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Abstract. The spectral method was used to solve the problem of interaction of short 

optical pulses with RT-symmetric photonic crystals under conditions of frequency 

singularity. It is shown that with a small deviation from the singular point of 

spontaneous decay of PT-symmetric field modes, a frequency singularity of the 

transmission and reflection coefficients of the structure arises. This leads to a 

significant narrowing of the pulse spectra and an increase in their amplitude and 

duration with unidirectional Bragg reflection. 
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INTRODUCTION 

After states with real eigenvalues of energy [1, 2] were found in non-hermitian 

quantum-mechanical systems with parity-time (parity-time, PT-symmetry), this idea 

was generalized to various physical wave processes - optical [3-6], acoustic [7], in 

coupled mechanical oscillators [8], in electric circuits [9] and others. In optics, in non-
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hermitian media with PT-symmetric complex function of dielectric permittivity

ε( ) ε ( )r r∗= −
   , i.e., in media with amplification and absorption (Fig. 1a), PT-

symmetric field modes with real values of wave numbers can propagate [3, 4]. 

Examples of periodic media of this type are described in detail, for example, in [10-

13]. An important feature of PT-symmetric media is the presence of a special point 

(SP) of spontaneous decay of PT-symmetric states [14, 15], in which the degeneracy 

of eigenwaves occurs and PT-unsymmetric modes propagating with amplification and 

absorption appear when the balance of amplification and absorption changes. In the 

vicinity of the OT, new optical phenomena are observed, such as: unidirectional Bragg 

reflection, or unidirectional invisibility [16-18]; increased transparency of passive PT-

symmetric media with an increase in their absorption capacity [14, 19]; asymmetric 

fission of short laser pulses at a special point in a dispersing RT-symmetric medium 

[20]; changes in the radiation structure of high-power diode lasers at the appearance of 

RT-symmetric modes in a laser resonator [21]; frequency singularity [22, 23]. 

However, the interaction of monochromatic waves or extended nanosecond pulses with 

PT-symmetric media has been considered so far. The propagation of short picosecond 

and subpicosecond pulses, especially near the frequency singularity, has remained 

poorly studied.  

This paper studies the interaction of short optical pulses with PT-symmetric 

periodic structures, or photonic crystals (PCs), in the case of frequency singularity of 

spectral reflection coefficients (ω)R  and passage (ω)T  , including material dispersion. 

The problem of linear dynamic Bragg pulse diffraction in FCs is solved by the spectral 

method in the two-wave approximation. The method of broadband quasi-RT symmetry 
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[24] was used to recover the PT-symmetric properties of the medium. It is shown that 

at the special point of decay of RT-symmetric field modes, the reflection and 

transmission coefficients of photonic crystals of finite thickness do not have 

singularities, and the durations of reflected and transmitted pulses change 

insignificantly. However, even at a small deviation from the OT at a certain thickness 

of the FC, frequency singularities of the coefficients (ω)R  and (ω)T  appear. As a result, 

there is a significant narrowing of the spectra of pulses and an increase in their duration. 

There is also unidirectional Bragg reflection and amplification of pulses in the case of 

broadband quasi-RT symmetry in the FC with material dispersion.  

 

THEORY  

Let a short optical pulse (wave packet) fall on the surface of 0z =  bounded one-

dimensional resonant PT-symmetric FC (Fig. 1)  

0 0( , ) ( , )exp( ω )in inE r t A x t ik r i t= ⋅ −


 

,     (1) 

where ( , )inA x t  is the complex slowly varying amplitude, , 0 0 0( sin θ, cosθ)k k sk=


θ  is 

the angle of incidence, 0 0ω / ,k c= 0ω  is the center frequency,c  is the speed of light,

1s = +  when falling on the left, 1s = −  when falling on the right (Fig. 1b).  

The dielectric permittivity of a PT-symmetric PC is described by a function of 

the form  

0( ,ω) ε ε cos( ) ε (ω)sin( ) ε (ω)sin( )z hz hz i hzε ′ ′ ′′= + + +  ,    (2) 

where 0ε ε cos( )hz′+  is a real even function,ε (ω)sin( )hz′  andε (ω)sin( )hz′′  are odd 

functions of the real and imaginary parts of the dielectric permittivity due to the 
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resonant atoms, 2π /h d=  is the modulus of the inverse lattice vector of the FC, d  is 

the lattice period. The appearance of the odd real summand in (2) is related to the 

Kramers-Kronig relation, which follows from the principle of causality and inevitably 

leads to the violation of the resonant medium RT-symmetry condition for the part of 

the spectrum of the optical pulse [25]. However, the use of the broadband quasi-RT-

symmetry condition, when the pulse spectrum width is much smaller than the spectral 

line width of the inhomogeneous broadening of the medium, allows us to minimize the

ε (ω) ε (ω)′ ′′<<   summand in (2) and largely restore the RT-symmetric properties of the 

medium for a quasi-monochromatic pulse [17, 20, 24].  

The boundary value problem of dynamic Bragg diffraction is solved by the 

spectral method near the Bragg condition in the two-wave approximation [20, 24]. The 

field impulse (1) incident on the FC is represented as a Fourier integral  

( , ) ( )exp( ω ) ωin in xE x t A ik x i t d
∞

−∞

= Ω −∫ ,     (3) 

where 1( ) ( )exp( )
2in inA A t i t dt
π

∞

−∞

′ ′ ′Ω = Ω∫  is the spectral amplitude of the incident pulse, 

, sinθ/ct t x′ = − 0ω ωΩ = −  . From the Helmholtz equation  

2( ,ω) ε( ,ω) ( ,ω) 0E r z k E r∆ + =
 

,     (4) 

where k =ω /c, and boundary conditions at the boundaries of the FC 0,z L=  for each 

spectral field component ( , ,ω)E x z  in the FC in the two-wave approximation (near the 

Bragg condition) are analytically found the spectral amplitudes of direct 0( )A Ω  and 
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diffracted ( )hA Ω  waves and the corresponding dispersion relations for the z-projections 

of the wave vectors 0 ( )zq Ω  and 0( ) ( )hz zq q shΩ = Ω −  inside the FC:  

(1,2) 2 2
1 10 / 2 ( / ) α ε εzq sh k h −= ± − ,     (5) 

where the value 2 2 2 1/ 2
0 0α ( / )[(ε ) / 2]xh k k q h= − −  defines the deviation from the exact 

Bragg conditionα 0=  ;  

1

1

ε [ε ε(ω)]/ 2 [ε ε (ω) ε (ω)]/ 2,
ε [ε ε(ω)]/ 2 [ε ε (ω) ε (ω)]/ 2

i i
i i−

′ ′ ′′ ′= + = − +
′ ′ ′′ ′= − = + −

  

  

     (6) 

- coefficients in the Fourier series expansion of function (2).  

As can be seen from expressions (5) and (6), PT-symmetric field modes 

corresponding to real values of (1,2)
0zq  , can propagate in the FC near the Bragg condition

α 1<<  only if the value of 1 1ε ε 0−− >  , i.e., at a sufficiently large gain in the medium 

whenε (ω) ε′′ ′>  . The inequalityε (ω) ε′′ ′=  corresponds to a special point of 

spontaneous decay of PT-symmetric solutions at a certain frequency 0ω  , when the real 

part of the resonant permittivity 0ε (ω) ε (ω ) 0′ ′= =   .  

The fields of the direct 0( , , )E x z t  and diffracted ( , , )hE x z t  waves at any point in 

the medium at each time instant are calculated using Fourier synthesis:  

(1) (2)
1 2 00 0

( , , )

{ ( )exp[ ( ) ] ( )exp[ ( ) ]}exp( ) ,

g

g g xz z

E x z t

A i q sf z A i q sf z iq x i t dω
∞

−∞

=

= Ω − + Ω − − Ω∫
(7) 

where 0,g h=  are indices referring to the transmitted and diffracted waves, 

respectively; 0f =  , if 0g =  , and f h=  , if . g h=  



6 
 

The wave amplitudes in the FC 01,02A  are found from the boundary conditions. 

When the pulse falls on the left surface 0z =  , i.e., at : 0 0zk >

0 01 02( 0) ( )inE z A A A= = + = Ω  and

(1) (2)
1 01 2 020 0( ) exp( ) exp( ) 0h z zE z L R A iq L R A iq L= = + =  . Hence, the following 

expressions for the amplitudes 01,02A  :  

01
( )

1
inAA

P
Ω

=
−

,  02
( )

1
inPAA

P
Ω

= −
−

    (8) 

where 1 2( / )exp( 2 )P R R i ϕ= , (1) (2)
0 02 ( )z zq q Lϕ = − , ( )2

1,2 1 1α α ε ε / ε sR s − −= − −  

In the case of impulse falling on the right surface of FC z L=  , i.e. at 0 0zk <  and

0 0zq <  , the boundary conditions have the form ,

(1) (2)
0 01 020 0( ) exp( ) exp( ) ( )inz zE z L A iq L A iq L A= = + = Ω 1 01 2 02( 0) 0hE z R A R A= = + =  , 

whence  

(1)
01 0

( ) exp( )
1
in

z
AA iq L

P
Ω

= −
−

, (2)
02 0

( ) exp( )
1

in
z

PAA iq L
P
Ω

= − −
−

  (9) 

Since in the case of wave packet collapse 0 /k k c= + Ω  and 0 sin θxk k=  , the 

detuning parameterα  has the following explicit form

2
0 0α α ( ) ( / ) ε sin θ / 2k c h= Ω = + Ω − −  .  

The spectral amplitude coefficients of the transmission

(1) ( 2)
0 0

0 01 02( ) ( , ) / ( ) [ ( ) ( ) ]/ ( )z ziq L iq L
in inT A L A A e A e AΩ = Ω Ω = Ω + Ω Ω  and reflection

1 2( ) (0, ) / ( ) [ ( ) ( )]/ ( )l h in h h inR A A A A AΩ = Ω Ω = Ω + Ω Ω  fields when radiation falls on 

the left (k0z> 0) surface 0z =  of the FC are of the form (here Ahj= RjA(0) (j), 1s =  ):  
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(1)1
0

2

(1) (2)1
, 0 0

1( ) 1 exp( ),
1

( ) 1 exp{ ( ) } .
1

z

l r z z

RT isq L
P R
RR is q q L

P

 
Ω = − −  

 Ω = − − −

     (10) 

The case of radiation falling to the right (k0z< 0) corresponds to the value 1s = −  

in (10).  

 

RESULTS AND DISCUSSION  

For convenience of further analysis let's write down spectral amplitudes 

coefficients of reflecting ( )R Ω  and passing ( )T Ω  FC in a different form:  

( )
cos αsin

WT
W iϕ ϕ

Ω =
−

,     (11) 

,
ε (1 σ)sin ε (1 σ)sin( ) ( )

2[ cos sin ] 2l rR i i T
W i W

ϕ ϕ
ϕ α ϕ

′ ′
Ω = = Ω

−
  ,    (12) 

where  

2
1 1α ε εW −= − ,       (13) 

2 /k WL hϕ = ,       (14) 

indices " ,l r  " and signs "-" and "+" in (12) correspond to reflection coefficients at 

radiation incident on the left 0z =  and right z L=  boundaries of the FC. The value

θα α αΩ= −  determines the deviation from the exact Bragg condition in terms of the 

angle θ θ θ 0B∆ = − =  and frequency 0Ω = , where 

2
0 0 θα 2( / ω )ε cos θ , α θε sin 2θ ,B V BVΩ = Ω = ∆ 0 0cosθ λ / 2 ε ,B d=
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0sin θ ε / ε sin θBV V B= εV  are the dielectric constant of the medium surrounding the 

FC.  

Note that the transmission coefficient ( )T Ω  (11) is independent of the direction 

of radiation incident on the FC, whereas the reflection coefficient ( )R Ω  (12) varies 

significantly up to , ( 0) 0lR Ω = = ( 0) 1rR Ω = >>  - unidirectional reflection.  

In the case of broadband quasi-RT symmetry, when the material dispersion is 

small, i.e. 0ε (ω) ε (ω ) 0′ ′≈ =  it follows from (6) that  

2 2 2 2
1 1ε ε (ε ε ) / 4 ε (σ 1) / 4− ′′ ′ ′− = − = − ,    (15) 

where the valueσ ε / ε′′ ′=   characterizes the proximity to OTσ 1=  .  

From expressions (7), (11), and (12), we can see that to find the time dependence 

of the fields of the passed ( , ) (0, )Tl TrE L t E t=  and reflected (0, ), ( , )Rl RrE t E L t  pulses, 

it is necessary to calculate the following Fourier transform integrals for the passed and 

reflected pulses ( 0x =  ):  

,

( ) ( )exp( ω ) ,
cos αsin

ε (1 σ)sin( ) ( )exp( ω ) .
2[ cos αsin ]

T in

Rl r in

WE t A i t d
W i

E t i A i t d
W i

ϕ ϕ

ϕ
ϕ ϕ

∞

−∞
∞

−∞

= Ω − Ω
−

′
= Ω − Ω

−

∫

∫


   (16) 

Phase (14)  

2 2 2 2 2/ ( / ) α ε (σ 1) / 4k WL h k Nd hϕ ′= = + −     (17) 

varies with the thickness L Nd=  of the photonic crystal and the proximity parameter 

to the OTσ  , here N  is the number of periods.  
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As can be seen from expressions (11), (13)-(15), exactly in the OT, i.e., atσ 1=  , 

the passage coefficient (11) is equal to  

2

1 1( )
cos sincos (α / α )sin

T
ii ϕ ϕϕ ϕ

Ω = =
±−

,    (18) 

i.e.| ( ) | 1T Ω =  at any validα  . When deviating from the OT,σ 1≠  , near the Bragg 

condition| α | 1<<  , the functions ( )T Ω  and ( )R Ω  have spectral singularities, or poles of 

the functions (zeros in the denominators). Indeed, in the simplest case ,α 0= 0W ≠  in 

(11) we obtain  ( ) 1/ cosT ϕΩ =  . Thus, there appear frequency singularities

( ), ( )j jT RΩ Ω → ∞  at frequencies jΩ  at phase values of  

(π / 2)(2 1)mϕ = + ,      (19) 

where 0,1, 2,...m =  

In the presence of singularity, for correct calculation of integrals in (16) it is 

necessary to pass to integration in the complex plane of the complex variable, i.e., to 

complex frequencies i′ ′′Ω = Ω + Ω  . As it is known [20, 26], it follows from the 

principle of causality that in the integral  

0

χ( ,ω) χ( , τ )exp( ωτ ) τz z i d
∞

′ ′ ′= ∫  ,     (20) 

relating the complex dielectric susceptibility χ( ,ω)z  and the real Green's function

χ( , τ )z ′  , the response delay time of the system τ′  is a positive value, τ 0′ >  . Hence, in 

the case of analytic Green's function and complex frequencyω ω ωi′ ′′= +  , the function

χ( ,ω)z  in (20) will also be analytic if Imω 0>  , i.e., in the upper complex half-plane 

of the complex variable. Thus, the principle of causality can be observed only if 0′′Ω >  
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, but this is a necessary but not a sufficient condition for the principle of causality to 

hold. The poles of functions in the 0′′Ω >  field when calculating integrals (16) should 

be taken into account in such a way that the integration contour does not include these 

poles. In this case, the fields ( ), ( )T RE t E t  will not increase in the area 0t <  . In other 

words, the integration contour in (16) should be chosen above the poles j′′Ω  of the 

functions , ( )T Ω ( )R Ω  , Fig. 2, or, in addition to integration along the real axis ′Ω = Ω  

, it is necessary to bypass the poles and calculate the sums of deductions [27-29]:  

γ

γ
γ

, ,
γ

( ) ( ) ( )exp( ω ) ,

( ) ( ) ( )exp( ω ) ,

i

T in
i

i

Rl r l r in
i

E t T A i t d

E t R A i t d

∞+

−∞+

∞+

−∞+

= Ω Ω − Ω

= Ω Ω − Ω

∫

∫

    (21) 

where , , γi′Ω = Ω + γ j′′> Ω ′−∞ < Ω < +∞  . Failure to fulfill this requirement leads to 

violation of the principle of causality - the reflected radiation appears before the 

incident pulse arrives at the medium. If the poles are in the lower half-plane, 0j′′Ω <  , 

then integration along the real axis is sufficient ′Ω = Ω  .  

It follows from (17) and (19) that the first singularity point at π / 2ϕ =  

corresponds to the critical value of FC thickness at the center frequency

2 2 2 2
0/ 4α ε (σ 1)crL h kπ ′= + −  . Analytical and numerical calculations have shown 

that at crL L>  the poles j′′Ω  of the functions ( )T Ω  and ( )R Ω  lie in the upper half-plane, 

i.e., in the lower half-plane. 0j′′Ω > , and at crL L<  - in the lower half-plane, i.e., 0j′′Ω <  

. The case crL L>  corresponds to the process of laser generation when the field 
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intensity in the FC increases rapidly in time. This leads to nonlinear interaction of 

radiation with matter, which is not described in our linear model.  

Fig. 3 shows plots of the moduli of the reflection spectra of pulses Rr(Ω ') (12) at 

different parameters of proximity to the OTσ  , with all values ofσ 1>  , i.e., RT-

symmetric modes propagate in the FC. From the comparison of the plots, it can be seen 

that atσ 1.1=  the spectrum of the reflected pulse is significantly narrower not only 

compared to the spectrum of the incident pulse, curve 4, but also with respect to the 

spectra at other close values ofσ 1.11; 1.09=  . The magnitude of the reflection 

coefficient atσ 1.1=  increases manifold. This is due to the appearance of a frequency 

singularity in the FC, since at the given value ofσ  and the chosen number of periods

109N =  the phase value in (11), (12) is close to the critical value π / 2ϕ ≈  .  

The narrowing of the spectra of reflected and passed pulses under conditions of 

frequency singularity must inevitably lead to the corresponding delay of pulses in time. 

The parameters of the problem are chosen so that the condition (σ)crL L<  , i.e., the 

poles of the functions Rr,l(Ω ) and ( )T Ω  lie in the lower half-plane for the FC. 

Therefore, to determine the time dependence of the reflected and passed pulse 

intensities, we can perform integration in (16) only along the real frequency axis. Fig. 

4 shows plots of the intensities of the reflected IRl,(r) (t) =| E(Rl) (,)r(t)|2and passed IT(t) =| 

ET
(t)|2pulses at different valuesσ  . From comparing the plots, it can be seen that a small 

change ofσ  by 1% leads to a multiple increase in pulse duration and gain. Compared 

to the incident pulse, the duration of the reflected signal increases more than 20 times. 

Similar significant changes in pulse intensity and duration are also observed when the 
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crystal thickness varies L  near the critical value (σ)crL  with a constant valueσ  . Further 

increase of (σ)crL L>  leads to the appearance of function poles in the upper half-plane 

of complex frequencies, and the transition to the mode of laser generation of radiation 

in FC occurs.  

It is important to note that, similar to the case of monochromatic radiation, a 

typical PT-symmetric effect - unidirectional Bragg reflection - is observed for the short 

pulses under consideration. Thus, from the comparison of the plots in Fig. 4a and Fig. 

4b, we can see that when the sign of the angle of incidence of the pulse on the structure 

changes, the intensity of the reflected pulse radically decreases: I(Rl) (t) = I(Rr) (t)/440. At 

the same time, the intensity of the passing pulse I(T) (t)does not change.  

Let us compare the obtained results with the case of interaction of radiation with 

a conservative FC (without amplification and absorption) of finite thickness. It is 

known that a transmission resonance [30] (or thickness oscillations) is observed at the 

edge of the photonic forbidden zone in such a PC, when radiation in a narrow frequency 

range is not reflected from the PC, 0R =  , and the transmission coefficient is 1T =  . 

This effect is related to the interference of backward (forward) Bloch waves in the 

crystal and is observed when the phase difference of two Bloch waves (1) (2)
0 0( )z zq q L π− =  

. In PT-symmetric FC at such a phase difference of PT- symmetric modes, a spectral 

singularity and a significant growth of ,R T → ∞  .  

CONCLUSION  

The above-described supermonochromatization and amplification of short pulses 

in RT-symmetric FCs due to frequency singularity at certain values of the parameter 
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of proximity to the special pointσ  are also preserved in the case of dispersion at 

broadband RT-symmetry of the medium. For short pulses in a dispersing medium, there 

is also an asymmetry of pulse reflection at the change of sign of the Bragg angle of 

incidence of radiation on the FC. Since the value ofσ  is determined by the real and 

imaginary parts of the dielectric permittivity, the sharp dependence of the reflection 

and transmission spectra of short pulses onσ  detected near the frequency singularity 

can be used in the development of new physical principles of creating devices for 

controlling the parameters of short optical pulses, power limiters, optical sensors, etc.  
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FIGURE CAPTIONS  

Fig. 1. Even (curve 1) and odd (curve 2) distribution functions of the real and imaginary 

parts of the resonant permittivity in a PT-symmetric photonic crystal, dashed line 3 -

ε0; pulse incidence patterns (b) on the left (k(0) (z) >0) and right (k(0) (z) <0) on the FC.  

 

Fig. 2. Illustration of two possible paths when integrating functions with spectral 

singularity: integration along the real frequency axis at Ω′′> Ωjand along a path with a 

pole bypass atΩj.  

 

Fig. 3. Reflection spectra Rr(Ω′ ) at different values of the parameterσ : 1 - 1.09, 2 - 

1.10, 3 - 1.11; 4 - spectrum of the incident pulse Ain(Ω′ ), the pulse falls to the right 

(k0z< 0). Parameters: N = 109,λ0= 0.8 μm, d= 0.5 μm,ε0= 1.3,ε ' = 0.0254, Gaussian 

pulse durationτ = 0.1 ps.  

 

Fig. 4. Intensities of reflected I(Rr) (,)(l)(t) (red curves 1 and 2), passed I(T) (t) (blue curves 

3 and 4) and incident I(in) (t)pulses (curves 5, right scale) for FC with N= 109 at values 

of the proximity parameter to the OTσ = 1.10 (curves 1 and 3) andσ = 1.09 (curves 2 

and 4): the pulse drops to the right (a) (k0z< 0) and to the left (b) (k0z> 0). The rest of 

the parameters are as in the caption of Fig. 3.  
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Fig. 1.  

 

 

Fig. 2  

 

 

Fig. 3. 
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Fig. 4.  
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