УДК 58.056

НИЗКАЯ УСТОЙЧИВОСТЬ АБОРИГЕННЫХ ВИДОВ КУСТАРНИКОВ И КУСТАРНИЧКОВ ОСТРОВА САХАЛИН К МАЛОСНЕЖНОЙ ЗИМЕ

© 2024 г. В. В. Шейко^{а, *}

^а Сахалинский филиал Ботанического сада-института ДВО РАН, Россия, 693023, Южно-Сахалинск, ул. Горького, 21

*e-mail: viktorsheiko@mail.ru

Поступила в редакцию 09.08.2023 г. После доработки 26.09.2023 г. Принята к публикации 05.10.2023 г.

Ключевые слова: остров Сахалин, зимостойкость инорайонных видов, стратегии адаптации к похолоданию

климата, экстремальные зимы

DOI: 10.31857/S0367059724010079 **EDN**: WZKGWF

Остров Сахалин расположен в зоне холодноумеренного муссонного климата с океаническим влиянием, которым обусловлен мощный снежный покров в зимний период. Влияние таких условий на растения и растительные сообщества исследовалось в ряде работ [1-3]. Выявлены механизмы акклиматизации инорайонных растений и адаптации аборигенных видов к местным природно-климатическим особенностям. К числу в целом благоприятных местных факторов можно отнести мощный снежный покров, слабое промерзание грунта и снижение температурных контрастов под пологом елово-пихтовых лесов. В периоды криостадиалов происходят похолодание и аридизация с резким уменьшением мощности снежного покрова. Реакция видов, адаптированных к сахалинскому климату, на такие условия слабо изучена. Возможность для ее исследования предоставляют аномально малоснежные зимы, случающиеся приблизительно раз в 20 лет. Знание реакции растений на аномалии может позволить оценить значимость адаптаций. существующих у аборигенных видов к тем или иным местным факторам. Подобные сравнения могут быть продуктивными при сравнении реакций аборигенных видов с инорайонными, особенно происходящими из более теплых климатических зон. В настоящей работе проверили гипотезу, что зимостойкость сахалинских кустарников в аномальную зиму снизилась сильнее, чем зимостойкость инорайонных кустарников.

МАТЕРИАЛ И МЕТОДЫ

Объектом наблюдения были кустарники и кустарнички 18 аборигенных видов — как на экспо-

зициях и в питомниках Сахалинского филиала Ботанического сада-института Дальневосточного отделения РАН (СФ БСИ ДВО РАН), расположенного на окраине г. Южно-Сахалинска, так и в его ближайших окрестностях, и 53 вида из 13 родов (с преобладанием видов Lonicera L. и Viburnum L.) из других регионов (36 — из умеренной зоны, 17 — преимущественно из субтропической) (табл. 1).

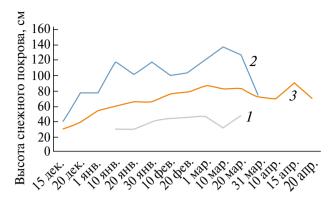
Средняя высота снежного покрова определена за 20-летний период. Данные получены в районе Ботанического сада на стационарной площадке Сахалинского филиала Дальневосточного геологического института ДВО РАН (ДВГИ ДВО РАН) [4]. Суточные колебания температуры воздуха оценивали с помощью установленной той же организацией с 2016 г. автоматической метеостанции Davis Instruments Vantage Pro. Среднемноголетние значения температуры воздуха приводятся по данным наблюдений на метеостанции Южно-Сахалинск. Значения температуры осреднены за период 1966—2022 гг. по данным АИСОРИ [5].

Зимостойкость оценивали по общепринятой в России 7-балльной шкале [6] в период с 1998 г. по 2022 г. Согласно этой методике, баллы, именуемые баллами зимостойкости, в действительности отражают, наоборот, интенсивность зимних повреждений: низшая зимостойкость — 7 баллов (вымерзание), максимальная — 1 балл (отсутствие повреждений). Совокупность исследуемых видов разделили на 2 группы: аборигенные и инорайонные. Средние значения минимальной зимостойкости для двух групп

66 ШЕЙКО

Таблица 1. Список исследованных аборигенных и инорайонных видов

Название вида	На от- крытом участке	В тени	Число лет наблю- дений		
	Аборигенные виды				
Empetrum stenopetalum V. N. Vassil.	+	+	12		
Euonymus miniatus Tolm.	+	+	23		
E. sieboldianus Blume	+	+	24		
Gaultheria miqueliana Takeda	+	+	12		
Lonicera caerulea L.	+	+	24		
L. chamissoi Bunge ex P. Kir.	+	+	23		
L. chrysantha Turcz. ex Ledeb.	+		24		
L. glehnii F. Schmidt	+	+	24		
L. sachalinensis (F. W. Schmidt) Nakai	+	+	23		
L. tolmatchevii Pojark.	+	+	24		
Ribes sachalinense (F. Schmidt) Nakai	+	+	24		
Sambucus miquelii (Nakai) Kom.	+		24		
Spiraea media Schmidt	+	+	24		
Vaccinium ovalifolium Sm.	+	+	9		
Viburnum furcatum Blume ex Maxim.	+	+	20		
V. sargentii Koehne	+	+	24		
V. wrightii Miq.	+	+	15		
Weigela middendorffiana (Carrière) K. Koch	+	+	24		
Инорайонные виды					
Buxus sempervirens L.	+	+	9		
Cryptomeria japonica D. Don	+		12		
Jasminum fruticans L.	+		9		
Kolkwitzia amabilis Graebn.	+		21		
Lonicera alpigena L.	+		24		
L. altmannii Regel et Schmalh.	+		24		
L. canadensis Marsh.	+		24		
L. caucasica Pall.	+		24		
L. demissa Rehder	+		24		
L. dioica L.	+		24		
L. discolor Lindl.	+		17		
L. ferdinandi Franch.	+		24		
L. floribunda Boiss.	+		17		
L. fragrantissima Lindl. et Paxton	+		23		
L. gracilipes var. glandulosa Maxim.	+		24		


Название вида	На от- крытом участке	В тени	Число лет наблю- дений
L. hispida Pall. ex Roem. et Schult.	+		18
L. involucrata Banks ex Spreng.	+	+	24
L. ligustrina var. pileata (Oliv.) Franch.	+		22
L. maackii (Rupr.) Herder	+		24
L. maximowiczii (Rupr.) Regel	+		23
L. morrowii A. Gray	+		24
L. myrtillus Hook.f. et Thoms.	+		12
L. nigra L.	+		22
L. olgae Regel et Schmalh.	+		21
L. periclymenum L.	+		24
L. praeflorens Batalin	+		23
L. prostrata Rehd.	+		21
L. tatarica L.	+		24
L. utahensis S. Wats.	+		24
L. webbiana Wall.	+		23
L. xylosteum L.	+		24
Mespilus germanica L.	+		9
Pyracantha coccinea M. Roem.	+		9
Sambucus canadensis L.	+		18
S. nigra L.	+		23
Smilax excelsa L.	+		9
Staphylea colchica Steven	+		9
Symphoricarpos albus (L.) S. F. Blake	+		23
Viburnum acerifolium L.	+		12
V. buddleifolium C. H. Wright	+		23
V. cassinoides L.	+		18
V. cotinifolium D. Don	+		23
V. dentatum var. venosum (Brit.) Gleas.	+		22
V. lantana L.	+	+	24
V. lentago L.	+		18
V. nudum L.	+		18
V. opulus L.	+		23
V. rafinesquianum Schult.	+		10
V. rhytidophyllum Hemsl.	+		10
V. sieboldii Miq.	+		13
V. trilobum Marshall	+		23
V. veitchii C. H. Wright	+		23
Weigela hortensis K. Koch	+	+	9

определяли отдельно в аномальном 2019 г. и за многолетний период, а также отдельно на освещенных местах и под пологом деревьев. Для двух групп видов — аборигенных и инорайонных, наблюдавшихся отдельно в тени или на солнце, сравнили между собой как сами средние значения, так и разность между данными за 2019 г. и многолетний период.

Дескриптивная статистика включала расчет медианы с межквартильным размахом. Единицей измерения в одном случае было минимальное значение зимостойкости, зафиксированное среди всей совокупности экземпляров того или иного вида, испытанных либо на солнце, либо в тени - отдельно для 2019 г. и многолетнего периода (т.е. всего 4 категории наблюдений). В другом случае единицей измерения была разность между минимальными значениями зимостойкости для каждого вида в 2019 г. и за многолетний периол – отлельно для тех же 4 категорий. Объем выборок был следующий: аборигенные виды на открытых участках -18 видов, в затенении – 16; инорайонные виды на открытых участках -53, в затенении -4. Выборки сравнивали попарно. Сравнение двух выборок проводили с помощью критерия Манна-Уитни (U). Статистическую значимость оценивали рандомизационной техникой Монте-Карло (n = 99 999). Эффекты считали статистически значимыми при $p \le 0.05$. Расчеты и графические построения выполнены в пакетах PAST (v. 4.13; [7]) и GraphPad Prism9 (GraphPad Software, Inc.).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Зима 2018/19 гг. была аномально малоснежной (рис. 1). Ранее подобное явление отмечали в 1997/98 гг. В обоих случаях этому событию предшествовало более холодное, чем обычно, лето. В первую половину зимы 2018/19 гг. толщина снега не превышала 30 см. К 10 декабря толщина снега была около 10 см, несколько недель оставаясь столь же низкой – притом, что среднемноголетняя мощность снега к 15 декабря составляет 30 см. Наледи на реках и ручьях свидетельствовали о более глубоком, чем обычно, промерзании грунта даже в поймах. К концу января средняя температура воздуха опустилась ниже нормы, а 9 февраля зафиксировали температуру –34°C при абсолютном минимуме для Южно-Сахалинска –39°С. Мощность снегового покрова возросла до 39-48 см лишь во второй половине зимы, особенно к концу марта, одно-

Рис. 1. Высота снежного покрова в Ботаническом саду в малоснежную зиму 2018/19 гг. (1), многоснежную 2017/18 гг. (2) и средняя высота (3) за 20 лет [2].

временно с повышением температуры воздуха выше нормы. Это усилило зимнее иссушение побегов. Повышение среднесуточной температуры сопровождалось ее резкими суточными перепалами.

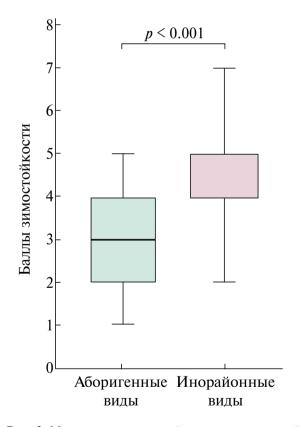
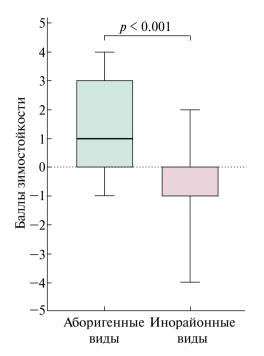



Рис. 2. Минимальная зимостойкость за многолетний период на открытых местах у аборигенных и инорайонных видов. Здесь и на рис. 3 коробчатая диаграмма показывает межквартильный размах, горизонтальная линия внутри — медиана, вертикальные линии — минимальный и максимальный диапазоны баллов.

68 ШЕЙКО

Рис. 3. Разность минимальной зимостойкости в 2019 г. и за многолетний период на открытых местах у аборигенных и инорайонных видов.

При сопоставлении средних значений минимальной зимостойкости за многолетний период на открытых местах между аборигенными и инорайонными видами обнаружены статистически значимые различия: U = 196.0, p < 0.001 (рис. 2). Более высокая зимостойкость в среднем установлена у аборигенных растений. В 2019 г. значимые различия между двумя категориями видов отсутствуют (U = 355.5, p = 0.071), так как зимостойкость аборигенных и инорайонных видов одинаково низкая. Разность минимальной зимостойкости в 2019 г. и за многолетний период у двух категорий видов значимая при U = 139.0, p < 0.001 (рис. 3). Минимальная зимостойкость аборигенных видов в 2019 г. существенно снизилась по сравнению со среднемноголетней (значения медиан различаются на 2 балла) при U = 47.5, p < 0.001,тогда как у инорайонных значимо не изменилась (U = 1239.0, p = 0.158). Из 18 аборигенных видов более низкие показатели в 2019 г. отмечены у представителей 14 видов, или 78%. Снижение зимостойкости отмечено: на 4 балла у 1 вида (*Empetrum stenopetalum*), на 3 балла — у 5 видов (или 27.8%), на 2 балла — у 2 (11.1%), на 1 балл – у 5 (27.8%), не отмечено – у 5 (27.8%). Из 54 видов инорайонных кустарников зимостойкость снизилась у представителей 5 видов, или 9%, все они из рода Lonicera.

Разность минимальной зимостойкости аборигенных и инорайонных кустарников, наблюдавшихся под пологом деревьев, оказалась статистически незначимой (U = 27.0, p = 0.675), вероятно, из-за малого (4 вида, или 7.4%) числа видов инорайонных растений. У кустарников 14 аборигенных видов, наблюдавшихся в тени, минимальная зимостойкость в 2019 г. статистически значимо (U = 43.0, p = 0.006) снизилась, хотя и незначительно: мелианы совпалают, но межквартильный размах в 2019 г. от 2 до 4 баллов, за остальные годы – от 1 до 2. Разница незначительна из-за отсутствия изменений в 2019 г. у половины видов и малых изменений у большинства остальных: снижение на 4 балла у 2 видов (12.5%) – Gaultheria miqueliana и Ribes sachalinense, на 3 балла — у 1 вида (6.3%), на 2 балла — у 3 (18.8%), на 1 балл — у 2 (12.5%).

Более сильные, чем у инорайонных видов, зимние повреждения аборигенных кустарников в аномально малоснежную зиму можно объяснить адаптацией большинства из них к факторам, связанным с мощным снежным покровом. С адаптацией к защите побегов от зимнего иссушения можно связать реакции видов, ареалы которых расположены в зоне холодноумеренного климата, преимущественно в регионах с глубоким снегом: Gaultheria miqueliana [8], Ribes sachalinense [9], Lonicera chamissoi [9, 10], Viburnum wrightii, в меньшей степени — Spiraea media и Empetrum stenopetalum [8].

Другой фактор, на который влияет глубокий снег, - слабое промерзание грунта. Оно может быть обусловлено как собственно снежным укрытием, так и высоким уровнем грунтовых вод. В первом случае к данному фактору адаптированы Gaultheria miqueliana из зоны океанического влияния [8] и виды, предпочитающие среднюю и верхнюю части горных склонов: Ribes sachalinense [9], Vaccinium ovalifolium, Viburnum furcatum, Weigela middendorffiana, Euonymus miniatus, иногда рассматриваемый как E. sachalinensis Maxim. [9]. На острове Сахалин Е. miniatus чаще встречается в среднегорьях, часто в зарослях бамбука Sasa. Растения *Sasa* spp. массово обмерзли в низкогорьях (но не в среднегорьях) зимой 2018/19 гг. К прирусловым участкам и местам выклинивания грунтовых вод приурочены местообитания Ribes sachalinense, Lonicera tolmatchevii [10, наши данные], Euonymus sieboldiana.

Часть видов, не отреагировавших на малоснежность зимы под пологом деревьев, адапти-

рованы к минимизации зимнего иссушения из-за их приуроченности к произрастанию под пологом елово-пихтовых лесов: Weigela middendorffiana [11], Lonicera glehnii, Viburnum wrightii. Последние два – реликтовые виды южного генезиса [10, 12]. Даже на освещенных участках на погодную аномалию не отреагировали Lonicera chrysantha, L. caerulea, Viburnum sargentii, Sambucus miquelii. Первые три – это виды, основная часть ареалов которых находится в регионах с более суровыми или даже малоснежными зимами [8]. S. miquelii — самый быстрорастущий сахалинский кустарник, что, возможно, позволяет его корням достигать грунтовых вод. Приуроченность к перечисленным местообитаниям можно рассматривать как разные стратегии адаптации дальневосточных видов к похолоданию климата.

Из инорайонных кустарников снизили зимостойкость в 2019 г. лишь некоторые виды жимолости. Из них Lonicera involucrata и L. maximowiczii близкородственны, соответственно, L. tolmatchevii и L. sachalinensis [10], L. webbiana и L. alpigena входят в одну подсекцию с аборигенной L. glehnii [10]. Стелющаяся L. prostrata из субальпийского пояса гор Западного Китая [13] адаптирована к зимовке под снежным укрытием. Факт слабой реакции многих инорайонных видов на погодную аномалию следует учитывать при исследовании возможностей натурализации инвазионных видов.

ЗАКЛЮЧЕНИЕ

В Ботаническом саду г. Южно-Сахалинска сравнили зимостойкость 18 видов кустарников и кустарничков, аборигенных для о. Сахалин, и 53 инорайонных видов. Обнаружено статистически значимое превышение средних значений (медиан) минимальной зимостойкости за многолетний период на открытых местах у аборигенных видов в сравнении с инорайонными. В аномально малоснежную зиму 2018/19 гг. значимых различий между двумя категориями видов не зафиксировано. Это результат значимого снижения минимальной зимостойкости у аборигенных видов в 2019 г. в сравнении с многолетним периодом. У аборигенных кустарников зимостойкость в 2019 г. снизилась у 78% видов, у инорайонных – у 9% (все из рода *Lonicera*).

Негативная реакция аборигенных видов, вероятно, связана с адаптациями к мощному снежному укрытию и слабому промерзанию грунта.

Другая категория — растения, чаще реликтовые, адаптированные к условиям елово-пихтовых лесов, уберегающих их от температурных контрастов. Не отреагировали на погодную аномалию виды, распространенные больше в малоснежных районах умеренной зоны и в регионах с более суровым климатом. Инорайонные виды Lonicera, отреагировавшие на аномалию, либо родственны сахалинским видам, либо адаптированы к снежному укрытию.

Работа выполнена в рамках темы государственного задания «Введение в культуру, изучение и сохранение генетических ресурсов хозяйственно ценных растений Восточной Азии», № 122040800086-1. Выражаю признательность коллективу лаборатории лавинных и селевых процессов Сахалинского филиала ДВГИ ДВО РАН за материалы по снежному покрову и помощь в обработке климатических данных.

Автор подтверждает отсутствие конфликта интересов. Сообщение не содержит исследований с участием людей или животных в качестве объектов изучения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Клинцов А.П.* Защитная роль лесов Сахалина. Южно-Сахалинск: Дальневост. кн. изд-во, Сахалин. отд-ние, 1973. 233 с.
- 2. *Воронова Т.Г.* Корневые системы плодовых и ягодных растений в условиях Сахалина. Новосибирск: Наука, 1973. 216 с.
- 3. *Шейко В.В.* Итоги интродукции видов *Lonicera* (Caprifoliaceae) на юге Сахалина // Бюл. Главного ботан. сада. М., 2008. Вып. 193. С. 33–40.
- 4. *Музыченко А.А.*, *Лобкина В.А.* Оценка снежности зим на юге острова Сахалин по данным контрольной площадки наблюдения // Вестник ДВО РАН. 2018. № 6. С. 115—121.
- 5. Веселов В.М., Прибыльская И.Р., Мирзеабасов О.А. Специализированные массивы для климатических исследований. Copyright © 2000-2011-2018-2022 ВНИИГМИ-МЦД. URL: http://initiation.meteo.ru
- 6. Методика фенологических наблюдений в ботанических садах СССР // Бюл. Главного ботан. сада. М., 1979. Вып. 113. С. 3—11.
- 7. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis // Palaeontologia Electronica. 2001. V. 4 (1). P. 1–9.
- 8. Сосудистые растения советского Дальнего Востока / Отв. ред. Харкевич С.С. Ленинград (СПб.): На-

70 ШЕЙКО

- ука, 1985-1996. Т. 1-8.
- 9. Global Biodiversity Information Facility, 2021. https://www.gbif.org/what-is-gbif.
- 10. *Недолужко В.А.* Систематический и географический обзор жимолостей северо-востока Евразии // Комаровские чтения. Владивосток, 1986. Вып. 33. С. 54—109.
- 11. Krestov P.V., Nakamura Y. Phytosociological study
- of the *Picea jezoensis* forests of the Far East // Folia Geobotanica. 2002. V. 37. N4. P. 441–474. https://doi.org/10.1007/BF02803257
- 12. *Clement W.L., Donoghue M.J.* Barcoding success as a function of phylogenetic relatedness in *Viburnum*, a clade of woody angiosperms // BMC Evol. Biol., 2012. V. 12. Art. 73. P. 1–13.
- 13. Flora of China. V. 19. St. Louis Beijing. 2011. P. 478–640.

Low Resistance of Native Species of Shrubs and Bushes on Sakhalin Island to Winters with Little Snow

V. V. Sheiko1, *

¹Botanical Garden Institute, Far Eastern Branch, Russian Academy of Sciences, Sakhalin oblast, Russia, 693023, Yuzhno-Sakhalinsk *e-mail: viktorsheiko@mail.ru

Keywords: Sakhalin Island, winter hardiness of non-regional species, adaptation strategies to climate cooling, extreme winters