УЛК 538.955:538.953

ОСОБЕННОСТИ ТЕПЛОВОГО РАСШИРЕНИЯ В СПЛАВАХ ЗАМЕЩЕНИЯ НА ОСНОВЕ ТЯЖЕЛЫХ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ $\mathbf{R}_{1-x}^{\mathrm{II}}\mathbf{F}\mathbf{e}_2$

© 2023 г. З. С. Умхаева^{1, 2, *}, И. С. Терёшина³, Н. Ю. Панкратов³, И. М. Алиев^{1, 2}, М. Р. Хоменко³

¹Федеральное государственное бюджетное учреждение науки Комплексный научно-исследовательский институт имени Х.И. Ибрагимова Российской академии наук, Грозный, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет имени А.А. Кадырова", Грозный, Россия

³Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

 $\hbox{\it *E-mail: zargan.umhaeva@yandex.ru}$

Поступила в редакцию 28.09.2022 г. После доработки 27.10.2022 г. Принята к публикации 25.11.2022 г.

Изучены особенности поведения теплового расширения и магнитострикции в магнитоупорядоченных сплавах замещения на основе тяжелых редкоземельных металлов, а именно: $TbFe_2$, $Tb_{0.8}Zr_{0.2}Fe_2$, $Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$. Установлено, что аномалии теплового расширения, наблюдаемые в сплавах, обусловлены, главным образом, конкуренцией обменных взаимодействий. В сплавах $TbFe_2$ и $Tb_{0.8}Zr_{0.2}Fe_2$ в широкой области температур наблюдаются особенности инварного типа.

DOI: 10.31857/S0367676522700594, EDN: HFRCVO

ВВЕДЕНИЕ

Как известно, интерметаллические соединения редкоземельных металлов с 3d-переходными металлами в определенной температурной области находятся в магнитоупорядоченном состоянии. Соединения легкая редкая земля-3d-переходный металл характеризуются ферромагнитупорядочением спиновых магнитных моментов, а соединения с тяжелыми редкими землями — ферримагнитным. Если атомами 3d-переходного металла является атомы Fe, которые образуют с редкоземельными элементами интерметаллические соединения стехиометрии RFe₂, то это так называемые фазы Лавеса. Фазы Лавеса встречаются в двух структурных типах: кубическая структура С15 и гексагональная - С14 [1] и обладают достаточно высокими температурами Кюри, вплоть до 10^3 K [2].

Возникновение упорядоченного состояния атомных магнитных моментов в фазах Лавеса обусловлено обменными взаимодействиями. В редкоземельном магнетике различают 3 типа обменного взаимодействия: 3d–3d-взаимодействие в 3d-подрешетке, R–R-взаимодействие в редкоземельной подрешетке и межподрешеточное R–3d обменное взаимодействие. Зависимость обменных взаимодействий от межатомных расстояний

приводит к некоторым особенностям на температурных зависимостях теплового расширения. Поэтому представляет интерес исследовать зависимость коэффициента теплового расширения, а также магнитострикционных констант от температуры для редкоземельных интерметаллидов $R_{1-x}^{I}R_{x}^{II}Fe_{2}$ (где $R^{I}=$ Tb и Gd, $R^{II}=$ Zr и Sm), обладающих кубической структурой фазы Лавеса C15.

Выбор сплавов обусловлен тем, что соединение ${\rm TbFe_2}$ представляет собой ферримагнетик с температурой Кюри $T_c=711~{\rm K}$ и осью легкого намагничивания вдоль кристаллографического направления [111]. Оно достаточно давно известно своей "гигантской" магнитострикцией [3], с которой тесно связаны аномалии теплового расширения в редкоземельных интерметаллидах [1]. Однако, взаимосвязь теплового расширения, магнитострикционных характеристик с магнитным состоянием в сплавах замещения типа ${\rm R}_{1-x}^1 {\rm R}_x^1 {\rm Fe_2}$ изучена недостаточно.

В составах $Tb_{0.8}Zr_{0.2}Fe_2$ и $Tb_{0.8}Sm_{0.2}Fe_2$ 20% магнитоактивных высокоанизотропных атомов тербия замещается атомами немагнитного Zr и слабомагнитного Sm, соответственно. Данные сплавы интересны тем, что в них присутствуют межподрешеточные обменные взаимодействия

противоположного знака (Tb—Fe и Sm—Fe). Поэтому весь спектр магнитных свойств данных сплавов, включая и магнитострикционные, будет определяться знаком и величиной доминирующего в данной температурной области взаимодействия R—Fe.

Также исследован сплав на основе тяжелого редкоземельного элемента гадолиния с аналогичным типом замещения $Gd_{0.8}Sm_{0.2}Fe_2$. $Gd-единственный из тяжелых редкоземельных элементов, который находится в S-состоянии и влияние кристаллического поля на него пренебрежимо мало. Было важно выяснить, что же является причиной значительных магнитострикционных деформаций в его сплавах, в частности в <math>Gd_{0.8}Sm_{0.2}Fe_2$.

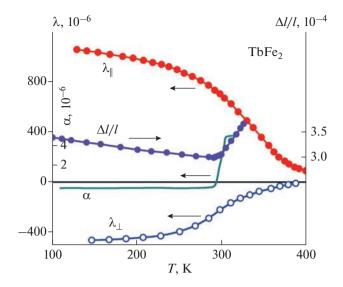
Исследование магнитных и магнитоупругих свойств редкоземельных интерметаллидов типа $R_{1-x}^{I}R_{x}^{II}$ Fe_{2} является достаточно актуальной задачей для современного материаловедения в связи с поиском новых высокоэффективных материалов, пригодных для использования в области комнатных температур.

Целью данной работы являлось исследование теплового расширения и магнитострикции фаз Лавеса кубической симметрии $TbFe_2$, $Tb_{0.8}Zr_{0.2}Fe_2$, $Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$, в которых используются различные атомы замещения (немагнитный цирконий, слабомагнитным самарий, слабоанизотропный гадолиний). Такой тип замещения окажет влияние на величину обменных взаимодействий как между подрешетками R—Fe, так и внутри самой редкоземельной подрешетки.

ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Для проведения данных исследований нами были синтезированы редкоземельные интерметаллиды $TbFe_2$, $Tb_{0.8}Zr_{0.2}Fe_2$, $Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$. Сплавы $TbFe_2$, $Tb_{0.8}Zr_{0.2}Fe_2$, $Tb_{0.8}Sm_{0.2}Fe_2$ получены нами на основе высокочистых РЗМ и Fe в дуговой печи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поду специальной конструкции в атмосфере очищенного инертного газа при нормальном давлении. Затем образцы подвергались гомогенизирующему отжигу в течение 2 нед. при температуре 850° С в вакууме 10^{-3} мм рт. ст. Сплав на основе гадолиния $Gd_{0.8}Sm_{0.2}Fe_2$ приготовлен индукционной плавкой высокочистых РЗМ и Fe в атмосфере очищенного аргона. Для приготовления образцов в качестве низкореактивных тиглей для R-металлов использовались алундовые тигли (Al_2O_3) . Для получения монофазы типа C15 образцы заворачивали в танталовую фольгу, запаивали в кварцевые трубки с Аг и выдерживали при 1000 К в течение суток с последующей закалкой в воле.

Фазовый анализ, проведенный на рентгеновских дифрактометрах ДРОН-3 (сплавы $TbFe_2$ и $Tb_{0.8}Zr_{0.2}Fe_2$) и Empyrean Panalytical (сплавы $Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$), подтвердил однофазность всех указанных образцов после отжига. Все соединения обладали кубической структурой фазы Лавеса C15.


Измерения теплового расширения и магнитострикции проводились тензометрическим методом (который достаточно хорошо известен [4]) в широкой области температур от 80 до 400 К.

Редкоземельные интерметаллиды TbFe₂ и Tb_{0.8}Zr_{0.2}Fe₂ в данной работе исследовались с помощью тензодатчиков, которые были изготовлены из тензочувствительной проволоки диаметром 30 мкм, не обладавшей заметным гальваномагнитным эффектом. Тензодатчики имели базу 3 мм и сопротивление около 100 Ом. При исследовании образцов $Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$ использовались тензодатчики с базой 5 мм и сопротивлением 120 Ом. Коэффициент тензочувствительности всех датчиков был равен k = 2.15. Они обладали высокой стабильностью при всех температурах, при которых проводились исследования. Измерение магнитострикционных деформаций было выполнено во внешних магнитных полях до 14 кЭ.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Как правило, твердые тела при нагревании увеличивают свои размеры. Исследование соединения ${\rm TbFe_2}$, известного своими анизотропными свойствами и гигантской магнитострикцией, показало, что наличие магнитного порядка оказывает существенное влияние на тепловое расширение, упругие и магнитоупругие свойства.

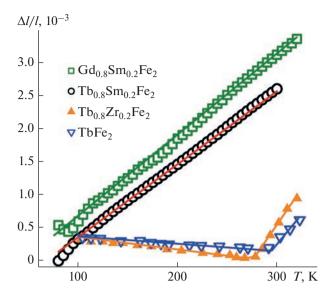

На рис. 1 представлены результаты измерения температурной зависимости продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикции соединения TbFe₂. Там же представлены кривая теплового расширения сплава $\Delta l/l(T)$ и коэффициент теплового расширения сплава $\Delta l/l(T)$ в зависимости от температуры. Видно, что магнитострикция, достигающая при низких температурах гигантских значений ($\approx 10^{-3}$), резко уменьшается при нагревании в диапазоне температур от 280 до 330 К для соединения TbFe₂. Следует отметить, что аналогичное поведение демонстрирует и сплав Tb_{0.8}Zr_{0.2}Fe₂ в интервале температур от 260 до 300 К. Напомним, что температура магнитного упорядочения для TbFe₂, как было сказано выше, $T_C = 711$ K, а для Tb_{0.8}Zr_{0.2}Fe₂

Рис. 1. Температурные зависимости продольной и поперечной магнитострикции, теплового расширения и коэффициента теплового расширения соединения TbFe₂.

 T_C = 690 K, т.е. в два раза выше. Известно [5], что в редкоземельных магнетиках при температурах ниже температуры Кюри возникает спонтанная объемная магнитострикция ω_s , которая обычно налагается на фононную часть теплового расширения магнетика. Если ω_s < 0, то вызванные ею деформации могут скомпенсировать или даже полностью перекрыть эффект теплового расширения. Подобный эффект наблюдался ранее в фазах Лавеса $Zr_{1-x}Ta_xFe_2$ и $Zr_{0.2}Nb_{0.3}Fe_2$ [6].

Коэффициент теплового расширения, рассчитанный по экспериментальным кривым $\Delta l/l(T)$, оказался отрицательным при температурах ниже комнатной T = 293 K для TbFe_2 и практически постоянным, близким к 0 (инвар-эффект). При температурах T > 293 K коэффициент α имеет положительные значения. Установлено, что для соединения Tb_{0.8}Zr_{0.2}Fe₂ эта температура немного ниже, а именно, 262.8 К. Следовательно, по мере замещения тербия цирконием температура, при которой коэффициент теплового расширения $\alpha = 0$, смещается в сторону более низких температур. Можно утверждать, что спонтанная объемная магнитострикция ω_{s} , с одной стороны уменьшается при замещении магнитоактивных атомов Ть немагнитными атомами Zr, с другой же стороны, как и магнитострикция, индуцированная внешним магнитным полем (λ_{\parallel} и λ_{\perp}), ω_{s} возрастает по абсолютной величине наиболее резко при температурах, где происходит магнитное упорядочение подрешетки Тb (которая приобретает заметную намагниченность значительно ниже тем-

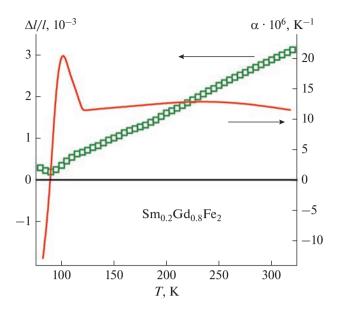


Рис. 2. Температурные зависимости теплового расширения соединений $Gd_{0.8}Sm_{0.2}Fe_2$, $Tb_{0.8}Sm_{0.2}Fe_2$, $Tb_{0.8}Zr_{0.2}Fe_2$ и $TbFe_2$.

пературы Кюри). Аналогичное явление наблюдалось ранее на образцах системы $\mathrm{Er}_{1-x}\mathrm{Zr}_x\mathrm{Fe}_2$ в работе [7].

На кривой $\Delta l/l(T)$ теплового расширения образца $Tb_{0.8}Sm_{0.2}Fe_2$ (рис. 2) видна одна аномалия (при $T \approx 100$ K). На этом же рисунке приведена кривая $\Delta l/l(T)$ теплового расширения для состава $Gd_{0.8}Sm_{0.2}Fe_2$. На ней можно выделить две аномалии: одна — в области 90 К и вторая — при 180 К. Как показали наши исследования [8, 9], указанные аномалии могут быть связаны как с различным температурным поведением намагниченности отдельных подрешеток сплава (данные сплавы можно рассматривать, как трехподрешеточные магнетики), так и с явлением спиновой переориентации, связанной с подрешеткой самария [10]. В ходе комплексного исследования магнитных и магнитострикционных свойств сплавов SmFe₂ [11, 12] и $Gd_{0.8}Sm_{0.2}Fe_2$ было установлено, что аномалия на кривых $\Delta l/l$ при температурах $180-200 \, \mathrm{K}$, связана со спин-переориентационном переходом (СПП) из состояния с осью легкого намагничивания (ОЛН) [111] в состояние с ОЛН [110]. Сам переход, являясь переходом второго рода, заканчивается в области низких температур (90–100 К), где и наблюдается вторая аномалия на кривых $\Delta l/l$.

Если сравнить поведение коэффициентов теплового расширения $\alpha(T)$ составов TbFe $_2$ (см. рис. 1) и Tb $_{0.8}$ Zr $_{0.2}$ Fe $_2$, с составами Tb $_{0.8}$ Sm $_{0.2}$ Fe $_2$ и Gd $_{0.8}$ Sm $_{0.2}$ Fe $_2$ (см. рис. 3), то наблюдается некоторое различие. В первом случае коэффициент α с ростом температуры резко меняет знак с отрица-

Рис. 3. Температурная зависимость теплового расширения и коэффициента теплового расширения сплава $Gd_{0.8}Sm_{0.7}Fe_{2}$.

тельного на положительный (при температурах, близких к комнатной), сохраняя фиксированные значения, как отрицательные, так и положительные, в то время как, во втором случае, температурная зависимость $\alpha(T)$ носит более сложный характер. На зависимости коэффициента теплового расширения $\alpha(T)$ также регистрируется смена знака в области температур ниже 100 K. А в области СПП на кривой $\alpha(T)$ наблюдается ярко выраженный пик. Однако далее с повышением температуры значения коэффициента α практически не меняются.

ЗАКЛЮЧЕНИЕ

Особенность фаз Лавеса, изученных в данной работе, заключается в том, что бинарные соединение RFe_2 , лежащие в основе квазибинарных сплавов $R_{1-x}^IR_x^{II}Fe_2$, демонстрируют спонтанную и индуцированную полем магнитострикции противоположного знака. Так, соединения RFe_2 (R=Tb и Gd) обладают спонтанной магнитострикцией положительного знака, тогда как RFe_2 (R=Sm) проявляют магнитострикцию обратного знака. Это приводит к тому, что в сплавах замещения $R_{1-x}^IR_x^{II}Fe_2$ ($Tb_{0.8}Sm_{0.2}Fe_2$ и $Gd_{0.8}Sm_{0.2}Fe_2$) по мере изменения температуры или величины внешнего магнитного поля наблюдается целый ряд эффектов, обусловленных конкуренцией,

главным образом, межподрешеточных обменных взаимодействий (Tb-Fe, Gd-Fe и Sm-Fe).

В сплавах $TbFe_2$ и $Tb_{0.8}Zr_{0.2}Fe_2$ присутствуют только один тип межподрешеточных обменных взаимодействий Tb—Fe. В соединении $Tb_{0.8}Zr_{0.2}Fe_2$ атомы циркония являются немагнитными, что приводит к разбавления магнитной подрешетки тербия. Наблюдаемые аномалии теплового расширения, в том числе инварного типа, обусловлены гигантской спонтанной объемной магнитострикцией, которая возникает в них ниже температуры магнитного упорядочения.

Исследование выполнено при поддержке Российского научного фонда (проект № 22-22-00313).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Илюшин А.С.* Введение в структурную физику интерметаллических соединений. М.: МГУ, 1984. 99 с.
- Umkhaeva Z.S., Ilyushin A.S., Nikitin S.A. et al. // J. Phys. Conf. Ser. 2020. V. 905. Art. No. 12071.
- 3. Белов К.П., Катаев Г.И., Левитин Р.З. и др. // УФН. 1983. Т. 140. № 2. С. 271; Belov К.Р., Kataev G.I., Levitin R.Z. et al. // Sov. Phys. Usp. 1983. V. 26. No. 6. P. 518.
- 4. *Nikitin S.A., Tereshina I.S., Verbetsky V.N. et al.* // J. Alloys. Compounds. 2001. V. 322. P. 42.
- 5. *Умхаева З.С.* Структурные и магнитные фазовые превращения и сверхтонкие взаимодействия на ядре 57 Fe в фазах высокого давления сплавов квазибинарных систем $R_{1-x}^I R_x^{II} M_2$ и $R(Fe_{1-x} M_x)_2$ (R-P39, M-3d-металл). Дис. ... докт. физ-мат. наук. Махачкала: Ин-т физ. ДНЦ РАН, 2014.
- 6. Sluga M. // Physica. 1975. V. 53 A. No. 4. P. 319.
- 7. Никитин С.А., Бислиев А.-Х.М., Куприянов А.К., Умхаева З.С. // ФТТ. 1989. Т. 31. № 9. С. 231; Nikitin S.A., Bisliev A.-Kh.M., Kupryanov A.K., Umkhaeva Z.S. // Phys. Solid State. 1989. V. 31. No. 9. P. 231.
- 8. Ilyushin A.S., Tereshina I.S., Pankratov N.Yu. et al. // J. Alloys. Compounds. 2020. V. 847. Art. No. 155976.
- 9. Алероева Т.А., Терешина И.С., Умхаева З.С. и др. // ФТТ. 2019. Т. 61. № 12. С. 2471; Aleroeva Т.А., Tereshina I.S., Umkhaeva Z.S. et al. // Phys. Solid State. 2019. V. 61. No. 12. P. 2503.
- 10. Pankratov N. Yu., Tereshina I.S., Politova G.A. et al. // J. Magn. Magn. Mater. 2021. 527. Art. No. 167728.
- 11. *Politova G.A., Karpenkov A.Y., Kaminskaya T.P. et al.* // St. Petersburg Polytech. Univ. J. Phys. Math. 2019. V. 12. No. 1. P. 28.
- 12. *Gaviko V.S., Korolyov A.V., Mushnikov N.V.* // J. Magn. Magn. Mater. 1996. V. 157–158. P. 659.

$\label{eq:continuous} Features \ of \ thermal \ expansion \ in \ substitution \ alloys \ based \\ on \ heavy \ rare-earth \ metals \ R_{1-x}^IR_x^{II}Fe_2$

Z. S. Umkhaeva^{a, b, *}, I. S. Tereshina^c, N. Yu. Pankratov^c, I. M. Aliev^{a, b}, M. R. Khomenko^c

^a Ibragimov Complex Research Institute of the Russian Academy of Sciences, Grozny, 364051 Russia
^b Kadyrov Chechen State University, Grozny, 364024 Russia
^c Lomonosov Moscow State University, Moscow, 119991 Russia
*e-mail: zargan.umhaeva@yandex.ru

We consider the features of the behavior of thermal expansion and magnetostriction in magnetically ordered substitutive alloys based on heavy rare earth metals, namely: TbFe $_2$, Tb $_{0.8}$ Zr $_{0.2}$ Fe $_2$, Tb $_{0.8}$ Sm $_{0.2}$ Fe $_2$ and Gd $_{0.8}$ Sm $_{0.2}$ Fe $_2$. It is found that the of thermal expansion anomalies observed in alloys are mainly due to the competition of exchange interactions. In TbFe $_2$ and Tb $_{0.8}$ Zr $_{0.2}$ Fe $_2$ alloys invar-type features are observed in a wide temperature range.