
PARTICLE ACCELERATION IN PLASMA 

FORMATION OF LASER PREPLASMAS TO CONTROL PARTICLE ACCELERATION 
EFFICIENCY 

© 2025 S. I. Glazyrina, b, M. A. Rakitinaa, A. V. Brantova, b 

aPhysics Institute named after. P. N. Lebedeva RAS, Moscow, Russia 
bFederal State Unitary Enterprise All-Russian Research Institute of Automation named after N.L. 

Dukhov, Moscow, Russia  

Received September 04, 2024 
Revised November 28, 2024 
Accepted December 10, 2024 

   Abstract. The issues of modeling the target expansion under the action of a nanosecond 
laser pulse are considered in order to characterize the plasma torch on the irradiated side and study 
the possibility of its use for efficient acceleration of charged particles by a powerful short laser 
pulse. It is shown how various physical models embedded in hydrodynamic calculations affect the 
modeling results. 
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1. INTRODUCTION
Short laser pulses with relativistic intensity allow to effectively accelerate electrons and ions 

of a plasma target to high energies, which opens up prospects for the creation of compact charged 
particle accelerators with a wide range of practical applications [1-4]. The energies gained and the 
number of accelerated particles are determined, in addition to the parameters of the laser pulse itself, 
by the characteristics of the targets used, their structure and density. To obtain electron beams with 
maximum energies, it is most advantageous to use low-density gases, which allow to accelerate 
relatively small-charge (typically at the level of tens to hundreds of picocoulombs) electron beams to 
energies of up to 10 GeV [5]. An increase in the number of electrons with high energies is possible 
by using denser targets with densities of the order of the critical density (for a wavelength of 1 μm, 
the critical density is 211.1 10× cm 3− ). It is precisely these targets that make it possible to achieve record 
values of laser radiation energy conversion into accelerated electron energy [6, 7]. At the same time, 
the creation of targets with the required optimal density and dimensions for the most effective 
acceleration of electrons (and then ions) still appears to be a complex task, for the solution of which 
aerogels, pre-homogenized foam targets [6], cluster and structured targets are used. 

One of the simplest ways to manipulate the properties of a target is to create an extended 
preplasma on the irradiated side of the target with a nanosecond prepulse that precedes the main short 
pulse, or a synchronized additional pulse. Despite the high contrast of modern laser systems (it reaches 
values 1010 ) the peak intensity is so high that even with such a contrast the flows in the pre-pulse are 
sufficient to form plasma, which can increase the efficiency of particle acceleration. Sometimes it 
turns out that reduced contrast without significant changes in peak intensity values or an optimal delay 
between the main and additional pulses [8] leads to more efficient plasma formation and, accordingly, 
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electron acceleration. There are experimental works predicting the existence of an optimal gradient at 
the front of the irradiated target for ion acceleration [9]. Thus, the plasma torch formed under the 
action of a nanosecond pulse/pre-pulse allows for more efficient acceleration of charged particles, and 
modeling its formation is a necessary component of the optimization of the acceleration process. 

As a rule, the target expansion under the action of nanosecond laser pulses is described within 
the framework of the hydrodynamic approach. In this case, the laser is an external energy source that 
is entirely responsible for the creation of the plasma corona: it forms and heats the plasma, increases 
the pressure in it, the gradient of which causes the target expansion. Several physical effects play a 
major role at this stage: collisional heat transfer, ionization, and the properties of matter. Within the 
framework of the hydrodynamic approach, the latter is described using the equation of state and the 
radiation properties of matter (radiation ranges). At relatively low intensities ( 1310 W/cm2), which 
are considered in this paper, radiation transfer does not play a significant role, so it can be neglected. 
The equation of state, on the other hand, is decisive in describing the dynamics of target expansion. 
A wide-range equation of state is required, since the substance passes through various states during 
laser irradiation. An initially cold target at room temperature has a normal solid density. This state is 
preserved for a part of the target even after the start of laser irradiation, which evaporates the irradiated 
part of the target, forming a hot region of low density, a plasma laser corona heated by a laser pulse 
or a heat flux from the laser absorption region. This hot region of low density is well described by the 
equation of state of an ideal plasma (taking into account the variable degree of ionization). 
Accordingly, there is also a transition region, which has an average density and is also heated. The 
paper will consider two versions of the equation of state: a wide-range one and one for an ideal plasma. 
Comparison of the calculation results with them will show what inaccuracies result from using the 
equation of state, applicable primarily to the plasma corona. The formation of preplasma from a 
nanosecond pulse, which was then replaced by pico and femtosecond pulses, was considered in [10, 
11] in a one-dimensional approximation. In this paper, the simulation is carried out in RZ geometry 
with symmetry relative to the axis of propagation of the laser pulse, which allows for full consideration 
of multidimensional hydrodynamic effects. 

In addition to the properties of substances, the formation of preplasma is also affected by the 
efficiency of absorption of the laser pulse, which depends on its intensity and duration. The interaction 
of laser radiation with a substance is determined by the permittivity, in which the contributions of 
individual effects depend on the state of the substance. In this paper, a nanosecond laser pulse with an 
intensity of about or more is considered 1210  W/cm2. At such high intensities, already at the pulse 
front on picosecond scales, rapid plasma formation by a propagating thermal wave occurs, and the 
main laser radiation interacts with a hot plasma target, the absorption in which is determined by 
inverse bremsstrahlung heating during collisions of electrons with ions. Of course, at the initial stage 
of irradiation, when the structure of the substance is preserved, it is important to take into account 
both electron-phonon collisions [12, 13] and an accurate description of the transitions between 
different phases of the substance, including possible metastable states [14]. Moreover, a correct 
description of the permittivity in a wide temperature range for different states of the target substance 
is decisive for modeling the effect of femtosecond and even picosecond laser pulses on the target [15, 
16]. For such short pulses, additional effects associated with the nonequilibrium distribution of 
electrons due to ionization [17-20] can arise, leading to features of the absorption of laser radiation. 
However, for the nanosecond laser pulse considered in the work, the main formation of the plasma 
corona occurs at times exceeding the characteristic collision times, when the electrons and ions of the 
expanding plasma are in equilibrium states, and the processes at short times overlap in influence with 
plasma processes. In this case, a rough estimate of the effect of absorption at the initial stage of 
interaction was made by a small modification of the collision frequency in the absorption model at 
low temperatures. 

One of the goals of this paper is to compare the dynamics of target expansion for different 



equations of state, which allows us to show the importance of taking into account the cold component 
of the equation of state. The paper verifies how different approximations (one-dimensionality of 
calculations, simplified equation of state) affect the properties of the forming preplasma. The paper 
also studies the effect of a short burst of laser intensity, occurring at the stage of existence of a 
developed plasma corona, on its further dynamics. This simple formulation models the effect of a 
rapid increase in intensity in femtosecond pulses. 

2. MODEL FOR CALCULATING PREPLASMA FORMATION 
The formation of preplasma occurs at characteristic times of thermal expansion of plasma – 

on the order of several nanoseconds. Such times significantly exceed the time of collisions between 
particles, so the dynamics can be described by a hydrodynamic model. An exception is the energy 
exchange between electrons and ions in a low-density medium that occurs at times on the order of the 
collision time, so the model must take into account the difference in their temperatures. This effect is 
enhanced by the fact that laser radiation heats up the electron component. Part of the laser radiation is 
reflected, the rest is absorbed and subsequently redistributed using a heat flow, which requires taking 
into account heat transfer (the dominant mechanism is electron heat transfer). The system of equations 
has the form 

 ( ) = 0,t j jv∂ ρ + ∂ ρ  (1) 
 ( ) ( ) ( ) = 0,t k j k j k e iv v v p p∂ ρ + ∂ ρ + ∂ +  (2) 
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 e( ) ( ) = .t i j j i i j j ie v e p v Q∂ ρ + ∂ ρ + ∂ −  (4) 
Here ρ, iv — density and velocity of the medium, ,e ip , ,e ie , ,e iT — pressure, internal energy and temperature 
of electrons (ions), respectively; lasQ - laser energy release, eiQ — collisional exchange of energy between 
electrons and ions, ( )eq — electron heat flux. Details of the hydrodynamic model can be found in [21]. 
The calculations use a modified classical thermal conductivity model with a thermal conductivity 
coefficient corresponding to a hot plasma [22], with the introduction of a limitation on the heat flux 
corresponding to the free movement of electrons with a limitation coefficient equal to = 0.15f . It was 
verified that for the parameters under consideration the limitation coefficient does not affect the 
obtained results. At the same time, the presence of thermal conductivity is important for energy 
transfer from the laser absorption region to the dense region of the target. The electron-ion exchange 
coefficient is determined by electron-ion collisions [22]. In the laser absorption region, throughout the 
entire action of laser radiation (several nanoseconds), a difference in electron and ion temperatures is 
observed, so taking this effect into account is necessary in our model. In the region with densities 
above the critical density, the collision frequency increases (due to the increase in density and the drop 
in temperature) and the temperatures of electrons and ions equalize. 

This system is solved in the author's multidimensional numerical code FRONT, developed for 
plasma physics problems. Calculations are performed on the Euler grid, the numerical scheme for the 
hydrodynamic equations is based on the Godunov-type scheme. To take into account additional 
physical effects, splitting by physical processes is used, exchange terms and heat transfer are 
calculated using a completely implicit numerical scheme, which allows for stable calculations at any 
electron-ion collision times and thermal conductivity coefficients. The code is well parallelized, but 
the calculations presented below are not particularly resource-intensive and require about 200 
processor hours. 

In the calculations below, we will assume that the laser radiation falls on the target at a normal 
angle, and we will also neglect the effects of refraction. In this case, the problem of radiation 
propagation is simplified - the rays move along a straight trajectory to the critical electron density and 
then in the opposite direction. The main energy release occurs near the critical density, so this 
approximation is acceptable. To describe the absorption and propagation of laser radiation, an 
equation for the intensity is solved, which is integrated along the beam trajectory 



 = .dI kIdl −  (5) 
HereI — intensity of laser radiation in the beam,k— absorption coefficient. Primary ionization of the 
medium and, accordingly, absorption are determined by multiphoton processes and are described by 
the Keldysh theory [23]. However, ionization by the field occurs at times less than several 
picoseconds, which constitute a small part of the pulse duration, and the losses of laser radiation due 
to ionization are negligibly small, which allows this effect to be neglected. The main absorption 
mechanism at the intensities under consideration 1210 - 1310 W/cm2is the reverse braking absorption, 
which determines the type of coefficientk[12, 13, 24], calculated using the imaginary part of the 
permittivity, for which the Drude model is used. 

Let's consider the features of the target's equations of state. Due to the two-temperature model, 
electrons and ions require their own equation of state. First, let's consider the simplest version of the 
equation of state - an ideal plasma with a variable charge composition. In this case, the pressure is 
proportional to the concentration of particles of each type 

 = , = .e e B e i i B ip n k T p n k T  (6) 
According to equations (2)–(4), the motion of the medium is determined by the gradient of the total 
pressure, and individual pressure components are needed to calculate the change in the internal energy 
of the corresponding component. The energy density in the case of an ideal plasma has the form:

= 1.5e e B ee n k Tρ , = 1.5i i B ie n k Tρ . The main ionization processes under the conditions under consideration 
are associated with collisions, therefore the ionization equilibrium is described by the Saha equation 
[25]. The total ion concentration has the form 
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Where ,nα β— concentration of ions with chargeβelement typeα( ,maxZα — the charge of the element's 
nucleus), and the sum is taken over all elements and ion charges. The electron concentration is written 
as 

 
,m

,
=1

= .
Z ax

en n
α

α β
α β

β∑ ∑  (8) 

As noted above, such an equation of state works well for low-density plasma, i.e. with a density 
significantly lower than that of a solid. 0ρ for a given substance (for aluminum 0 = 2.7ρ g/cm3). At the 
same time, it does not allow to describe the behavioral features of a substance near 0ρ , which leads to 
erroneous dynamics of the solid target. 

To construct an equation of state applicable to both the solid phase and the low-density corona, 
we use the approach proposed in [26]. The electron component is described using the Thomas–Fermi 
model, which takes into account the degeneracy of electrons at high density and also passes into the 
ideal plasma model at low density and high temperature. The ionization state is calculated in this 
model in a consistent manner with the solution of the electron distribution problem. Its value is close 
to the value given by the Saha model. For the ion component, the Cowan model is used, which offers 
interpolation expressions for the free energy of ions taking into account three phases: solid, liquid, 
and gas. The transition between these phases is specified using the melting point and the Debye 
temperature, for which empirical dependences on the density are also presented. The ion pressure does 
not depend on the ionization state, so this interpolation is sufficient. These two models are 
supplemented by a semi-empirical correction for the binding energy, which allows one to obtain the 
atmospheric pressure at normal substance density and room temperature. The correction is determined 
by the bulk compression modulus under normal conditions. This model describes the shock-wave 
compression of substances well, which is confirmed by a comparison with experimental data. In 
addition, at low densities and high temperatures, it predicts results close to the model of an ideal 



plasma with variable ionization (see Fig. 1), so it should also correctly describe the expansion of 
plasma at high temperatures (which occurs with laser irradiation). This equation of state is numerically 
implemented as a module to the hydrodynamic code. With its help, tabular data are calculated, which 
are then used in calculations. The following parameters are used to construct the equation of state of 
aluminum: = 13Z , = 26.98A , normal density of matter 0 = 2.7ρ g/cm3, bulk compression modulus = 76B
GPa. Such an equation of state taking into account the degeneracy effects will be the main one in the 
calculations (let us call it, as the authors of the article [26], QEOS). The total pressure isotherms for 
such a model in comparison with the ideal plasma model are presented in Fig. 1. 

3. CALCULATIONS OF TARGET DYNAMICS UNDER THE ACTION OF A 
NANOSECOND LASER PULSE 

Let's consider the spread of an aluminum plate with a thickness = 6h µm, which is irradiated 
by a laser pulse with a constant intensity over time (Fig. 2). The characteristic time of intensity 
increase in the calculations is 20 ps, and it reaches a plateau at the time of 100 ps. The pulse duration 
in all calculations is = 3τ ns. The laser radiation falls along the normal to the target surface. Due to 
the symmetry of the problem, the calculation is carried out in cylindrical geometry RZ (with angular 
symmetry φ), which allows us to fully take into account the three-dimensional expansion of plasma. 

Let's define it as Z  axis along which the laser radiation propagates. Since we are considering 
the dynamics created by the prepulse of a tightly focused short pulse, the prepulse focusing radius 
remains small. Thus, we define the spatial profile of the incoming laser pulse as 
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Here 0I — intensity at the center of the pulse, lr — focusing radius, in calculations we will use the 
value = 4lr µm. The numerical code used does not allow working with vacuum states, so the area 
around the target is filled with a low-density substance 5

l = 10ow
−ρ  g/cm3(with the same equation of 

state as is used to describe the target). This value is small enough that its value does not affect the 
further dynamics of the system. At the initial moment of time, a normal uniform pressure (1 atm) is 
set in the entire computational domain, which corresponds to the normal density of aluminum and the 
initial room temperature for the used equation of state QEOS. 

According to the Thomas-Fermi model, the average charge of aluminum under normal 
conditions is = 2.4Z . With such an average charge, the electron concentration is formally higher than 
the critical value, which leads to absorption of laser radiation through the reverse braking mechanism 
on the front surface of the target. The substance heated at the boundary quickly turns into plasma and 
flies away from the target, forming a plasma corona. 

Over times of about 100 ps, when the maximum intensity of the irradiated laser pulse reaches 
the target, the temperature in the absorption region rises to 100 eV (for nanosecond pulse intensity

1210  W/cm2the heating time to 100 eV is 150 ps, and for the intensity 1310 W/cm2— 90 ps). It is this 
temperature that determines the characteristic speed of expansion of the corona of the formed plasma,
2 / ( 1) 100sc γ −   km/s, where sc — the speed of sound in the corona, proportional to the root of the 
temperature 1/ 2

sc T∝ . Note that after the incident radiation intensity reaches a plateau, the temperature 
changes slightly. Over times of about 300 ps, the hot plasma has time to fly away towards the laser 
pulse, filling almost the entire computational domain. Note that the hydrodynamic velocity of 
expansion obtained in the calculations turns out to be significantly less than the velocity of expansion 
of collisionless plasma into a vacuum [27], according to which the velocity of the front of the 
expanding torch increases with time, 22 ln( 1)f sv c τ + τ + , Where = / 2pht eτ ω and for the 
simulation parameters 1500fv  km/s. 

In the opposite direction, deep into the target, a thermal wave goes, which forms a shock wave. 
At the intensities under consideration, the first shock wave that runs along the target is relatively weak 



(at 12= 10I W/cm 2wave speed = 7.5D km/s, which is consistent with the Hugoniot relations for 
ablation pressure 330  kbar). This wave, traveling at a speed comparable to the speed of sound in 
cold metal, accelerates the plate material. As a result, the plate begins to shift in the region of laser 
absorption (Fig. 3, 4). A series of weak shock waves that propagate along the plate further are clearly 
visible in the density distributions (Fig. 5). 

The scattered hot plasma fills the space around the target from the front side (from the side of 
the incident laser pulse). The maximum temperature of several hundred eV is observed near the laser 
absorption region, the energy removal together with the substance or due to heat transfer maintains 
the temperature in the plasma corona. The heat flow also exists in the direction of the dense area of 
the target, but due to the high heat capacity, the dense parts of the target remain relatively cold. 

Subsequently, the accelerated substance of the plate in the region near the laser absorption will 
continue its movement, the target gradually becomes thinner and eventually the plate breaks through 
(Fig. 4). The characteristic time of complete burnout of the target with a laser pulse duration of = 3τ
ns and for intensity 12= 10I  W/cm2 makes up = 15pt ns, for intensity 13= 10I  W/cm2— = 6pt  ns, and 
for intensity 13= 5 10I ×  W/cm2— = 3.5pt  ns. 

It should be noted that the described dynamics of the plate is possible only due to the presence 
of a cold component in the equation of state, which allows maintaining the elasticity of the dense 
medium. This is clearly seen when comparing the calculations performed with calculations with 
another equation of state - an ideal plasma, which does not contain degeneracy. In the equation of 
state of an ideal plasma, due to the absence of a cold part, the speed of sound in the medium is 
determined by the temperature 1/ 2

sc T∝ . In a dense medium at the initial moment of time the initial 
low temperature of the target 2

0 = 10T −  eV gives the speed of sound 200 m/s, which is significantly 
lower than the speed of sound in cold aluminum at normal density. The speed of sound characterizes 
the speed of propagation of small disturbances in such a medium. As a result, in the calculations the 
plate does not shift entirely, as shown above, but is raked by the first shock wave propagating from 
the point of energy release (Fig. 6). 

At the same time, it is worth noting that the parameters of the low-density region - the laser 
corona for both equations of state are very close to each other. Figure 7 shows a comparison of the 
electron density and temperature profiles along the straight line = 0r  (at the center of the laser beam) 
for two equations of state at a time of 2 ns. It is seen that the profiles en And eT in the low-density region 
are close for both calculations. We define the density gradient as 1= /e en dn dz−Γ . For calculation with 
the QEOS equation of state Q = 2.5EOSΓ  microns 1− , and for calculation with the equation of state of 
an ideal plasma I = 3.1PΓ  microns 1− , which gives a difference in 20 %. The obtained agreement is 
explained by the fact that the profiles in the low-density region are determined only by the properties 
of the substance in such states and the magnitude of the energy release. A more noticeable difference 
arises for the position of the critical density, which is spatially shifted by several microns into the 
target when using the equation of state of an ideal gas. The position of the critical region is important 
for determining the focal point of a short laser pulse, since the efficiency of particle acceleration 
depends on it. In general, if we are interested only in the properties of the laser corona, the equation 
of state of an ideal plasma is sufficient. 

For a more detailed description of the dynamics, let us consider the pressure behavior (Fig. 7). 
In the low-density corona region, it coincides for both calculations (up to an offset, which is consistent 
with the density behavior). In the high-density plasma region, the difference in pressure behavior 
explains the difference in the target dynamics. For the equation of state of an ideal plasma, the peak 
pressure value is located at the boundary with the dense plasma, and the pressure drops inside the 
layer. This configuration leads to the effect of matter raking. For the second equation of state (with 
degeneracy), the maximum pressure value is in the high-density region and is associated with the 
shock wave that passed through the medium, compressed, and accelerated the target. It is worth noting 



two points at which the pressure goes negative. These points are in the region of transition from a 
dense to a low-density medium at low temperatures: in this case, the state of the medium is in the 
region of non-monotonic pressure behavior according to the QEOS predictions (see Fig. 1). This 
region requires a more physically complex model for constructing the equation of state. The small 
volume in space occupied by regions with such a state of matter does not affect the large-scale 
dynamics of the target, but the presence of these regions indicates the need for further refinement of 
the equation of state. 

Fig. 8 shows a comparison of the target shape as a result of irradiation with pulses of different 
intensities and the same focusing radius. 0r . Due to the difference in temperature in the corona and, 
accordingly, pressure, the displacement of the plate is different, as is the radius of the hole formed in 
the plate. It is clearly seen that at high intensities the target bends, and as a result the dense regions 
that surround the expanding plasma begin to influence the flow. This effect cannot be taken into 
account within the one-dimensional approximation, which demonstrates the importance of taking into 
account the three-dimensional expansion, especially under conditions of a small focusing radius of 
the laser pulse. 

Note that simpler one-dimensional calculations are often used to estimate the size and 
characteristic temperature gradients of an expanding plasma cloud, sometimes using approximate 
renormalizations for the expansion of the plasma cloud in transverse directions, for example, using an 
additional dynamic equation [28]. 

Fig. 9 shows a comparison of the electron density and temperature profiles for three-
dimensional (RZ ) and one-dimensional (1D) calculations. The difference is especially noticeable in 
the electron density profiles. In the one-dimensional calculation, the corona is strongly elongated with 
a gentle gradient (for 12

0 = 10I W/cm2gradient 1 = 0.2DΓ  microns 1− , which is an order of magnitude 
lower than inRZ calculation). In three dimensions (RZ ) the calculation clearly shows the presence of 
several characteristic gradients - at densities several units higher than the critical density, near the 
critical density and in the low-density plasma corona. The plate displacements also differ significantly: 
in the one-dimensional case, the plate will shift several times more strongly. 

The inverse bremsstrahlung absorption model used in the calculations does not quite correctly 
describe the absorption behavior at low temperatures. The absorption coefficient is determined 
through the imaginary part of the plasma permittivity, = 2 I /lk m cω ε  (Here lω — the frequency of 
the laser radiation) and is proportional to the effective collision frequency. For the plasma model of 
electron-ion collisions used in the code, the collision frequency increases with decreasing temperature,

3/ 2
ei eT −ν ∝ , which also leads to an incorrect increase in absorption at low temperatures [29]. As a 

simple test of how much such enhanced absorption plays a role, we will use a simple modification of 
the presented model: when calculating the electron-ion frequency, we will limit the temperature from 
below by the Fermi temperature for the substance: = (max( , ))ei ei F eT Tν ν . For aluminum of normal 
density we obtain (taking into account the equation of state used, which yields the value en )

2 2/ 3= (3 ) / (2 ) = 4.7F e e BT n m kπ  eV. Calculation with such a collision frequency limitation leads to a 
delay in the growth of the corona temperature, but at very short times 50 ps when is the plasma 
temperature 1T  eV. As the temperature increases to tens of eV (at times 100 ps) the difference 
between the calculations disappears. Thus, the correct absorption coefficient at the initial stage of 
interaction has an insignificant effect on the subsequent dynamics of the target at the energy flows 
under consideration. This is partly due to the fact that the plasma formation processes occur at low 
laser intensities compared to the peak ones and affect only a small part of the pulse energy, while the 
dynamics of the target itself and the laser corona are determined by subsequent stages of interaction, 
at which a significant part of the laser pulse energy enters the target. 

Let us consider the effect of a short picosecond intensity burst on the target dynamics against 
the background of a constant nanosecond pulse. Such bursts are observed in the pre-pulse of some 



laser systems [30], and also describe the increase in intensity on the picosecond scale before the arrival 
of a femtosecond pulse [31]. We will assume that the picosecond pulse has a Gaussian time profile 
with a characteristic scale 1 = 2t ps and intensity 15

1 = 10I W/cm2, and the intensity of the nanosecond 
pulse, duration 0 = 3τ ns, is 12

0 = 10I W/cm2. The center of the short picosecond pulse is located 2 ns 
after the start of the long pulse (see Fig. 8a). Thus, the energy of the short pulse in 1 1 0 0/ 7I Iτ τ ≈

times greater than the energy of a nanosecond pulse, and it has a significant impact on the dynamics 
of the target. 

The results of calculations with such a pulse are presented in Fig. 10 b and Fig. 11. The results 
show that at the moment of arrival of the maximum of the picosecond pulse, = 2t ns, a short pulse 
manages to significantly heat the plasma and change the electron density gradient near the critical 
point: the profile steepens and the gradient Γ changes in a short time from 2.5 µm 1− up to 3.2 µm 1− . 
The target itself (its denser part) does not have time to respond to the short pulse at picosecond times. 
The gradient of the low-density part of the plasma torch also remains virtually unchanged. Thus, the 
picosecond prepulse has little effect on the target density characteristics, only changing the 
characteristic gradient near the critical density. At the same time, the presence of such a relatively 
powerful intensity burst in the prepulse can significantly change the parameters of the expanding 
plasma at later times, leading to a density burst in the plasma corona (see Fig. 9c). In addition, the 
rapid energy deposition and the accompanying plasma heating lead to an impact effect, as a result of 
which a strong shock wave subsequently propagates along the target, which leads to the destruction 
of the rear boundary of the plate, see Fig. 8b. It should be noted that the observed destruction occurs 
due to a strong rarefaction wave that occurs after the shock wave is reflected from the boundary. This 
is evident from the pressure profiles shown in Fig. 9 — a large area with negative pressure appears. 
Since the calculations did not use a model of destruction or elastic plasticity, the observed effect is 
associated with the behavior of the equation of state. Therefore, this result is rather an indication of 
possible destruction, and a more detailed study of this process requires calculations with more accurate 
models of the equation of state, as well as taking into account the strength properties of substances. 

4. DISCUSSION OF RESULTS AND CONCLUSION 
The paper examines the process of laser corona formation when a metal (aluminum) target is 

irradiated with nanosecond pulses and intensities 1210 - 135 10×  W/cm 2 . The interest in such 
calculations is associated with the need to correctly obtain the parameters of the plasma formed before 
the arrival of a powerful femtosecond pulse, as well as the ability to control the parameters of this 
plasma. A physical model required for such calculations is presented, and the main effects 
accompanying the formation of plasma at different laser intensities are discussed. In particular, the 
effect of two equations of state on the calculations is considered. The equation of state of an ideal 
plasma with variable ionization is suitable for describing the low-density region of the plasma crown, 
in which calculations using it are consistent with the results of calculations using a wide-range 
equation of state. Thus, if we are interested only in the properties of the low-density corona, the use 
of such an equation of state is justified. To correctly describe the dynamics of the dense part of the 
target, as well as its displacement, equations of state are required that take into account the effect of 
electron degeneracy and bonds between atoms at high matter density. It is also shown that within the 
framework of a one-dimensional model, erroneous gradients of the electron density in the region of 
the critical density are obtained: due to the effects of lateral expansion of the plasma, the gradients 
become steeper. This is especially important in the case of a small focusing radius, which exactly 
corresponds to the pre-pulse of short laser systems. The presented model allows calculating the 
dynamics of thin plates, their deflection and displacement, which is important to consider when 
focusing laser radiation. 

The target preplasma density profiles predicted by the hydrodynamic calculations are 
presented in two graphs (Fig. 12): along the axis Z ( = 0r ) and along the axis R ( = 11z  µm, i.e. along 
the beam, which is 5 µm away from the original surface of the plate). From them it is evident that the 



characteristic gradient in the region of critical electron density is = 2.5Γ microns 1− and has a weak 
dependence on the intensity and time of irradiation. Large the difference is observed at densities 
several units higher than the critical one (1–10 cn ): the higher the intensity, the more developed the 
corona is and the flatter the density profile is formed in this region. The characteristic gradient in the 
region of the low-density corona (at densities from 0.05 cn  to 0.5 cn ) varies from 0.03 to 0.13 µm 1− . 
Thus, the formed longitudinal profile of the preplasma density has a rather sharp gradient in the region 
of critical density and an extended preplasma starting from the characteristic density of 0.3–0.4 cn , the 
value of which decreases by an order of magnitude over 10–15 μm. This indicates rather limited 
possibilities for controlling the parameters of the preplasma using a prepulse of spontaneous 
amplification of the emission of the main powerful short pulse, since in this case, with a fixed delay, 
only the longitudinal profile of the preplasma can be used, changing slightly depending on the 
intensity of the prepulse. 

Significantly more possibilities for controlling the parameters of the plasma target arise when 
using an independent nanosecond pulse, especially with the possibility of focusing the main pulse 
used to accelerate electrons at different angles to the target, and, in particular, almost parallel to the 
expanding target. In this case, the pulse can propagate along the transverse profile of the formed 
preplasma ( =z const), the electron density of which increases with the intensity of the nanosecond 
pulse. At the same time, close to the target axis, the concentration is practically constant at the level 
of 0.3–0.4 cn , when moving away along the radius, it first begins to grow, reaching several critical 
densities, and then the growth is replaced by a fall. The non-monotonicity of these density profiles 
(maximum in the region of 15–20 μm from the focusing axis) is associated with the transverse features 
of the target expansion: outside the radius of laser irradiation, the substance is raked into a protrusion 
that appears on the front side (Fig. 6). Thus, at sufficiently high intensities of the nanosecond pulse (

135 10×  W/cm2) in front of the irradiated part of the target at some distance from the focal center, a 
region of near-critical density appears, 5–10 μm in length, which can be used for more efficient 
electron acceleration. It also seems possible to use the transverse profile of the plasma behind the 
burnt-out target for efficient electron acceleration. Fig. 13 shows the transverse profiles of the 
concentration en behind the plate at the time near and after the plate breakthrough. It is evident that the 
electron density decreases with time and is a fraction of the critical density. At the same time, at earlier 
times, the density in the central part will be higher (of the order of critical), but will be limited by the 
"walls" of the flying apart target. Thus, by changing the delay between the additional nanosecond and 
main femtosecond laser pulses, it is possible to achieve interaction of the latter with the most optimal 
profile of the plasma target. For example, when irradiating an aluminum target 6 μm thick with a 
nanosecond pulse (3 ns long) with an intensity of 1410 W/cm2, focused into a spot 4 µm in size, 4 ns 
after its arrival at the target, a homogeneous plasma with a density of the order of0.2 cn and a size of 
about 100 μm, which is optimal for accelerating electrons in the self-capture mode of a relativistic 
laser pulse with a duration of 10 fs and an energy of about 2 J [7]. Considering that the characteristic 
times of a significant change in the density profile of the expanding plasma are hundreds of 
picoseconds, it is possible to ensure the necessary synchronization of a nanosecond pulse, creating a 
plasma with a given profile, with a femtosecond laser pulse, for the most effective acceleration of 
electrons. 
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Captions to the figures 
 
Fig. 1.Comparison of total pressure isotherms for the QEOS equation of state (solid curves) 

and ideal plasma (dashed curves) for aluminum. 
Fig. 2.Calculation geometry and time profile of the laser pulse. 
Fig. 3.Density distribution (in g/cm3) and temperatures (in eV) in the target and surrounding 

space. Calculation with 13
0 = 10I  W/cm2. Moment in time = 2t ns. 

Fig. 4.Plate dynamics under constant intensity pulse irradiation 1310  W/cm2. 
Fig. 5.An enlarged portion of the plate in Fig. 2, where the waves running along it are clearly 

visible ( 13= 10I W/cm2). 
Fig. 6.Density distribution (in g/cm3) and temperature (in eV) in the target when calculated 

with the equation of state of an ideal plasma at 13
0 = 10I  W/cm2. Moment in time = 2t ns. 

Fig. 7.Comparison of electron density (solid curves) and electron temperature (dashed curves) 
profiles for calculations with different equations of state (a). Plasma pressure (solid) and density 
(dashed) (b). Intensity 13

0 = 10I  W/cm2, moment in time = 2t  ns. 
Fig. 8.Comparison of target shape for different intensities at the end of the laser pulse = 3t ns. 

The intensity values are indicated under the figures. The calculation is performed using the equation 
of state with degeneracy (QEOS). 

Fig. 9.Comparison of electron density (solid curves) and temperature (dashed curves) profiles 
for calculations performed in geometryRZ and one-dimensional calculations for two intensity variants 
at the moment = 2t ns. 

Fig. 10.Time profile of a laser pulse with a picosecond burst of magnitude 15
1 = 10I  W/cm2in 

the background 12
0 = 10I  W/cm2and characteristic duration 1 = 2τ ps (a) . Distribution of target 

density after pulse action at a time of 3 ns (b) . 
Fig. 11.Distribution of electron concentration (at critical cn , solid curves) and temperatures (in 

eV, dashed curves) along the straight line = 0r . Settlements with 12
0 = 10I  W/cm 2 (ns), and 

calculation with 12
0 = 10I  W/cm2 and peak value 15

1 = 10I  W/cm2in a femtosecond pulse (ns+ps). 
Time moments are 2 ns (a) and 3 ns (b). The distributions of electron concentration (solid curves) and 
pressure (dashed curves) at the moment 3 ns for this calculation are shown (c). 

Fig. 12.Electron concentration profiles along a straight line = 0r   (a) and beam = 11z  µm 
(b) for different moments of time and different intensities. Time is in ns, intensities in W/cm2. 

Fig. 13.Density distribution at the moment = 4t  For 14= 10I  W/cm2  (a) , the beam along 
which the one-dimensional profiles are constructed is shown. One-dimensional profiles of the electron 
concentration for two variants of intensity and time after the plate breakthrough along = 20z −  µm (b) 
. 
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