УДК 537.622.4:537.311.322

РОЛЬ ЗАМЕЩЕНИЙ МАРГАНЦЕМ КАТИОНОВ ЖЕЛЕЗА В ИЗМЕНЕНИИ МАГНИТНЫХ И ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК МАГНИТОЭЛЕКТРИКОВ $BiFe_{1-x}Mn_xO_3$ (x=0.05 и 0.15)

© 2023 г. Т. Н. Тарасенко^{1, *}, В. И. Михайлов¹, З. Ф. Кравченко¹, В. В. Бурховецкий¹, А. И. Изотов¹, Ю. А. Легенький², А. М. Живулько³, К. И. Янушкевич³, С. С. Аплеснин⁴

¹Государственное бюджетное учреждение "Донецкий физико-технический институт имени А.А. Галкина", Донецк, Россия ²Государственное образовательное учреждение высшего профессионального образования "Донецкий национальный университет", Донецк, Россия ³Государственное научно-производственное объединение

"Научно-практический центр Национальной академии наук Беларуси по материаловедению", Минск, Беларусь ⁴Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени М.Ф. Решетнева", Красноярск, Россия

> *E-mail: t.n.tarasenko@mail.ru Поступила в редакцию 28.09.2022 г. После доработки 27.10.2022 г. Принята к публикации 25.11.2022 г.

Образцы системы твердых растворов ${
m BiFe}_{1-x}{
m Mn}_x{
m O}_3$ (x=0.05 и 0.15) являются ферромагнетиками и полупроводниками. Увеличение x приводит к уменьшению температуры Кюри ($T_C=605$ К для x=0.05 и 550 К для x=0.15) и росту диэлектрической проницаемости ε при комнатной температуре. Уменьшение значения удельной намагниченности с увеличением x связано с перераспределением объемов ферромагнитной и антиферромагнитной фаз.

DOI: 10.31857/S0367676522700727, **EDN:** HGNMYZ

ВВЕДЕНИЕ

Феррит висмута BiFeO₃ (BFO), благодаря достаточно высоким температурам сегнетоэлектрического ($T_C = 1083~{\rm K}$) и магнитного ($T_N = 643~{\rm K}$) упорядочений, представляет практический интерес при разработке магнитооптических материалов. Наличие пространственно модулированной спиновой структуры (период циклоиды 62 нм) в BFO не позволяет реализовать в устройствах микроэлектроники линейный магнитоэлектрический эффект и спонтанную намагниченность [1, 2].

Сегнетоэлектрические свойства BFO, также как и для мультиферроика $BiMnO_3$ [3], определяются наличием изолированной пары ("lone pair") $6s^2$ -электронов на внешней электронной оболочке ионов Bi^{3+} , занимающих A-узлы перовскитной ячейки ABO_3 . Такая стереохимически активная пара $6s^2$ -электронов ответственна за смещение иона Bi^{3+} вдоль $\langle 111 \rangle$ оси перовскита, что приводит к изменению расстояний между ионом висмута и ионами кислорода и исчезновению центра симметрии. При этом катионы Fe^{3+} и Bi^{3+} расположены в ячейке таким образом, что создаются

условия для возникновения спонтанной поляризации [4].

Деформация кристаллической структуры $BiMnO_3$ обусловлена поляризацией ионов Bi^{3+} и эффектом Яна—Теллера [5].

Твердые растворы (1-x)ВiFeO₃—xВiMnO₃ в диапазоне малых замещений железа марганцем могут представлять практический интерес, поскольку манганит висмута BiMnO₃ также является мультиферроиком, но в отличие от феррита висмута, манганит висмута — ферромагнетик с температурой ферромагнитного (ФМ) упорядочения $T_C = 100$ K, при этом температура его ферроэлектрического упорядочения составляет \sim 750—780 K [3, 5—7].

В пленках феррита висмута, легированного марганцем, ${\rm BiFe}_{1-x}{\rm Mn}_x{\rm O}_3$ (0.0 < x < 0.15), обнаружен фотоиндуцированный диодный эффект в ближней инфракрасной и фиолетовой областях спектра в широкой области температур [8]. Если в обычном диоде p-n переход определен химически, и его направление задано, то в этом случае направление перехода можно менять потоком света и создавать приборы для оптоэлектроники.

Нами исследованы кристаллическая структура и магнитные свойства наноразмерных (90–100 нм) порошков и пленок BiMnO₃ и Bi_{0.8}La_{0.2}MnO₃ [7]. Предложен метод низкотемпературного синтеза поликристаллических порошков этих соединений методом совместного осаждения гидроокисей. Установлено, что кристаллическая структура обоих соединений относится к моноклинной сингонии, пространственная группа С2. Для усиления проявления структурных и магнитных характеристик проведено компактирование порошкообразных ВіМпО₃ и Ві_{0.8}Lа_{0.2}МпО₃ в условиях высоких давлений ($P \sim 4 \Gamma \Pi a$) и температур $(T \sim 750^{\circ}\text{C})$. В результате структурные рефлексы нецентросимметричной пространственной группы С2 полностью проявились, а удельная намагниченность ВіМпО₃ возросла ~ в 2.5 раза. Показано, что температура ферромагнитного упорядочения ВіМпО, как до, так и после воздействия высоких давлений $T_C \approx 100 \text{ K}$.

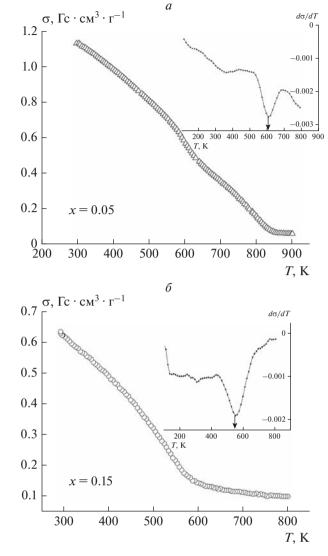
На основе результатов работы [9] установлено, что ионы Mn^{3+} в соединениях BFO могут занимать позиции Fe^{3+} . Магнитоактивные ионы Mn^{3+} , внедренные в B-позиции перовскитной структуры ABO_3 , вместо ионов Fe^{3+} , создают дополнительные локальные искажения кислородных октаэдров, характерные для $BiMnO_3$.

В [10] методом спектроскопии комбинационного рассеяния в тонких пленках BFO, легированных ионами Mn^{3+} , показано, что вследствие эффекта Яна—Теллера деформация октаэдров $(Mn/Fe)^{3+}O_6$ проявлялась орторомбическим искажением структуры. При изучении индуцированных марганцем деформаций в тонких пленках BFO [11] с увеличением содержания Mn^{3+} наблюдалось проявление тетрагональной фазы. Полученные результаты объясняются локальным понижением симметрии и локально индуцированной деформацией окружения Fe^{3+} , т.е., октаэдра $(Mn/Fe)^{3+}O_6$.

Методом твердофазного синтеза можно получать составы BFO с размером кристаллитов порядка нескольких микронов, что в десятки раз превосходит период циклоиды (62 нм). Поэтому в однофазных образцах BFO должна сохраняться циклоидная структура и будет отсутствовать линейный магнитоэлектрический эффект [12, 13].

Очевидно, что магнитные свойства твердых растворов замещения (1-x)Ві FeO_3-x Ві MnO_3 определяются ионами Fe^{3+} и Mn^{3+} . При равенстве их ионных радиусов [9] ион Mn^{3+} имеет на один 3d-электрон меньше, чем ион Fe^{3+} . Четыре 3d-электрона иона Mn^{3+} должны приводить к ян—теллеровской деформации окружающего его кислородного октаэдра [14]. В работе [15] методами исследования тонкой структуры спектров по-

глощения рентгеновских лучей и дифференциального термического анализа показано, что замещение в BFO ионов Fe^{3+} ионами Mn^{3+} приводит к уменьшению длины связи Ві-О и янтеллеровской деформации октаэдров Fe/MnO₆. При малых замещениях ионов железа Fe³⁺ на ионы марганца Mn³⁺ в BFO наблюдается увеличение намагниченности насыщения, достигающее максимального значения при x = 0.03. Дальнейшее увеличение концентрации х приводит к уменьшению намагниченности до величин, характерных для ВГО. Исследования локальной структуры BiFe₁₋, Mn_rO₃ свидетельствуют о сосуществовании двух кристаллографических фаз *R3c* и *Рыт* в диапазоне концентраций замещений 0.03 < x < 0.2 [15].


Установлено, что увеличение удельной намагниченности M(x) обусловлено усилением янтеллеровских искажений при замещении Fe^{3+} на Mn^{3+} до концентрации x=0.03 [15]. Сосуществование двух кристаллографических фаз R3c и Pbnm имеет место в составах $BiFe_{1-x}Mn_xO_3$ в диапазоне концентраций $0.03 \le x \le 0.2$, каждая из них имеет свое значение намагниченности насыщения M_r , при этом $M_r(R3c) > M_r(Pbnm)$ [15]. С увеличением содержания марганца происходит перераспределение объемов этих фаз: V(R3c) уменьшается, а V(Pbnm) увеличивается. В итоге суммарный магнитный момент при некоторой концентрации Mn^{3+} достигает максимума, а при дальнейшем увеличении концентрации х уменьшается.

МЕТОДЫ ЭКСПЕРИМЕНТА

Изучение удельной намагниченности составов $\operatorname{BiFe}_{1-x}\operatorname{Mn}_x\operatorname{O}_3(x=0.05\text{ и }0.15)$ о проводилось пондеромоторным методом в режимах нагревания и охлаждения образцов в интервале температур $100 \le T \le 850$ К во внешнем магнитном поле с индукцией B=0.86 Тл. Измерения электросопротивления и диэлектрических параметров выполнены на образцах в виде дисков диаметром 8 мм и толщиной 1 ± 0.001 мм с посеребренными торцами. Электросопротивление измерялось прибором III_300 в интервале температур $300 \le T \le 523$ К. Диэлектрические свойства образцов изучены в конденсаторной ячейке с обкладками в виде дисков III_300 мм с помощью III_300 0 мм с помощью

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

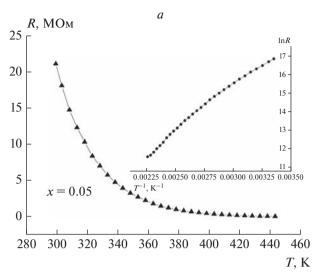
Результаты рентгеноструктурного исследования и анализ микроструктуры полученных образцов приведены в [16]. Образцы синтезированы золь-гель методом. В работе [16] мы не наблюдали наличие второй кристаллографической фазы в

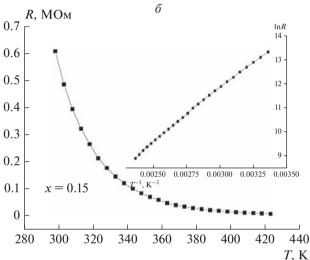
Рис. 1. Температурные зависимости удельной намагниченности $\sigma(T)$ образцов $\mathrm{BiFe}_{1-x}\mathrm{Mn}_x\mathrm{O}_3$: x=0.05 (a) и 0.15 (δ). На вставках: температурные зависимости $d\sigma/dT(T)$.

образцах ${\rm BiFe}_{1-x}{\rm Mn}_x{\rm O}_3$ (x=0.05 и 0.15), а только лишь уменьшение ромбоэдрических искажений с увеличением концентрации марганца от 0.05 до 0.15. Можно предположить, что фаза перовскита, типа Pbnm, присутствует в ${\rm BiFe}_{1-x}{\rm Mn}_x{\rm O}_3$, поскольку метод рентгенодифракционного анализа дает усредненную картину, а методом комбинационного рассеяния света наши образцы не исследовались.

Для усиления проявления магнитных свойств полученные порошки (размер частиц \sim 40 нм) спрессованы и отожжены при $T=850^{\circ}$ С. Установлено, что все составы имеют ромбоэдрически искаженную структуру перовскита R3c. Рентгеновские дифрактограммы свидетельствуют о наличии нескольких рефлексов малой ин-

тенсивности примесных фаз (5–7% от основной фазы), которые обычно сопутствуют синтезу BFO. Процентное содержание этих фаз уменьшается с увеличением содержания марганца. Результаты изучения морфологии поверхности излома образцов BiFe_{1-x}Mn_xO₃ (x=0.05 и 0.15) выявили зависимость среднего размера гранул $d_{\rm cp}$ от x: с ростом x $d_{\rm cp}$ уменьшается от \approx 491 нм (для x=0) до \approx 218 нм (для x=0.15).


На рис. 1a и 1δ представлены температурные зависимости удельной намагниченности $\sigma(T)$ составов x = 0.05 и x = 0.15. Предполагается, что существует вклад в намагниченность от примесных фаз. Полученные зависимости σ(Т) характерны для ферромагнетиков. Намагниченность сложных соединений, содержащих помимо АФМ фазы и ФМ фазу, при низких температурах определяется намагниченностью ФМ фазы, величина которой уменьшается с повышением температуры. Температуру Кюри упорядочения ФМ фазы T_C определяют по наиболее резкому уменьшению удельной намагниченности с температурой, т.е. с помощью производной $d\sigma/dT$. На вставках к рис. 1a и 16 показано, что наиболее значительное уменьшение удельной намагниченности происходит при $T_C = 605 \text{ K}$ для при x = 0.05 и при $T_C =$ = 550 K для x = 0.15. Увеличение содержания марганца приводит к уменьшению температуры Кюри.


В перовските $BiFe_{1-x}Mn_xO_3$ ионы Mn^{3+} также, как и в $BiMnO_3$, могут занимать три неэквивалентные позиции и иметь несколько сверхобменных связей Mn-O-Fe, которые, как и Mn-O-Mn-связи в $BiMnO_3$, могут быть как ΦM , так и $A\Phi M$ [3]. Преобладанием числа соответствующих связей и определяется тип результирующего магнитного упорядочения в $BiFe_{1-x}Mn_xO_3$.

Уменьшение величины удельной намагниченности с ростом концентрации марганца косвенно свидетельствует о наличии второй фазы перовскита типа орторомбической *Pbnm*: при 300 К $\sigma(x=0.05)$ составляет 1.12 Гс · см³/г, а $\sigma(x=0.15)$ — 0.63 Гс · см³/г.

Уменьшение величины удельной намагниченности с ростом x может свидетельствовать о перераспределении объемов ФМ и АФМ фаз: число ФМ сверхобменных связей Мп-О-Fe уменьшается, а АФМ - увеличивается. С увеличением содержания марганца преобладающим становится АФМ упорядочение, как показано в [17]: Мп приводит к трансформации спиральной спиновой структуры ВFO в коллинеарную АФМ структуру со спином, направленным вдоль оси c.

Зависимость R(T) для x = 0.05 (так же как и для x = 0.15) является типично полупроводниковой в температурном интервале $300 \le T \le 420$ К (рис. 2a, 2δ). Соединение BiFeO₃ является диэлектриком во всем диапазоне температур. Оце-

Рис. 2. Температурные зависимости электрического сопротивления R(T) образцов $\mathrm{BiFe}_{1-x}\mathrm{Mn}_x\mathrm{O}_3$: x=0.05 (*a*) и 0.15 (*б*). На вставках: зависимости $\mathrm{ln}\ R(T^{-1})$ для определения ширины запрещенной зоны.

нена ширина запрещенной зоны с использованием зависимости

$$\Delta E = 2k \frac{T_1 T_2}{T_2 - T_1} \ln \frac{R_1}{R_2},$$

где $k = 8.617343 \cdot 10^{-5} \, \mathrm{эB \cdot K^{-1}} - \mathrm{постоянная}$ Больцмана. Установлено, что состав $BiFe_{0.95}Mn_{0.05}O_3$ имеет ширину запрещенной зоны $\Delta E = 1.03 \ \mathrm{эB}$, а $BiFe_{0.85}Mn_{0.15}O_3 - \Delta E = 0.8$ эВ. Диэлектрическая проницаемость є определялась как отношение емкости ячейки с образцом C_x к емкости пустой ячейки C_{air} : $\varepsilon_x = C_x/C_{air}$, $C_x = (\varepsilon_x \varepsilon_0 S)/d$, $C_{air} = (\varepsilon_{ai} \varepsilon_0 S)/d$, $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M}$, S - площадь обкладок и d — расстояние между обкладками [18]. Диэлектрические параметры образцов BiFe_{1 - г}Mn_гO₃ (x = 0.05 и 0.15) представлены в табл. 1. С увеличением концентрации х наблюдается тенденция к увеличению диэлектрической проницаемости є при комнатной температуре по сравнению с є для ВГО. На частоте 1 кГц: $\varepsilon \approx 31$ для x = 0.05, что в 1.8 раза больше, чем $\varepsilon \approx 17.5$ для BFO и $\varepsilon \approx 127$ для x = 0.15, что в 7.2 раза больше, чем для ВГО. На частоте 1 МГц значение диэлектрической проницаемости увеличивается по сравнению с ε для ВFО соответственно при x = 0.05 - B 1.7 раза, а при x = 0.15 - B2.4 раза.

Полученные результаты подтверждаются данными работ [19—21], в которых было показано, что значение диэлектрической проницаемости ВFO может быть увеличено замещением железа марганцем как в тонких пленках [19], так и в объемных образцах ${\rm BiFe}_{1-x}{\rm Mn}_x{\rm O}_3$ с размерами кристаллитов до нескольких сотен нанометров [20, 21]. Диэлектрические потери уменьшаются по мере увеличения концентрации марганца [19, 21]. С увеличением частоты и диэлектрическая проницаемость, и тангенс угла потерь уменьшаются [19, 21].

ЗАКЛЮЧЕНИЕ

Изучены магнитные и диэлектрические характеристики составов твердых растворов $BiFe_{1-x}Mn_xO_3$ (x=0;0.05 и 0.15), синтезированных золь-гель методом, имеющих ромбоэдрически искаженную структуру перовскита R3c [16]. Замещение железа марганцем приводит к стабилизации структуры перовскита и уменьшению ромбоэдрических искажений.

Составы с x = 0.05 и 0.15 проявляют ферромагнитные свойства, увеличение содержания марганца приводит к понижению температуры Кюри: $T_C = 605$ К для x = 0.05 и 550 К для x = 0.15.

Таблица 1. Диэлектрические параметры образцов BiFe_{1-x}Mn_xO₃

	1 кГц (Е7—8)			1 МГц (Е7—12)		
x	tgδ	<i>G</i> , мкСм	ε ±Δε	tgδ	<i>G</i> , мкСм	ε ±Δε
0	0.2	3.3	17.5 ± 0.5	0.019	1.97	11.8 ± 0.5
0.05	0.17	1.5	30.75 ± 0.5	0.022	3.15	20.4 ± 0.5
0.15	0.1	2.05	126.6 ± 1.0	0.025	3.37	24.1 ± 0.5

При равенстве ионных радиусов ион Mn^{3+} имеет на один 3d-электрон меньше, чем ион Fe^{3+} . Четыре 3d-электрона магнитоактивных ионов Mn^{3+} возмущают электронную структуру октаэдров Fe/MnO_6 . Вследствие замещения Fe^{3+} на Mn^{3+} возникают янтеллеровские искажения кислородных октаэдров Fe/MnO_6 . Изменение величины удельной намагниченности при x=0; 0.05 и 0.15 может свидетельствовать о перераспределении содержания ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM фаз в составах: число ΦM связей ΦM и ΦM на ΦM от ΦM связей ΦM и ΦM от ΦM и ΦM от ΦM от ΦM и ΦM от ΦM от

Составы BiFe_{1 — x}Mn_xO₃ при x = 0.05 и 0.15 являются полупроводниками. Определена ширина запрещенной зоны: $\Delta E = 1.03$ эВ при x = 0.05 и $\Delta E = 0.8$ эВ для x = 0.15. Установлено, что с увеличением концентрации x наблюдается тенденция изменения диэлектрической проницаемости ε при комнатной температуре в сторону увеличения по сравнению с ε для BFO: на частоте 1 кГц для x = 0.05 — в 1.8 раза, а при x = 0.15 — в 7.2. На частоте 1 МГц — изменение диэлектрической проницаемости соответственно для x = 0.05 — в 1.7 раза, а при x = 0.15 — в 2.4 раза.

СПИСОК ЛИТЕРАТУРЫ

- 1. Fiebig M. // J. Phys. D. 2005. V. 38. No. 8. Art. No. R123.
- Dos Santos M., Cheetham A.K., Atou T. et al. // Phys. Rev. B. 2002. V. 66. Art. No. 064425.
- 3. Bucci J.D., Robertson B.K., James W.J. // J. Appl. Cryst. 1972. V. 5. P. 187.
- 4. Пятаков А.П., Звездин А.К. // УФН. 2012. V. 186. № 6. С. 593; *Pyatakov A.P., Zvezdin A.K.* // Phys. Usp. 2012. V. 55. No. 6. P. 557.
- Atou T., Chiba H., Ohoyama K. et al. // J. Solid State Chem. 1999. V. 145. No. 2. P. 639.

- 6. Dos Santos M., Parashar S., Raju A.R. et al. // Solid State Commun. 2002. V. 122. No. 1–2. P. 49.
- 7. *Тарасенко Т.Н., Кравченко З.Ф., Каменев В.И. и др.* // Физ. и техн. высоких давл. 2010. Т. 20. № 4. С. 70; *Tarasenko T.N., Kravchenko Z.F., Kamenev V.I. et al.* // Phys. High Press. Technol. 2010. V. 10. No. 4. P. 70.
- 8. Aplesnin S.S. Kretinin V.V., Masyugin A.N. et al. // Semicond. Sci. Technol. 2019. V. 34. Art. No. 095007.
- 9. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751.
- 10. *Kartopu G., Lahmar A., Habouti S. et al.* // Appl. Phys. Lett. 2008. V. 92. Art. No. 151910.
- Gupta S., Tovar M., Gupta V. // J. Mater. Sci. 2014. V. 49. P. 5997.
- 12. *Ianculescu A., Gheorghiu F.P., Postolache P. et al.* // J. Alloys Compounds. 2010. V. 504. No. 2. P. 420.
- 13. Shigematsu R., Asakura T., Yamamoto H. et al. // Appl. Phys. Lett. 2018. V. 112. Art. No. 192905.
- Hill N.A., Filippetti A. // J. Magn. Magn. Mater. 2002.
 V. 242. P. 976.
- 15. *Chen L., Zheng L., He Y. et al.* // J. Alloys Compounds. 2015. V. 633. P. 216.
- 16. *Тарасенко Т.Н., Михайлов В.И., Кравченко З.Ф. и др. //* Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1307; *Tarasenko T.N., Mikhaylov V.I., Kravchenko Z.F. et al. //* Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1113.
- 17. Sosnovska I., Schafer W., Kockelmann W. et al. // Appl. Phys. A. 2002. V. 74. Art. No. S1040.
- 18. *Тарасенко Т.Н., Михайлов В.И., Каменев В.И. и др. //* Матер. IV Междунар. науч. конф. "Донецкие чтения 2019". Т. 1. Физ.-мат. и тех. науки. Ч. 2. (Донецк, 2019). С. 139.
- 19. *Riaz S., Shah S.M.H., Akbar A. et al.* // J. Sol.-Gel. Sci. Technol. 2015. V. 74. No. 2. P. 329.
- Chandel S., Thakur P., Tomar M. et al. // Ceram. Int. 2017. V. 43. No. 16. Art. No. 13750.
- Sharma A.D., Hemanta H., Sharma H.B. // Ferroelectrics. 2017. V. 519. P. 187.

The role of manganese substitutions of iron cathiones in changes of magnetic and electrical characteristics of BiFe_{1-x}Mn_xO₃ magnetoelectrics (x = 0.05 and 0.15)

T. N. Tarasenko^{a, *}, V. I. Mikhaylov^a, Z. F. Kravchenko^a, V. V. Burkhovetskyi^a, A. I. Izotov^a, Yu. A. Legenkii^b, A. M. Zhyvulka^c, K. I. Yanushkevich^c, S. S. Aplesnin^d

^a Galkin Donetsk Institute for Physics and Engineering, Donetsk, 283048 Russia
 ^b Donetsk National University, Donetsk, 283001 Russia

^c Scientific-Practical Materials Research Center of the National Academy of Sciences Belarus, Minsk, 220072 Belarus ^d Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660037 Russia

*e-mail: t.n.tarasenko@mail.ru

The samples of BiFe_{1 - x}Mn_xO₃ solid solution system (x = 0.05 and 0.15) are ferromagnetics and semiconductors unlike BiFeO₃. Growth of x leads to a decrease in Curie temperature ($T_C = 605$ K for x = 0.05 and 550 K for x = 0.15) and growth of dielectric permittivity ε at room temperature. The decrease in the value of specific magnetization with increasing x is due to the redistribution of the volumes of ferromagnetic and antiferromagnetic phases.