w) =g, +&'cos(hz)+&'(w)sin(hz) +ig"(w)sin(hz), (2)
whereg, +€'cos(hz) is a real even function,€'(®)sin(hz) and&"(w)sin(hz) are odd

functions of the real and imaginary parts of the dielectric permittivity due to the



resonant atoms, 2 = 2n/d 1is the modulus of the inverse lattice vector of the FC,d 1is
the lattice period. The appearance of the odd real summand in (2) is related to the
Kramers-Kronig relation, which follows from the principle of causality and inevitably
leads to the violation of the resonant medium RT-symmetry condition for the part of
the spectrum of the optical pulse [25]. However, the use of the broadband quasi-RT-
symmetry condition, when the pulse spectrum width is much smaller than the spectral
line width of the inhomogeneous broadening of the medium, allows us to minimize the
g'(0) << &"(w) summand in (2) and largely restore the RT-symmetric properties of the
medium for a quasi-monochromatic pulse [17, 20, 24].

The boundary value problem of dynamic Bragg diffraction is solved by the
spectral method near the Bragg condition in the two-wave approximation [20, 24]. The

field impulse (1) incident on the FC is represented as a Fourier integral

E. (x,t)= ]3 A, (Q)exp(ik x —iot)do, 3)

where 4., (Q) = 2L I A, (1) exp(iQt')dt' 1s the spectral amplitude of the incident pulse,
T

,t'=t—xsinf/c Q= —w, . From the Helmholtz equation
AE(F,®)+¢&(z,0)k*E(F,) =0, (4)

where k = /c, and boundary conditions at the boundaries of the FCz =0, L for each

spectral field component E(x,z,®) in the FC in the two-wave approximation (near the

Bragg condition) are analytically found the spectral amplitudes of direct 4,(€2) and



diffracted 4, (€2) waves and the corresponding dispersion relations for the z-projections

of the wave vectors g, (€2) and g,_(€2) = g,,(€2) — sh inside the FC:

g8t =sh/2+ (K I h)o? -, (5)
where the valueo. = (h/k*)[(gok* — qa,)"? —h /2] defines the deviation from the exact

Bragg conditiona =0 ;

g =[e'+iE(®)]/2=[¢'-€"(w)+ig"(®w)]/2,

- A o (6)
e =[e"—ig(w)]/2=[e'+€" (@) —ig'(®w)]/2

- coefficients in the Fourier series expansion of function (2).

As can be seen from expressions (5) and (6), PT-symmetric field modes
corresponding to real values of q(()lz’z) , can propagate in the FC near the Bragg condition
a <<1 only if the value of—ge_; >0 , i.e., at a sufficiently large gain in the medium
wheneg"(w)>¢’" . The inequalitye”(w)=¢" corresponds to a special point of
spontaneous decay of PT-symmetric solutions at a certain frequency ®,, , when the real
part of the resonant permittivity €'(0) =&€'(w,) =0 .

The fields of the direct E£,(x,z,¢) and diffracted £, (x,z,t) waves at any point in

the medium at each time instant are calculated using Fourier synthesis:

Eq(x,z,1) =
T ) . (2) : . (7)
= [ {4 (@ expli(ql) — /)21 + Ao (@) explill?) — s7)=1 expliqoyx — ieon)dQ2,

whereg =0,i are indices referring to the transmitted and diffracted waves,

respectively; =0 ,ifg=0 ,and f =h ,if. g=h



The wave amplitudes in the FC 4, ;, are found from the boundary conditions.

When the pulse falls on the left surfacez=0 , 1ie, at :k;,>0
Eog(z=0)= 4y + 4y, = 4,(Q) and
E,(z=L)=R /4y exp(zq(l)L) + Ry Ay, exp(iq(()?L) =0 . Hence, the following

expressions for the amplitudes 4, ¢, :

AOl — Aln(Q) , A02 — _PAln(Q)

1-P 1-P ®

where P =(R,/Ry)exp(i2¢), 20 =(q) — gL, R, = (a Fsyol —ge_, )/a_s
In the case of impulse falling on the right surface of FCz =L , i.e. atk,, <0 and

Go, <0 , the boundary conditions have the form ,
Ey(z=L) = Aoy exp(igy. L) + Ay expliqf? L) = 4, (Q) Ej (2 =0) = Ridyy + Rydpy =0

whence

m( )

Ay = A D expigfl1, ayy =~ LD

e exp(=iqy? L) ©)

Since in the case of wave packet collapsek =k, +€2/c andk,, =ksin0 , the

detuning parametera has the following explicit form
a =a (Q)=(ky+Q/c)e,—sin>0—h/2 .
The spectral amplitude coefficients of the transmission

T(Q) = Ay(L, Q)1 4, (Q) =[ A (™" + 4y (Q)e""1/ 4, () and  reflection
R, (Q)=4,(0,Q)/ 4,,(Q) =[A4,,(Q) + 4,,(Q)]/ 4,,(2) fields when radiation falls on

the left (ko> 0) surface z =0 of the FC are of the form (here 4,= R4 o)), s =1 ):



T(Q)= #[1 —ﬁj exp(isqg. L),
1-P R, (10)

_ R () ()
R (@)=L 1-explis(afy a2 )1} |

The case of radiation falling to the right (ko< 0) corresponds to the values =—1

in (10).

RESULTS AND DISCUSSION
For convenience of further analysis let's write down spectral amplitudes

coefficients of reflecting R(QQ) and passing7'(2) FC in a different form:

w

Q)= —, (11)
W cosp —iasimng
R (Q)=i e(lic)sm? :is(llc)sm(pT(Q), (12)
’ 2[W cosp —iasing] 2w

where

W=yl —ge, (13)

o=k*WL/h, (14)

'

indices "/, » " and signs "-" and "+" in (12) correspond to reflection coefficients at

radiation incident on the leftz=0 and rightz=L boundaries of the FC. The value

o =0q — 0y determines the deviation from the exact Bragg condition in terms of the
angleAO=0-0; =0 and frequencyQ =0, where

oo =2(Q/0y)ey cos* O, oy =ABg, sin 204, cosO, =Ly /2d /e,



sin0@z, =./g, /€, sinb € are the dielectric constant of the medium surrounding the

FC.

Note that the transmission coefficient7'(Q2) (11) is independent of the direction
of radiation incident on the FC, whereas the reflection coefficient R(Q) (12) varies
significantly up to ,R;(€2=0)=0 R.(Q2=0) >>1 - unidirectional reflection.

In the case of broadband quasi-RT symmetry, when the material dispersion is
small, i.e. &'(®) = €'(®,) = 0it follows from (6) that

—e_ =" -g%)/4 =¢*(c*-1)/4, (15)
where the valuec =€" /¢’ characterizes the proximity to OTo =1 .

From expressions (7), (11), and (12), we can see that to find the time dependence

of the fields of the passed £ (L,t) = Ef,(0,¢) and reflected £, (0,¢), Eg,(L,t) pulses,

it is necessary to calculate the following Fourier transform integrals for the passed and

reflected pulses (x =0 ):

o0

w

Er(= | ——— 4, (Q) exp(—iot)dQ,
_OOWCOS(p—zasm@ (16)
Ep, (0= [ i eAFOISNP 4 ) exp(—iowt)d €.

o 2[W cose —iosin@]

Phase (14)

o =KWL/h=(k*Nd | h)\a® +&>(c> —1)/4 17)
varies with the thickness L = Nd of the photonic crystal and the proximity parameter

to the OT o , here N is the number of periods.



As can be seen from expressions (11), (13)-(15), exactly in the OT, i.e., atc =1,
the passage coefficient (11) is equal to

1 1
cosw—i(a/@)singp cos@ +ising’

T(Q)= (18)

i.e.|T(QQ)|=1 at any valida . When deviating from the OT,c #1 , near the Bragg
condition|a |<< 1 , the functions 7(Q2) and R(Q2) have spectral singularities, or poles of

the functions (zeros in the denominators). Indeed, in the simplest case ,a =0 W #0 in

(11) we obtain T(Q)=1/cosep . Thus, there appear frequency singularities
T(€Q;),R(Q2;) —> o at frequencies(2; at phase values of
@=(n/2)2m+1), (19)
where m=0,1, 2,...
In the presence of singularity, for correct calculation of integrals in (16) it is
necessary to pass to integration in the complex plane of the complex variable, i.e., to

complex frequenciesQ=0Q"'+iQ" . As it is known [20, 26], it follows from the

principle of causality that in the integral
v(z,0) = j 7(z,7") exp(iot)dr’, (20)
0

relating the complex dielectric susceptibility x(z,®) and the real Green's function
%(z,1") , the response delay time of the system<t’ is a positive value,t'> 0 . Hence, in

the case of analytic Green's function and complex frequency ® = ®'+i®" , the function

v(z,®) in (20) will also be analytic ifImw >0 , i.e., in the upper complex half-plane

of the complex variable. Thus, the principle of causality can be observed only ifQ" > 0



, but this is a necessary but not a sufficient condition for the principle of causality to
hold. The poles of functions in the Q" > 0 field when calculating integrals (16) should
be taken into account in such a way that the integration contour does not include these

poles. In this case, the fields E;(¢), Ep(t) will not increase in the areas <0 . In other
words, the integration contour in (16) should be chosen above the polesQ’; of the
functions ,7'(Q) R(QQ) , Fig. 2, or, in addition to integration along the real axis Q = Q'

, it 1s necessary to bypass the poles and calculate the sums of deductions [27-29]:

00+iy
Er()= [ T(Q)4,(Q)exp(-iot)dQ,
—00+[y (21)
oo+iy
Egi )= [ Ry (Q)4,(Q)exp(-ion)dQ,
—00+7y

where , ,Q=0Q'+iy y> Q" —0<Q' <+o0 . Failure to fulfill this requirement leads to

violation of the principle of causality - the reflected radiation appears before the

incident pulse arrives at the medium. If the poles are in the lower half-plane,Q); <0 ,

then integration along the real axis is sufficientQ =Q' .

It follows from (17) and (19) that the first singularity point atp=m/2

corresponds to the critical value of FC thickness at the center frequency

L, =nhlk} \/ 4a” +&(c” —1) . Analytical and numerical calculations have shown
thatatL > L,, the polesQ’; of the functions7(Q2) and R(€2) lie in the upper half-plane,
i.e., in the lower half-plane. Q" >0,and atL < L, - in the lower half-plane, i.e.,QQ" <0

. The caseL > L, corresponds to the process of laser generation when the field

10



intensity in the FC increases rapidly in time. This leads to nonlinear interaction of
radiation with matter, which is not described in our linear model.

Fig. 3 shows plots of the moduli of the reflection spectra of pulses R,(Q ") (12) at
different parameters of proximity to the OTo , with all values ofo>1 , i.e., RT-
symmetric modes propagate in the FC. From the comparison of the plots, it can be seen
that atc =1.1 the spectrum of the reflected pulse is significantly narrower not only
compared to the spectrum of the incident pulse, curve 4, but also with respect to the

spectra at other close values ofc=1.11; 1.09 . The magnitude of the reflection

coefficient atc =1.1 increases manifold. This is due to the appearance of a frequency
singularity in the FC, since at the given value ofc and the chosen number of periods
N =109 the phase value in (11), (12) is close to the critical valuep ~m/2 .

The narrowing of the spectra of reflected and passed pulses under conditions of
frequency singularity must inevitably lead to the corresponding delay of pulses in time.

The parameters of the problem are chosen so that the conditionL < L,.(c) , i.e., the
poles of the functions R,(Q ) and7(Q2) lie in the lower half-plane for the FC.

Therefore, to determine the time dependence of the reflected and passed pulse
intensities, we can perform integration in (16) only along the real frequency axis. Fig.
4 shows plots of the intensities of the reflected Ir; ) ¢) =| Ewy ()(f)]*and passed I(¢) =|
E7%)[pulses at different valuesc . From comparing the plots, it can be seen that a small
change ofc by 1% leads to a multiple increase in pulse duration and gain. Compared
to the incident pulse, the duration of the reflected signal increases more than 20 times.

Similar significant changes in pulse intensity and duration are also observed when the

11



crystal thickness varies L near the critical value L. () with a constant valuec . Further
increase of L > L. (o) leads to the appearance of function poles in the upper half-plane

of complex frequencies, and the transition to the mode of laser generation of radiation
in FC occurs.

It is important to note that, similar to the case of monochromatic radiation, a
typical PT-symmetric effect - unidirectional Bragg reflection - is observed for the short
pulses under consideration. Thus, from the comparison of the plots in Fig. 4a and Fig.
4b, we can see that when the sign of the angle of incidence of the pulse on the structure
changes, the intensity of the reflected pulse radically decreases: Iz ) = ir» )/440. At
the same time, the intensity of the passing pulse /1) #)does not change.

Let us compare the obtained results with the case of interaction of radiation with
a conservative FC (without amplification and absorption) of finite thickness. It is
known that a transmission resonance [30] (or thickness oscillations) is observed at the
edge of the photonic forbidden zone in such a PC, when radiation in a narrow frequency
range is not reflected from the PC,R =0 , and the transmission coefficient is7 =1 .

This effect is related to the interference of backward (forward) Bloch waves in the
crystal and is observed when the phase difference of two Bloch waves (q(()lz) — q(()i))L =7

. In PT-symmetric FC at such a phase difference of PT- symmetric modes, a spectral

singularity and a significant growth of R, T — oo .

CONCLUSION
The above-described supermonochromatization and amplification of short pulses

in RT-symmetric FCs due to frequency singularity at certain values of the parameter

12



of proximity to the special pointo are also preserved in the case of dispersion at
broadband RT-symmetry of the medium. For short pulses in a dispersing medium, there
is also an asymmetry of pulse reflection at the change of sign of the Bragg angle of
incidence of radiation on the FC. Since the value of o is determined by the real and
imaginary parts of the dielectric permittivity, the sharp dependence of the reflection
and transmission spectra of short pulses ono detected near the frequency singularity
can be used in the development of new physical principles of creating devices for

controlling the parameters of short optical pulses, power limiters, optical sensors, etc.
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FIGURE CAPTIONS
Fig. 1. Even (curve /) and odd (curve 2) distribution functions of the real and imaginary
parts of the resonant permittivity in a PT-symmetric photonic crystal, dashed line 3 -

€0; pulse incidence patterns (b) on the left (k) ) >0) and right (k) - <o) on the FC.

Fig. 2. Illustration of two possible paths when integrating functions with spectral
singularity: integration along the real frequency axis at QQ'"> (Q;and along a path with a

pole bypass at(2;.

Fig. 3. Reflection spectra R,(Q)' ) at different values of the parameterc - 7 - 1.09, 2 -
1.10, 3 - 1.11; 4 - spectrum of the incident pulse 4;,(Q' ), the pulse falls to the right
(ko-< 0). Parameters: N = 109,Ao= 0.8 um, d= 0.5 pmgy= 1.3,¢ ' = 0.0254, Gaussian

pulse durationt = 0.1 ps.

Fig. 4. Intensities of reflected 1z, ()(y#) red curves I and 2), passed /1) ) (blue curves
3 and 4) and incident /4, #pulses (curves 5, right scale) for FC with N= 109 at values
of the proximity parameter to the OTc = 1.10 (curves / and 3) ando = 1.09 (curves 2
and 4): the pulse drops to the right (a) (ko< 0) and to the left (b) (ko> 0). The rest of

the parameters are as in the caption of Fig. 3.
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