Стримеры, инициируемые емкостным разрядом при давлениях воздуха 0.2–6 Торр

Обложка

Цитировать

Полный текст

Аннотация

Проведены исследования плазменных диффузных струй (ПДС), имеющих красный цвет, которые состоят из стримеров (волн ионизации). Обнаружено, что плазма, создаваемая в воздухе при давлениях 0.2–4 Торр импульсно-периодическим емкостным разрядом в диэлектрической трубке, инициирует за один импульс две ПДС, в каждой из которых регистрируется до трех стримеров. Установлено, что по два стримера, которые распространяются от кольцевых электродов в противоположных направлениях, формируются одним импульсом напряжения положительной полярности. С помощью ICCD-камеры и кремниевого ФЭУ показано, что приход фронта положительного стримера в область остановки фронта отрицательного стримера, который генерировался первым на фронте отрицательного импульса напряжения, приводит к формированию третьего тонкого стримера в виде конуса с малым углом при вершине. Установлено, что направление движения третьего стримера совпадает с направлением инициирующих его стримеров, однако его скорость меньше на два порядка. Показано, что при низких давлениях воздуха скорость первых положительных стримеров больше, чем у отрицательных, а расстояние, на которое они распространяются при напряжении генератора 7 кВ и давлении воздуха 0.2 Торр превышает 1 м.

Об авторах

В. Ф. Тарасенко

Институт сильноточной электроники СО РАН

Email: VFT@loi.hcei.tsc.ru
Россия, Томск

Е. Х. Бакшт

Институт сильноточной электроники СО РАН

Email: VFT@loi.hcei.tsc.ru
Россия, Томск

В. А. Панарин

Институт сильноточной электроники СО РАН

Email: VFT@loi.hcei.tsc.ru
Россия, Томск

Н. П. Виноградов

Институт сильноточной электроники СО РАН

Автор, ответственный за переписку.
Email: VFT@loi.hcei.tsc.ru
Россия, Томск

Список литературы

  1. Füllekrug M., Mareev E.A., Rycroft M.J. (Eds.). Sprites, elves and intense lightning discharges. V. 225. Springer Science & Business Media, 2006.
  2. Jehl A., Farges T., and Blanc E. // J. Geophys. Res. Space Physics. 2013. V. 118. P. 454. https://doi.org/10.1029/2012JA018144
  3. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Rivera L., Sala-zar H., Tulupov V.I., Vedenkin N.N., Yashin I.V. // J. of Geophysical Research: Atmospheres. 2013. V. 118. № 2. P. 370. https://doi.org/10.1029/2012JD017501
  4. Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. // Geophys. Res. Lett. 2018. V. 45. P. 13. doi.org/https://doi.org/10.1029/2018GL079576
  5. McHarg M.G., Stenbaek-Nielsen H.C., Kammae T. // Geophys. Res. Lett. 2007. V. 34. P. L06804. https://doi.org/10.1029/2006GL027854
  6. Ebert U., Nijdam S., Li C., Luque A., Briels T., van Veldhuizen E. // JGR: Space Physics. 2010. V. 115. № A7. A00E43. https://doi.org/10.1029/2009JA014867
  7. Pasko Victor P., Jianqi Qin, and Celestin Sebastien // Surveys in Geophysics. 2013. V. 34. P. 797. https://doi.org/10.1007/s10712-013-9246-y
  8. Vasilyak L.M., Kostyuchenko S.V., Kudryavtsev N.N., Filyugin I.V. // Phys. Usp. 1994. V. 37. № 3. P. 247. https://doi.org/10.1070/PU1994v037n03ABEH000011
  9. Anikin N.B., Zavialova N.A., Starikovskaia S.M., Starikovskii A.Y. // IEEE Transactions on Plasma Science. 2008. V. 36. P. 902. https://doi.org/10.1109/TPS.2008.924504
  10. Huang B., Zhang C., Qiu J., Zhang X., Ding Y., Shao T. // Plasma Sourc. Sci. and Technnol. 2019. V. 28. № 9. P. 095001.
  11. Goto Y., Ohba Y., Narita K., Goto Y., Ohba Y., Narita K. // Journal of Atmospheric Electricity. 2007. V. 27. Iss. 2. P. 105.
  12. Tarasenko V., Vinogradov N., Baksht E., and Sorokin D. // Journal of Atmospheric Science Research. 2022. V. 5. Iss. 3. P. 26. https://doi.org/10.30564/jasr.v5i3.4858
  13. Тарасенко В.Ф., Бакшт Е.Х., Виноградов Н.П. // Прикладная физика. 2022. № 4. С. 11. https://doi.org/10.51368/1996-0948-2022-4-11-17
  14. Бакшт Е.Х., Виноградов Н.П., Тарасенко В.Ф. // Оптика атмосферы и океана. 2022. Т. 35. № 9. С. 777. https://doi.org/10.15372/AOO20220911
  15. Sorokin D., Tarasenko V., Baksht E.Kh., Vinogradov N.P. // European Journal of Environment and Earth Sciences. 2022. V. 3. Iss. 6. P. 42. https://doi.org/10.24018/ejgeo.2022.3.6.322
  16. Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009, 736 с.
  17. Starikovskiy A.Yu, Aleksandrov N.L., Shneider M.N. // Journal of Applied Physics. 2021. V. 129. № 6. P. 063301. https://doi.org/10.1063/5.0037669
  18. Wu S., Cheng W., Huang G., Wu F., Liu C., Liu X., Zhang C., Lu X. // Physics of Plasmas. 2018 V. 25. № 12. P. 123507. https://doi.org/10.1063/1.5042669
  19. Tarasenko V.F., Kuznetsov V.S., Panarin V.A., Skakun V.S., Sosnin E.A., Baksht E.K. // JETP Letters. 2019. V. 110. P. 85. https://doi.org/10.1063/1.4981385
  20. Tarasenko V., Baksht E., Kuznetsov V., Panarin V., Skakun V., Sosnin E., Beloplotov D. // Journal of Atmospheric Science Research. 2020. V. 3. Iss. 4. P. 28. https://ojs.bilpublishing.com/index.php/jasr
  21. Tarasenko V.F., Sosnin E.A., Skakun V.S., Panarin V.A., Trigub M.V., Evtushenko G.S. // Physics of Plasmas. 2017. V. 24. № 4. P. 043514.
  22. Sosnin E.A., Babaeva N.Yu., Kozyrev A.V., Kozhevni-kov V.Yu., Naidis G.V., Skakun V.S., Panarin V.A., Tarasenko V.F. // Phys. Usp. 2021. V. 64. Is. 2. P. 191. https://doi.org/10.3367/UFNe.2020.03.038735
  23. Panarin V.A., Skakun V.S., Baksht E.K., Sosnin E.A., Kuznetsov V.S., Sorokin D.A. // Plasma Physics Reports. 2022. V. 48. № 7. P. 812.
  24. Hoder T., Bonaventura Z., Prukner V., Gordillo-Váz-quez F.J., Šimek M. // Plasma Sources Science and Technology. 2020. V. 29. № 3. P. 03LT01. https://doi.org/10.1088/1361-6595/ab7087
  25. Stenbaek-Nielsen H.C., McHarg M.G., Kanmae T., and Sentman D.D. // Geophys. Res. Lett. 2007. V. 34. № 11. P. L11105. https://doi.org/10.1029/2007GL029881
  26. Stenbaek-Nielsen H.C., Kanmae T., McHarg M.G., Haaland R. // Surveys in Geophysics. 2013. V. 34. P. 769.
  27. Zabotin N.A., Wright J.W. // Geophys. Res. Lett. 2001. V. 28. № 13. P. 2593.
  28. Janalizadeh R., Pasko V.P. // Electron Impact Ionization of Metallic Species at Sprite Altitudes as a Mechanism of Initiation of Sprite Streamers. AGU Fall Meeting. 2018.
  29. Tarasenko V., Vinogradov N., Beloplotov D., Burachenko A., Lomaev M., Sorokin D. // Nanomaterials. 2022. V. 12. № 4. P. 652. https://doi.org/10.3390/nano12040652
  30. Hervig M., Thompson R.E., McHugh M., Gordley L.L., Russell III J.M., Summers M.E. // Geophys. Res. Lett. 2001. V. 28 № 6. P. 971. https://doi.org/10.1029/2000GL012104
  31. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».