Опыт применения машинного обучения для прогнозирования невынашивания беременности, наступившей с помощью вспомогательных репродуктивных технологий
- Авторы: Драпкина Ю.С.1, Макарова Н.П.1, Калинин А.П.2, Васильев Р.А.3, Амелин В.В.3
-
Учреждения:
- ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России
- ФГАОУ ВО «Российский национальный исследовательский медицинский университет» Минздрава России
- Лаборатория прикладного искусственного интеллекта Z-union
- Выпуск: № 9 (2024)
- Страницы: 90-98
- Раздел: Оригинальные статьи
- URL: https://ogarev-online.ru/0300-9092/article/view/269334
- DOI: https://doi.org/10.18565/aig.2024.157
- ID: 269334
Цитировать
Аннотация
Актуальность: Анализ данных при помощи машинного обучения (МО) позволяет более комплексно проанализировать предикторы невынашивания беременности, наступившей после применения вспомогательных репродуктивных технологий (ВРТ). Прогнозирование частоты живорождения в программе ВРТ может быть выполнено при помощи традиционных математических моделей; однако использование МО позволяет выявить скрытые закономерности в нелинейных связях и определить дополнительные корригируемые факторы.
Цель: Прогнозирование невынашивания беременности у пациентов, проходящих лечение бесплодия методом ВРТ, в зависимости от клинико-анамнестических и эмбриологических параметров с использованием алгоритма решающего дерева и линейной регрессии.
Материалы и методы: В ретроспективное исследование была включена 1021 супружеская пара. В исследовании проанализированы данные клинико-лабораторных обследований и параметры стимулированного цикла в зависимости от частоты наступления беременности и невынашивания беременности после ВРТ при помощи линейной регрессии и решающего дерева.
Результаты: Определены наиболее важные предикторы невынашивания беременности в программе ВРТ с использованием двух моделей, к которым относятся возраст, наличие беременностей от данного партнера в анамнезе, продолжительность стимуляции, качество эмбрионов, а также метод оплодотворения.
Заключение: Исследования в данной области, в особенности с использованием МО в качестве инструмента обработки данных, позволяют создать программный продукт для более персонифицированного и интегрального прогноза частоты живорождения у каждой супружеской пары. Полученные результаты могут оптимизировать финансово-экономические затраты государства на проведение цикла ВРТ за счет средств обязательного медицинского страхования у разных групп пациентов. Кроме этого, более четкий и унифицированный алгоритм позволяет более таргетно воздействовать на наиболее вероятную причину невынашивания с учетом оптимизации временных затрат на подготовку при сохранении максимального эффекта для снижения частоты невынашивания после ВРТ.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Юлия Сергеевна Драпкина
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России
Автор, ответственный за переписку.
Email: yu_drapkina@oparina4.ru
ORCID iD: 0000-0002-0545-1607
к.м.н., с.н.с. отделения вспомогательных технологий в лечении бесплодия им. проф. Б.В. Леонова
Россия, МоскваНаталья Петровна Макарова
ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России
Email: np_makarova@oparina4.ru
ORCID iD: 0000-0003-1396-7272
д.б.н., в.н.с. отделения вспомогательных технологий в лечении бесплодия им. проф. Б.В. Леонова
Россия, МоскваАндрей Павлович Калинин
ФГАОУ ВО «Российский национальный исследовательский медицинский университет» Минздрава России
Email: zoaza8@mail.ru
студент лечебного факультета
Россия, МоскваРоберт Андреевич Васильев
Лаборатория прикладного искусственного интеллекта Z-union
Email: yu_drapkina@oparina4.ru
руководитель; вице-президент Ассоциации лабораторий по развитию искусственного интеллекта; аспирант; магистр кафедры прикладной физики и математики; магистр экономики; бакалавр
Россия, МоскваВладислав Владимирович Амелин
Лаборатория прикладного искусственного интеллекта Z-union
Email: yu_drapkina@oparina4.ru
технический директор, эксперт по машинному обучению; магистр (факультет вычислительной математики и кибернетики, кафедра математических методов прогнозирования); бакалавр
Россия, МоскваСписок литературы
- American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Gynecology. ACOG Practice Bulletin No. 200: Early Pregnancy Loss. Obstet. Gynecol. 2018; 132(5): e197-e207. https://dx.doi.org/10.1097/AOG.0000000000002899.
- Письмо Минздрава России от 07.06.2016 №15-4/10/2-3482 «О направлении клинических рекомендаций (протокола лечения) "Выкидыш в ранние сроки беременности: диагностика и тактика ведения"». [Letter of the Ministry of Health of Russia dated 07.06.2016 No. 15-4/10/2-3482 «On sending clinical guidelines (treatment protocol) "Miscarriage in early pregnancy: diagnosis and management tactics"». (in Russian)].
- Лычагин А.С., Малинина О.Ю. Невынашивание беременности: вклад мужского фактора и возможности его преодоления. Проблемы репродукции. 2017; 23(5): 106 14. [Lychagin A.S., Malinina O.Yu. Miscarriage: the role of male factor and the methods of treatment. Russian Journal of Human Reproduction. 2017; 23(5): 106-14. (in Russian)]. https://dx.doi.org/10.17116/repro2017235106-114.
- Тетруашвили Н.К. Привычный выкидыш. Акушерство и гинекология: новости, мнения, обучение. 2017; 4: 70-87. [Tetruashvili N.K. Habitual miscarriage. Obstetrics and gynecology: news, opinions, training. 2017; (4): 70-87. (in Russian)].
- Батрак Н.В., Малышкина А.И., Сотникова Н.Ю., Крошкина Н.В., Перетятко Л.П., Фатеева Н.В. Медико-социальные факторы и патогенетические механизмы ранней потери беременности у женщин с привычным невынашиванием в анамнезе. Акушерство и гинекология. 2020; 7: 79-86. [Batrak N.V., Malyshkina A.I., Sotnikova N.Yu., Kroshkina N.V., Peretyatko L.P., Fateeva N.V. Medical and social factors and pathogenetic mechanisms of early pregnancy loss in women with recurrent miscarriage. Obstetrics and Gynecology. 2020; (7): 79-86. (in Russian)]. https:// dx.doi.org/10.18565/aig.2020.7.79-86.
- Утробин М.В., Юрьев С.Ю. Возможности прогнозирования привычного выкидыша в предгравидарном периоде. Бюллетень медицинской науки. 2020; 2(18): 39-42. [Utrobin M.V., Yuriev S.Yu. Possibilities of predicting habitual miscarriage in the pregravidar period. Bulletin of Medical Science. 2020; 2(18): 39-42. (in Russian)].
- Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Калинина Е.А. Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий. Акушерство и гинекология. 2024; 2: 97-105. [Drapkina Yu.S., Makarova N.P., Vasiliev R.A., Amelin V.V., Kalinina E.A. Comparison of predictive models built with different machine learning techniques using the example of predicting the outcome of assisted reproductive technologies. Obstetrics and Gynecology. 2024; (2): 97-105 (in Russian)]. https:// dx.doi.org/10.18565/aig.2023.263.
- Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Франкевич В.Е., Калинина Е.А. Изучение аналитической обработки клинико-анамнестических и эмбриологических данных пациентов в программе вспомогательных репродуктивных технологий различными методами машинного обучения. Акушерство и гинекология. 2024; 3: 96-107. [Drapkina Yu.S., Makarova N.P., Vasilev R.A., Amelin V.V., Frankevich V.E., Kalinina E.A. Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies. Obstetrics and Gynecology. 2024; (3): 96-107 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.281.
- Blank C., Wildeboer R.R., DeCroo I., Tilleman K., Weyers B., De Sutter P. et al. Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil. Steril. 2019; 111(2): 318-26. https://dx.doi.org/10.1016/j.fertnstert.2018.10.030.
- Barnett-Itzhaki Z., Elbaz M., Butterman R., Amar D., Amitay M., Racowsky C. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020; 37(10): 2405-12. https://dx.doi.org/10.1007/s10815-020-01908-1.
- Yuan G., Lv B., Du X., Zhang H., Zhao M., Liu Y. et al. Prediction model for missed abortion of patients treated with IVF-ET based on XGBoost: a retrospective study. PeerJ. 2023; 11: e14762. https://dx.doi.org/10.7717/peerj.14762.
- Crawford G.E., Ledger W.L. In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG. 2019; 126(2): 237-43. https://dx.doi.org/10.1111/ 1471-0528.15526.
- Buca D., D'Antonio F., Liberati M., Tinari S., Pagani G., Greco P. et al. Ovarian hyperstimulation syndrome and adverse pregnancy outcome. Minerva Obstet. Gynecol. 2022; 74(2): 178-85. https://dx.doi.org/10.23736/ S2724-606X.21.04806-5.
- Zheng D., Zeng L., Yang R., Lian Y., Zhu Y.M., Liang X. et al. Intracytoplasmic sperm injection (ICSI) versus conventional in vitro fertilisation (IVF) in couples with non-severe male infertility (NSMI-ICSI): protocol for a multicentre randomised controlled trial. BMJ Open. 2019; 9(9): e030366. https:// dx.doi.org/10.1136/bmjopen-2019-030366.
- Rodrigo L. Sperm genetic abnormalities and their contribution to embryo aneuploidy & miscarriage. Best Pract. Res. Clin. Endocrinol. Metab. 2020; 34(6): 101477. https://dx.doi.org/10.1016/j.beem.2020.101477.
- Louis C.M., Handayani N., Aprilliana T., Polim A.A., Boediono A., Sini I. Genetic algorithm-assisted machine learning for clinical pregnancy prediction in in vitro fertilization. AJOG Glob. Rep. 2022; 3(1): 100133. https://dx.doi.org/10.1016/ j.xagr.2022.100133.
- Liu L., Jiao Y., Li X., Ouyang Y., Shi D. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput. Methods Programs Biomed. 2020; 196: 105624. https://dx.doi.org/10.1016/j.cmpb.2020.105624.
- Leijdekkers J.A., Eijkemans M.J.C., van Tilborg T.C., Oudshoorn S.C., McLernon D.J., Bhattacharya S. et al. Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: an external validation study. Hum. Reprod. 2018; 33(9): 1684-95. https://dx.doi.org/10.1093/humrep/dey263.
- McLernon D.J., Steyerberg E.W., Te Velde E.R., Lee A.J., Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113,873 women. BMJ. 2016; 355: i5735. https://dx.doi.org/10.1136/bmj.i5735.
- Qiu J., Li P., Dong M., Xin X., Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method. J. Transl. Med. 2019; 17(1): 317. https://dx.doi.org/10.1186/s12967-019-2062-5.
- Pino V., Sanz A., Valdés N., Crosby J., Mackenna A. The effects of aging on semen parameters and sperm DNA fragmentation. JBRA Assist. Reprod. 2020; 24(1): 82-6. https://dx.doi.org/10.5935/1518-0557.20190058.
Дополнительные файлы
