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Спектральным методом решена задача взаимодействия коротких оптических импульсов
с РТ-симметричными фотонными кристаллами в условиях частотной сингулярности. Показано,
что при малом отклонении от особой точки спонтанного распада РТ-симметричных мод поля
возникают частотные сингулярности коэффициентов пропускания и отражения структуры.
Это приводит к значительному сужению спектров импульсов и увеличению их амплитуды
и длительности при однонаправленном брэгговском отражении.
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ВВЕДЕНИЕ

После того, как в неэрмитовых квантово-
механических системах с симметрией четность-
время (parity-time, РТ-симметрией) были обнару-
жены состояния с действительными собственными
значениями энергии [1, 2], эта идея была обобщена
на различные физические волновые процессы —
оптические [3–6], акустические [7], в связанных
механических осцилляторах [8], в электрических
цепях [9] и др. В оптике в неэрмитовых средах
с РТ-симметричной комплексной функцией ди-
электрической проницаемости ε(𝑟) = ε∗(−𝑟), т. е.
в средах с усилением и поглощением (рис. 1а),
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Рис. 1. Четная (кривая 1) и нечетная (кривая 2)
функции распределения реальной и мнимой частей
резонансной диэлектрической проницаемости в PT-
симметричном фотонном кристалле (а), штриховая
линия 3 — ε0; схемы падения импульсов (б) слева
(𝑘0z > 0) и справа (𝑘0z < 0) на ФК.

могут распространяться РТ-симметричные моды
поля с действительными значениями волновых
чисел [3, 4]. Примеры периодических сред такого
типа детально описаны, например, в работах
[10–13]. Важной особенностью РТ-симметричных
сред является наличие особой точки (ОТ) спонтан-
ного распада РТ-симметричных состояний [14, 15],
в которой происходит вырождение собственных
волн и при изменении баланса усиления и погло-
щения появляются РТ-несимметричные моды,
распространяющиеся с усилением и поглощени-
ем. Вблизи ОТ наблюдаются новые оптические
явления, такие как: однонаправленное отраже-
ние Брэгга, или однонаправленная невидимость
[16–18]; повышение прозрачности пассивных
РТ-симметричных сред при росте их поглощаю-
щей способности [14, 19]; асимметричное деление
коротких лазерных импульсов в особой точке
в диспергирующей РТ-симметричной среде [20];
изменение структуры излучения мощных диодных
лазеров при возникновении РТ-симметричных
мод в лазерном резонаторе [21]; частотная сингу-
лярность [22, 23]. Однако до настоящего времени
рассматривалось главным образом взаимодей-
ствие монохроматических волн или протяженных
наносекундных импульсов с РТ-симметричными
средами. Распространение же коротких пикосе-
кундных и субпикосекундных импульсов, особен-
но вблизи частотной сингулярности, оставалось
мало изученным.
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В настоящей статье исследуется взаимодей-
ствие коротких оптических импульсов с РТ-
симметричными периодическими структурами,
или фотонными кристаллами (ФК), в случае
частотной сингулярности спектральных коэффи-
циентов отражения 𝑅(ω) и прохождения 𝑇(ω),
в том числе с учетом материальной дисперсии.
Задача линейной динамической брэгговской ди-
фракции импульсов в ФК решена спектральным
методом в двухволновом приближении. Для вос-
становления РТ-симметричных свойств среды
использован метод широкополосной квази-РТ-
симметрии [24]. Показано, что в особой точке рас-
пада РТ-симметричных мод поля коэффициенты
отражения и прохождения фотонных кристаллов
конечной толщины не имеют сингулярностей,
и длительности отраженных и проходящих им-
пульсов изменяются незначительно. Однако, даже
при малом отклонении от ОТ при определенной
толщине ФК возникают частотные сингулярно-
сти коэффициентов 𝑅(ω) и 𝑇(ω). В результате
возникает значительное сужение спектров импуль-
сов и увеличение их длительности. Имеет место
также однонаправленное брэгговское отражение
и усиление импульсов в случае широкополос-
ной квази-РТ-симметрии в ФК с материальной
дисперсией.

ТЕОРИЯ
Пусть на поверхность 𝑧 = 0 ограниченного од-

номерного резонансного РТ-симметричного ФК
(рис. 1) падает короткий оптический импульс (вол-
новой пакет)

𝐸in(𝑟, 𝑡) = 𝐴in(𝑥, 𝑡) exp (𝑖𝑘0 ⋅ 𝑟 − 𝑖ω0𝑡) , (1)
где 𝐴in(𝑥, 𝑡)— комплексная медленно меняющаяся
амплитуда, 𝑘0 = (𝑘0 sin θ, 𝑠𝑘0 cos θ), θ — угол паде-
ния, 𝑘0 = ω0/𝑐, ω0 — центральная частота, 𝑐 — ско-
рость света, 𝑠 = +1 при падении слева, 𝑠 = −1 при
падении справа (рис. 1б).

Диэлектрическая проницаемость РТ-симмет-
ричного ФК описывается функцией вида

ε(𝑧, ω) = ε0 + ε
′ cos(ℎ𝑧) + ̃ε′(ω) sin(ℎ𝑧) +

+ 𝑖 ̃ε >> (ω) sin(ℎ𝑧),
(2)

где ε0 + ε′ cos(ℎ𝑧) — действительная четная функ-
ция, ̃ε′(ω) sin(ℎ𝑧) и ̃ε″(ω) sin(ℎ𝑧)— нечетные функ-
ции действительной и мнимой частей диэлектри-
ческой проницаемости, обусловленные резонанс-
ными атомами, ℎ = 2π/𝑑 — модуль вектора обрат-
ной решетки ФК, 𝑑 — период решетки. Появление
нечетного действительного слагаемого в (2) свя-
зано с соотношением Крамерса–Кронига, кото-
рое следует из принципа причинности и неминуе-
мо приводит к нарушению условия РТ-симметрии
резонансной среды для части спектра оптическо-
го импульса [25]. Однако использование условия
широкополосной квази-РТ-симметрии, когда ши-

рина спектра импульса гораздо меньше, чем ши-
рина спектральной линии неоднородного ушире-
ния среды, позволяет минимизировать слагаемое
̃ε′(ω) ≪ ̃ε″(ω) в (2) и в значительной степени вос-

становить РТ-симметричные свойства среды для
квазимонохроматического импульса [17, 20, 24].

Граничная задача динамической брэгговской
дифракции решается спектральным методом вбли-
зи условия Брэгга в двухволновом приближении
[20, 24]. Падающий на ФК импульс поля (1) пред-
ставляется в виде интеграла Фурье

𝐸in(𝑥, 𝑡) =

∞

∫

−∞
𝐴in(Ω) exp(𝑖𝑘x𝑥 − 𝑖ω𝑡)𝑑ω, (3)

где 𝐴in(Ω) =
1

2π

∞

∫

−∞
𝐴in(𝑡

′) exp (𝑖Ω𝑡′) 𝑑𝑡′ — спек-

тральная амплитуда падающего импульса, 𝑡′ = 𝑡−
−𝑥 sin θ/𝑐, Ω = ω − ω0. Из уравнения Гельмгольца

Δ𝐸(𝑟, ω) + ε(𝑧, ω)𝑘2𝐸(𝑟, ω) = 0, (4)

где 𝑘 = ω/𝑐, и граничных условий на границах ФК
𝑧 = 0, 𝐿 для каждой спектральной компоненты по-
ля 𝐸(𝑥, 𝑧, ω) в ФК в двухволновом приближении
(вблизи условия Брэгга) аналитически находятся
спектральные амплитуды прямых 𝐴0(Ω) и дифра-
гированных 𝐴h(Ω) волн и соответствующие дис-
персионные соотношения для z-проекций волно-
вых векторов 𝑞0z(Ω) и 𝑞hz(Ω) = 𝑞0z(Ω) − 𝑠ℎ внут-
ри ФК:

𝑞
(1,2)
0z =

𝑠ℎ

2
± (

𝑘2

ℎ
)

√

α2 − ε1ε−1, (5)

где величина α =
ℎ

𝑘2 (
(ε0𝑘

2 − 𝑞2
0x)

1/2
−
ℎ

2
) определя-

ет отклонение от точного брэгговского условия
α = 0;

ε1 =
ε′ + 𝑖 ̃ε(ω)

2
=
ε′ − ̃ε″(ω) + 𝑖 ̃ε′(ω)

2
,

ε−1 =
ε′ − 𝑖 ̃ε(ω)

2
=
ε′ + ̃ε″(ω) − 𝑖 ̃ε′(ω)

2

(6)

— коэффициенты в разложении функции (2) в ряд
Фурье.

Как видно из выражений (5) и (6), РТ-сим-
метричные моды поля, соответствующие действи-
тельным величинам 𝑞

(1,2)
0z , могут распространять-

ся в ФК вблизи брэгговского условия α ≪ 1 толь-
ко в том случае, если величина −ε1ε−1 > 0, т. е.
при достаточно большом усилении в среде, когда
̃ε″(ω) > ε′. Равенство ̃ε″(ω) = ε′ соответствует осо-

бой точке спонтанного распада РТ-симметричных
решений при определенной частоте ω0, когда дей-
ствительная часть резонансной диэлектрической
проницаемости ̃ε′(ω) = ̃ε′(ω0) = 0.

Поля прямой 𝐸0(𝑥, 𝑧, 𝑡) и дифрагированной
𝐸h(𝑥, 𝑧, 𝑡) волн в любой точке среды в каждый
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момент времени вычисляются с помощью фурье-
синтеза:

𝐸g(𝑥, 𝑧, 𝑡) =

∞

∫

−∞
{𝐴g1(Ω) exp [𝑖 (𝑞(1)0z − 𝑠𝑓) 𝑧] +

+ 𝐴g2(Ω) exp [𝑖 (𝑞(2)0z − 𝑠𝑓) 𝑧]}×

× exp (𝑖𝑞0x𝑥 − 𝑖ω𝑡) 𝑑Ω,

(7)

где 𝑔 = 0, ℎ — индексы, относящиеся к проходящей
и дифрагированной волнам, соответственно; 𝑓 = 0,
если 𝑔 = 0, и 𝑓 = ℎ, если 𝑔 = ℎ.

Амплитуды волн в ФК 𝐴01,02 находятся из гра-
ничных условий. При падении импульса на левую
поверхность 𝑧 = 0, т. е. при 𝑘0z > 0: 𝐸0(𝑧 = 0) = 𝐴01+

+𝐴02 = 𝐴in(Ω) и 𝐸h(𝑧 = 𝐿) = 𝑅1𝐴01 exp (𝑖𝑞(1)0z 𝐿) +

+𝑅2𝐴02 exp (𝑖𝑞(2)0z 𝐿) = 0. Отсюда легко получить
следующие выражения для амплитуд 𝐴01,02:

𝐴01 =
𝐴in(Ω)

1 − 𝑃
, 𝐴02 = −

𝑃𝐴in(Ω)

1 − 𝑃
, (8)

где 𝑃 = (𝑅1/𝑅2) exp(𝑖2φ), 2φ = (𝑞(1)0z − 𝑞
(2)
0z ) 𝐿, 𝑅1,2 =

= − (α ∓ 𝑠
√
α2 − ε1ε−1) /ε−s.

В случае падения импульса на правую поверх-
ность ФК 𝑧 = 𝐿, т. е. при 𝑘0z < 0 и 𝑞0z < 0, граничные
условия имеют вид 𝐸0(𝑧 = 𝐿) = 𝐴01 exp (𝑖𝑞(1)0z 𝐿) +

+𝐴02 exp (𝑖𝑞(2)0z 𝐿) = 𝐴in(Ω), 𝐸h(𝑧 = 0) = 𝑅1𝐴01+

+𝑅2𝐴02 = 0, откуда

𝐴01 =
𝐴in(Ω)

1 − 𝑃
exp (−𝑖𝑞(1)0z 𝐿) ,

𝐴02 =
𝑃𝐴in(Ω)

1 − 𝑃
exp (−𝑖𝑞(2)0z 𝐿) .

(9)

Так как в случае падения волнового паке-
та 𝑘 = = 𝑘0 + Ω/𝑐 и 𝑘0x = 𝑘 sin θ, то параметр от-
стройки α имеет следующий явный вид α = α(Ω) =

= (ℎ/𝑘2) [(𝑘0 + Ω/𝑐)
√
ε0 − sin2 θ − ℎ/2].

Спектральные амплитудные коэффици-
енты прохождения 𝑇(Ω) = 𝐴0(𝐿,Ω)/𝐴in(Ω) =

= [𝐴01(Ω)𝑒
𝑖𝑞
(1)
0z 𝐿 + 𝐴02(Ω)𝑒

𝑖𝑞
(2)
0z 𝐿] /𝐴in(Ω)

и отражения 𝑅l(Ω) = 𝐴h(0, Ω)/𝐴in(Ω) =
= [𝐴h1(Ω) + 𝐴h2(Ω)] /𝐴in(Ω) полей при паде-
нии излучения на левую (𝑘0z > 0) поверхность 𝑧 = 0
ФК имеют вид (здесь 𝐴hj = 𝑅j𝐴0j, 𝑠 = 1):

𝑇(Ω) =
1

1 − 𝑃
(1 −

𝑅1

𝑅2
) exp (𝑖𝑠𝑞(1)0z 𝐿) ,

𝑅l,r(Ω) =
𝑅1

1 − 𝑃
[1 − exp {𝑖𝑠 (𝑞(1)0z − 𝑞

(2)
0z ) 𝐿}] .

(10)

Случаю падения излучения справа (𝑘0z < 0) со-
ответствует значение 𝑠 = −1 в (10).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Для удобства дальнейшего анализа запишем

спектральные амплитудные коэффициенты отра-
жения 𝑅(Ω) и прохождения ФК в иной форме:

𝑇(Ω) =
𝑊

𝑊 cosφ − 𝑖α sinφ
, (11)

𝑅l,r(Ω) = 𝑖
ε′(1 ∓ σ) sinφ

2 [𝑊 cosφ − 𝑖α sinφ]
=

= 𝑖
ε′(1 ∓ σ) sinφ

2𝑊
𝑇(Ω),

(12)

где

𝑊 =
√

α2 − ε1ε−1, (13)

φ = 𝑘2𝑊𝐿/ℎ, (14)
индексы «𝑙, 𝑟» и знаки «−» и «+» в (12) соответствуют
коэффициентам отражения при падении излуче-
ния на левую 𝑧 = 0 и правую 𝑧 = 𝐿 границу ФК. Ве-
личина α = αΩ − αθ определяет отклонение от точ-
ного брэгговского условия по углу Δθ = θ − θB = 0
и частоте Ω = 0, где αΩ = 2 (Ω/ω0) ε0 cos2 θB,
αθ = ΔθεV sin 2θBV, cos θB = λ0/2𝑑

√
ε0, sin θBV =

=
√
ε0 − /εV sin θB, εV — диэлектрическая проницае-

мость среды, окружающей ФК.
Отметим, что коэффициент прохождения

𝑇(Ω) (11) не зависит от направления падения
излучения на ФК, тогда как коэффициент отра-
жения 𝑅(Ω) (12) изменяется значительно вплоть
до 𝑅l(Ω = 0) = 0, 𝑅l(Ω = 0) ≫ 1 — однонаправлен-
ное отражение.

В случае широкополосной квази-РТ-симмет-
рии, когда материальная дисперсия мала, т. е.
̃ε′(ω) ≈ ̃ε′(ω0) = 0, из (6) следует, что

−ε1ε−1 = ( ̃ε
″2 − ε′2) /4 = ε′2 (σ2 − 1) /4, (15)

где величина σ = ̃ε″/ε′ характеризует близость к ОТ
σ = 1.

Из выражений (7), (11) и (12) видно, что для
нахождения временной зависимости полей про-
шедшего 𝐸Tl(𝐿, 𝑡) = 𝐸Tr(0, 𝑡) и отраженного 𝐸Rl(0.𝑡),
𝐸Rl(𝐿, 𝑡) импульсов необходимо вычислить следую-
щие интегралы преобразования Фурье для прохо-
дящего и отраженного импульсов (𝑥 = 0):

𝐸T(𝑡) =

∞

∫

−∞

𝑊

𝑊 cosφ − 𝑖α sinφ
×

×𝐴in(Ω) exp(−𝑖ω𝑡)𝑑Ω,

𝐸Rl,r(𝑡) =

∞

∫

−∞
𝑖

ε′(1 ∓ σ) sinφ
2 [𝑊 cosφ − 𝑖α sinφ]

×

×𝐴in(Ω) exp(−𝑖ω𝑡)𝑑Ω.

(16)

Фаза (14)

φ =
𝑘2𝑊𝐿

ℎ
=
𝑘2𝑁𝑑

ℎ

√

α2 +
ε′2 (σ2 − 1)

4
(17)
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варьируется при изменении толщины 𝐿 = 𝑁𝑑 фо-
тонного кристалла и параметра близости к ОТ σ,
здесь 𝑁 — число периодов.

Как видно из выражений (11), (13)–(15), точно
в ОТ, т. е. при σ = 1, коэффициент прохождения (11)
равен

𝑇(Ω)=
1

cosφ − 𝑖 (α/
√
α2) sinφ

=
1

cosφ ± 𝑖 sinφ
, (18)

т. е. ∣𝑇(Ω)∣ = 1 при любых действительных α.
При отклонении от ОТ, σ ≠ 1, вблизи условия
Брэгга ∣α∣ ≪ 1 у функций 𝑇(Ω) и 𝑅(Ω) появля-
ются спектральные сингулярности, или полюсы
функций (нули в знаменателях). Действительно,
в простейшем случае α = 0, 𝑊 ≠ 0 в (11) получаем
𝑇(Ω) = 1/ cosφ. Таким образом, возникают частот-
ные сингулярности𝑇(Ωj), 𝑅(Ωj) → ∞на частотахΩj
при значениях фаз

φ =
π

2
(2𝑗 + 1), (19)

где 𝑗 = 0, 1, 2, …

В случае наличия сингулярности, для коррект-
ного вычисления интегралов в (16) необходимо пе-
рейти к интегрированию в комплексной плоскости
комплексной переменной, т. е. к комплексным ча-
стотам Ω = Ω′ + 𝑖Ω″. Как известно [20, 26], из прин-
ципа причинности следует, что в интеграле

χ(𝑧, ω) =

∞

∫

0

̃χ (𝑧, 𝑡′) exp (𝑖ωτ′) 𝑑τ′, (20)

связывающем комплексную диэлектрическую вос-
приимчивость χ(𝑧, ω) и действительную функцию
Грина ̃χ (𝑧, τ′), время задержки отклика систе-
мы τ′ есть положительная величина, τ′ > 0. Следо-
вательно, в случае аналитической функции Гри-
на и комплексной частоты ω = ω′ + 𝑖ω″ функция
χ(𝑧, ω) в (20) также будет аналитической, если
Imω > 0, т. е. в верхней комплексной полуплос-
кости комплексной переменной. Таким образом,
принцип причинности может соблюдаться только
при Ω″ > 0, однако это необходимое, но не доста-
точное условие для соблюдения принципа причин-
ности. Полюсы функций в области Ω″ > 0 при вы-
числении интегралов (16) следует учитывать таким
образом, чтобы контур интегрирования не вклю-
чал эти полюсы. В этом случае поля 𝐸T(𝑡), 𝐸𝑅(𝑡)
не будут возрастать в области 𝑡 < 0. Иными слова-
ми, контур интегрирования в (16) следует выбирать
выше полюсов Ω″

j функций 𝑇(Ω), 𝑅(Ω), рис. 2, ли-
бо, помимо интегрирования вдоль действительной
оси Ω = Ω′, необходимо осуществить обход полю-
сов и вычислить суммы вычетов [27–29]:

Re(Ω)

Im(Ω)

Ωj

Ω" > Ω"j
Полюс

Рис. 2. Иллюстрация двух возможных путей при ин-
тегрировании функций со спектральной сингулярно-
стью: интегрирование вдоль действительной оси ча-
стот приΩ″ > Ωj и вдоль траектории с обходом полюса
в точке Ωj.

𝐸T(𝑡) =

∞+𝑖γ

∫

−∞+𝑖γ
𝑇(Ω)𝐴in(Ω) exp(−ω𝑡)𝑑Ω,

𝐸Rl,r(𝑡) =

∞+𝑖γ

∫

−∞+𝑖γ
𝑅l,r(Ω)𝐴in(Ω) exp(−ω𝑡)𝑑Ω,

(21)

где Ω = Ω′ + 𝑖γ, γ > Ω″
j , −∞ < Ω′ < +∞. Несоблю-

дение этого требования приводит к нарушению
принципа причинности — отраженное излучение
появляется раньше, чем на среду приходит падаю-
щий импульс. Если же полюсы находятся в нижней
полуплоскости, Ω″

j < 0, то достаточно интегриро-
вания вдоль вещественной оси Ω = Ω′.

Из (17) и (19) следует, что первой точке син-
гулярности при φ = π/2 соответствует критиче-
ское значение толщины ФК на центральной ча-
стоте 𝐿cr = πℎ/𝑘

2
0

√
4α2 + ε′2 (σ2 − 1). Аналитические

и численные расчеты показали, что при 𝐿 > 𝐿cr по-
люсы Ω″

j функций 𝑇(Ω) и 𝑅(Ω) лежат в верхней по-
луплоскости, т. е. Ω″

j > 0, а при 𝐿 < 𝐿cr — в нижней
полуплоскости, Ω″

j < 0. Случай 𝐿 > 𝐿cr соответству-
ет процессу лазерной генерации, когда интенсив-
ность поля в ФК быстро возрастает во времени. Это
приводит к нелинейному взаимодействию излуче-
ния с веществом, которое не описывается в нашей
линейной модели.

На рис. 3 представлены графики модулей спек-
тров отражения импульсов 𝑅r(Ω

′) (12) при раз-
личных параметрах близости к ОТ σ , причем
все значения σ > 1, т. е. в ФК распространяют-
ся РТ-симметричные моды. Из сравнения графи-
ков видно, что при σ = 1.1 спектр отраженного
импульса значительно уже не только по сравне-
нию со спектром падающего импульса, кривая 4,
но и по отношению к спектрам при других близ-
ких значениях σ = 1.11; 1.09. Величина коэффици-
ента отражения при σ = 1.1 многократно увеличи-
вается. Это связано с появлением в ФК частот-
ной сингулярности, поскольку при данном значе-
нии σ и выбранном числе периодов 𝑁 = 109 ве-
личина фазы в (11), (12) близка к критическому
значению φ ≈ π/2.
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Рис. 3. Спектры отражения𝑅r(Ω′) при различных зна-
чениях параметра σ: 1 — 1.09, 2 — 1.10, 3 — 1.11; 4 —
спектр падающего импульса 𝐴in(Ω′), импульс пада-
ет справа (𝑘0z < 0). Параметры: 𝑁 = 109, λ0 = 0.8 мкм,
𝑑 = 0.5 мкм, ε0 = 1.3, ε′ = 0.0254, длительность гауссо-
ва импульса τ = 0.1 пс.

Сужение спектров отраженных и прошедших
импульсов в условиях частотной сингулярности
неминуемо должно приводить к соответствующе-
му затягиванию импульсов во времени. Парамет-
ры задачи выбраны таким образом, чтобы для ФК
выполнялось условие 𝐿 < 𝐿cr(σ), т. е. полюсы функ-
ций 𝑅r,l(Ω) и 𝑇(Ω) лежали в нижней полуплоско-
сти. Поэтому для определения временной зависи-
мости интенсивностей отраженного и прошедшего
импульсов можно проводить интегрирование в (16)
только по действительной оси частот. На рис. 4
представлены графики интенсивностей отражен-
ных 𝐼𝑅l,r

(𝑡) = ∣𝐸𝑅l,r
(𝑡)∣2 и прошедших 𝐼T(𝑡) = ∣𝐸T(𝑡)∣

2

импульсов при различных значениях σ. Из сравне-
ния графиков видно, что малое изменение σ на 1%
приводит к многократному увеличению длительно-

сти и усилению импульсов. По сравнению с пада-
ющим импульсом длительность отраженного сиг-
нала возрастает более чем в 20 раз. Аналогичные
значительные изменения интенсивности и дли-
тельности импульсов наблюдаются и при вариации
толщины кристалла 𝐿 вблизи критического значе-
ния𝐿cr(σ)при постоянной величинеσ. Дальнейшее
увеличение𝐿 > 𝐿cr(σ)приводит к появлению полю-
сов функций в верхней полуплоскости комплекс-
ных частот, происходит переход к режиму лазерной
генерации излучения в ФК.

Важно отметить, что, подобно случаю моно-
хроматического излучения, для рассматриваемых
коротких импульсов наблюдается типичный РТ-
симметричный эффект — однонаправленное брэг-
говское отражение. Так, из сравнения графиков
на рис. 4а и рис. 4б видно, что при смене знака уг-
ла падения импульса на структуру интенсивность
отраженного импульса радикально уменьшается:
𝐼𝑅l
(𝑡) = 𝐼𝑅r

(𝑡)/440. При этом интенсивность прохо-
дящего импульса 𝐼T(𝑡) не изменяется.

Сравним полученные результаты со случаем
взаимодействия излучения с консервативным ФК
(без усиления и поглощения) конечной толщины.
Известно, что на краю фотонной запрещенной зо-
ны в таком ФК наблюдается резонанс пропуска-
ния [30] (или толщинные осцилляции), когда из-
лучение в узком частотном диапазоне не отража-
ется от ФК, 𝑅 = 0, а коэффициент прохождения
𝑇 = 1. Этот эффект связан с интерференцией об-
ратных (прямых) блоховских волн в кристалле и на-
блюдается при разности фаз двух блоховских волн
(𝑞
(1)
0z − 𝑞

(2)
0z ) 𝐿 = π. В РТ-симметричном ФК при та-

кой разности фаз РТ-симметричных мод возникает
спектральная сингулярность и значительный рост
𝑅, 𝑇 → ∞.
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Рис. 4. Интенсивности отраженных 𝐼𝑅r,l
(𝑡) (красные кривые 1 и 2), прошедших 𝐼T(𝑡) (синие кривые 3 и 4) и падающих

импульсов 𝐼in(𝑡) (кривые 5, правая шкала) для ФК с 𝑁 = 109 при значениях параметра близости к ОТ σ = 1.10 (кри-
вые 1 и 3) и σ = 1.09 (кривые 2 и 4): импульс падает справа (а) (𝑘0z < 0) и слева (б) (𝑘0z > 0). Остальные параметры как
в подписи к рис. 3.
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ЗАКЛЮЧЕНИЕ
Описанные выше сверхмонохроматизация

и усиление коротких импульсов в РТ-симмет-
ричных ФК за счет частотной сингулярности
при определенных значениях параметра близости
к особой точке σ сохраняются и в случае учета
дисперсии при широкополосной РТ-симметрии
среды. Для коротких импульсов в диспергирующей
среде имеет место также асимметрия отражения
импульсов при смене знака брэгговского угла
падения излучения на ФК. Поскольку величи-
на определяется реальной и мнимой частями
диэлектрической проницаемости, то обнару-
женная вблизи частотной сингулярности резкая
зависимость спектров отражения и прохождения
коротких импульсов от σ может быть использована
при разработке новых физических принципов
создания устройств для управления параметрами
коротких оптических импульсов, ограничителей
мощности, оптических сенсоров и т. п.

Исследование выполнено в рамках государ-
ственного задания МГУ имени М. В. Ломоносова.
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Optical pulses in a non-Hermitian medium near a singularity
V. A. Bushuev, B. I. Mantsyzov∗

Lomonosov Moscow State University, Moscow, 119991 Russia
∗e-mail: bmantsyzov@gmail.com

The spectral method was used to solve the problem of interaction of short optical pulses with RT-symmetric
photonic crystals under conditions of frequency singularity. It is shown that with a small deviation
from the exceptional point of spontaneous decay of PT-symmetric field modes, a frequency singularity
of the transmission and reflection coefficients of the structure arises. This leads to a significant narrowing
of the pulse spectra and an increase in their amplitude and duration with unidirectional Bragg reflection.

Keywords: RT-symmetry, spectral singularity, short optical pulses, dynamic Bragg diffraction

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025

mailto: bmantsyzov@gmail.com

	Оптические импульсы в неэрмитовой среде вблизи сингулярности

