Влияние инвазивного Aporrectodea caliginosa и аборигенного Eisenia nordenskioldi pallida на содержание NH4+, K+, Na+, Mg2+, Ca2+ в полевом эксперименте в мезокосмах с лугово-черноземной почвой Западной Сибири

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Вторжение инвазивных видов дождевых червей влияет на цикл питательных веществ в почве. В полевом эксперименте в почвенных мезокосмах сравнивали воздействие аборигенного дождевого червя Eisenia nordenskioldi pallida, инвазивного Aporrectodea caliginosa и их взаимодействия на содержание водорастворимых форм катионов NH+, K+, Na+, Mg2+, Ca2+ в лугово-черноземной почве Западной Сибири. Для этого был проведен полевой имит4ационный эксперимент в почвенных мезокосмах. Выявлено, что инвазивный вид относительно слабо повлиял на содержание катионов за один вегетационный период. Впервые изучено влияние E. n. pallida на содержание катионов в почве. Результат инвазии A. caliginosa будет зависеть от того, сосуществует ли этот вид с аборигенным или займет почву без местных люмбрицид.

Об авторах

К. А. Бабий

Омский государственный педагогический университет

Email: labinvert@omgpu.ru
Россия 644043 Омск, наб. Тухачевского, 14

С. Ю. Князева

Омский государственный педагогический университет

Email: labinvert@omgpu.ru
Россия 644043 Омск, наб. Тухачевского, 14

Е. В. Голованова

Омский государственный педагогический университет

Email: labinvert@omgpu.ru
Россия 644043 Омск, наб. Тухачевского, 14

Д. В. Соломатина

Омский государственный педагогический университет

Email: labinvert@omgpu.ru
Россия 644043 Омск, наб. Тухачевского, 14

Список литературы

  1. Díaz S., Settele J., Brondízio E.S. et al. Pervasive humandriven decline of life on Earth points to the need for transformative change // Science. 2019. V. 366. Art. 3100. https://doi.org/10.1126/science.aax3100
  2. Hendrix P.F., Callaham M.A., Drake J.M. et al. Pandora’s box contained bait: the global problem of introduced earthworms // Ann. Rev. Ecol. Evol. Syst. 2008. V. 39. P. 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426
  3. Frelich L.E., Blossey B., Cameron E.K. et al. Sideswiped: ecological cascades emanating from earthworm invasions // Front. Ecol. Environ. 2019. V. 17. P. 502–510. https://doi.org/10.1002/fee.2099
  4. Ferlian O., Thakur M.P., Gonzalez A . et al. Soil chemistry turned upside down: A meta-analysis of invasive earthworm effects on soil chemical properties // Ecology. 2020. V. 101. Art. e02936. https://doi.org/10.1002/ecy.2936
  5. Richardson J.B., Johnston M.R., Herrick B.M. Invasive earthworms Amynthas tokioensis and Amynthas agrestis alter macronutrients (Ca, Mg, K, P) in field and laboratory forest soils // Pedobiologia. 2022. V. 91–92. Art. 15080 4. https://doi.org/10.1016/j.pedobi.2022.15080 4
  6. Van Groenigen J., Lubbers I., Vos H. et al. Earthworms increase plant production: a meta-analysis // Sci. Rep. 2014. V. 4. Art. 6365. https://doi.org/10.1038/srep06365
  7. Lang B., Betancur-Corredor B., Russell D.J. Earthworms increase mineral soil nitrogen content – a meta-analysis // Soil Organisms. 2023. V. 95. P. 1–16. https://doi.org/10.25674/so95iss1id308 https://doi.org/10.25674/so95iss1id308
  8. Eisenhauer N., Partsch S., Parkinson D., Scheu S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation // Soil Biol. Biochem. 2007. V. 39. P. 1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019
  9. Hodson M.E., Brailey-Jones P., Burn W.L. et al. Enhanced plant growth in the presence of earthworms correlates with changes in soil microbiota but not nutrient availability // Geoderma. 2023. V. 433. Art. 116426. https://doi.org/10.1016/j.geoderma.2023.116426
  10. Hemkemeyer M., Schwalb S.A., Heinze S. et al. Functions of elements in soil microorganisms // Microbiol. Res. 2021. V. 252. Art. 126832. https://doi.org/10.1016/j.micres.2021.126832
  11. Jamroz E., Bekier J., Medynska-Juraszek A. et al. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: a case study // Sci. Rep. 2020. V. 10. Art. 12842. https://doi.org/10.1038/s41598-020-69860-9
  12. Бабий К.А., Князев С.Ю., Соломатин Д.В., Голованова Е.В. Влияние инвазивного дождевого червя Eisenia nana (Lumbricidae) на содержание водорастворимых форм катионов (NH+, K+, Na+, Mg2+, 4 Ca2+) в почве // Экология. 2023. № 4. С. 302–310 [Babiy K.A., Kniazev S.Y., Solomatin D., Golovanova E.V. Influence of the Invasive Earthworm Eisenia nana (Lumbricidae) on the Content of Water-Soluble Forms of Cations (NH+, K+, Na+, Mg2+, Ca2+) in Soil // 4 Russ. J. of Ecology. 2023. V. 54. P. 322–330]. https://doi.org/10.1134/S1067413623040033
  13. Resner K., Yoo K., Sebestyen S.D. et al. Invasive earthworms deplete key soil inorganic nutrients (Ca, Mg, K, and P) in a northern hardwood forest // Ecosystems. 2015. V. 18. P. 89–102. https://doi.org/10.1007/s10021-014-9814-0
  14. Felten D., Emmerling C. Earthworm burrowing behaviour in 2D terraria with singleand multi-species assemblages // Biol. Fertil. Soils. 2009. V. 45. P. 789–797. https://doi.org/10.1007/s00374-009-0393-8
  15. Le Couteulx A., Wolf C., Hallaire V., Peres G. Burrowing and casting activities of three endogeic earthworm species affected by organic matter location // Pedobiologia. 2015. V. 58. P. 97–103. https://doi.org/10.1016/j.pedobi.2015.04.004
  16. Bottinelli N., Jouquet P., Minh T. et al. Mid-infrared spectroscopy to trace biogeochemical changes of earthworm casts during ageing under field conditions // Geoderma. 2021. V. 383. Art. 114891. https://doi.org/10.1016/j.geoderma.2020.114811
  17. T17. Tiunov A.V., Hale C.M., Holdsworth H.M., Vsevolodo- communities and soil chemistry // Soil Biol. Biochem.va-Perel T.S. Invasion patterns of Lumbricidae into 2020. V. 149. Art. 107955.
  18. Vsevolodova-Perel T.S., Leirikh A.N. Distribution and ecology of the earthworm Eisenia nordenskioldi pallida (Oligochaeta, Lumbricidae) dominant in southern Siberia and the Russian Far East // Entomol. Rev. 2014. V. 94. P. 479–485. https://doi.org/10.1134/S00138738140 40034
  19. Kniazev S.Y., Kislyi A.A., Bogomolova I.N., Golovanova E.V. Territorial heterogeneity of the earthworm population (Opisthopora, Lumbricidae) of Omsk oblast and environmental factors: A quantitative assessment of the relationship // Contemp. Probl. Ecol. 2022. V. 15. P. 484–493. https://doi.org/10.1134/S1995425522050079
  20. IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria, 2006. 236 p.
  21. Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // J. Stat. Software. 2008. V. 25. P. 1–18. https://doi.org/10.18637/jss.v025.i01
  22. Булыгина О.Н., Разуваев В.Н., Александрова Т.М. Описание массива данных суточной температуры воздуха и количества осадков на метеорологиче- ских станциях России и бывшего СССР (tttr). Свидетельство о государственной регистрации базы данных № 2014620942. URL: http://aisori-m.meteo. ru/waisori/select.xhtml (Дата обращения 04.07.2025)
  23. Mudrák O., Frouz J. Earthworms increase plant biomass more in soil with no earthworm legacy than in earthworm-mediated soil, and favour late successional species in competition // Funct. Ecol. 2018. V. 32. P. 626–635. https://doi.org/10.1111/1365-2435.12999
  24. Babiy K.A., Kniazev S.Yu., Abramenko A.S., Golovanova E.V. The first data regarding the effect of the exotic Eisenia ventripapillata (Oligochaeta, Lumbricidae) on the cation composition of soils in Western Siberia // Vestn. Tomsk. Gos. Univ. Biol. 2022. V. 60. P. 65–77. https://doi.org/10.17223/19988591/60/4
  25. Medina-Sauza R.M., Álvarez-Jiménez M., Delhal A. et al. Earthworms building up soil microbiota, a review //Front. Environ. Sci. 2019. V. 7. Art. 81. https://doi.org/10.3389/fenvs.2019.00081
  26. Price-Christenson G.J., Johnston M.R., Herrick B.M., Yannarell A.C. Influence of invasive earthworms (Amynthas spp.) on Wisconsin forest soil microbial communities and soil chemistry // Soil Biol. Biochem. 2020. V. 149. Art. 107955. https://doi.org/10.1016/j.soilbio.2020.107955
  27. Marichal R., Martinez A.F., Praxedes C. et al. Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc // Appl. Soil Ecol. 2010. V. 46. P. 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001 https://doi.org/10.1016/j.apsoil.2010.09.001
  28. Kim Y.-N., Robinson B., Boyer S. et al. Interactions of native and introduced earthworms with soils and plant rhizospheres in production landscapes of New Zealand // Appl. Soil Ecol. 2015. V. 96. P. 141–150. https://doi.org/10.1016/j.pedobi.2006.09.001
  29. Pulleman M.M., Six J., Uyl A. et al. Earthworms and management affect organic matter incorporation and microaggregate formation in agriculture soils // Appl. Soil Ecol. 2005. V. 29. P. 1–15. https://doi.org/10.1016/j.apsoil.2004.10.003
  30. Babiy K.A., Kniazev S.Yu., Golovanova E.V. et al. What determines ion content of Lumbricid casts: soil type, species, or ecological group? // Pol. J. Ecol. 2021. V. 69. P. 96–110. https://doi.org/10.3161/15052249PJE2021.69.2.003
  31. Le Mer G., Bottinelli N., Dignac M.F. et al. Exploring the control of earthworm cast macroand micro-scale features on soil organic carbon mineralization across species and ecological categories // Geoderma. 2022. V. 427. Art. 116151. https://doi.org/10.1016/j.geoderma.2022.116151
  32. Canti M.G., Piearce T.G. Morphology and dynamics of calcium carbonate granules produced by different earthworm species // Pedobiologia. 2003. V. 47. P. 511–521. https://doi.org/10.1078/0031-4056-00221
  33. Lee K., Foster R. Soil fauna and soil structure // Aust. J. of Soil Res. 1991. V. 29. P. 745–775. https://doi.org/10.1071/SR9910745
  34. Zorn M.I., Van Gestel C.A.M., Eijsackers H. The effect of two endogeic earthworm species on zinc distribution and availability in artificial soil columns // Soil Biol. Biochem. 2005. V. 37. P. 917–925. https://doi.org/10.1016/j.soilbio.2004.10.012
  35. Capowiez Y., Gilbert F., Vallat A. et al. Depth distribution of soil organic matter and burrowing activity of earthworms – mesocosm study using X-ray tomography and luminophores // Biol. Fertil. Soils. 2021. V. 57. P. 337–346. https://doi.org/10.1007/s00374-020-01536-y
  36. Pham Q.V., Nguyen T.T., Lam D.H. et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration // Geoderma. 2023. V. 429. Art. 116245. https://doi.org/10.1016/j.geoderma.2022.116245

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).