Особенности связывания ДНК с двумерными кристаллами бактериального белка Dps бактерии Escherichia coli на основе данных молекулярной динамики

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной работе с использованием методов крупнозернистого молекулярного моделирования проводится исследование взаимодействия связывающего ДНК белка из голодающих клеток (DNA-binding protein from starved cells (Dps)) бактерии Escherichia coli с участками ДНК различной длины и состава. Исследованы особенности связывания ДНК в двумерных кристаллах белка Dps. С помощью методов поиска свободной энергии – термодинамического интегрирования и линейной энергии взаимодействия – определены наиболее благоприятные условия связывания ДНК и Dps.

Об авторах

Э. В. Терешкин

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Автор, ответственный за переписку.
Email: ramm@mail.ru
Россия, Москва

К. Б. Терешкина

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: ramm@mail.ru
Россия, Москва

Н. Г. Лойко

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: ramm@mail.ru
Россия, Москва

В. В. Коваленко

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: ramm@mail.ru
Россия, Москва

Ю. Ф. Крупянский

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: ramm@mail.ru
Россия, Москва

Список литературы

  1. Ткаченко А.Г. Молекулярные механизмы стрессорных ответов у микроорганизмов. Екатеринбург: УрО РАН, 2012.
  2. Amemiya H.M., Schroeder J., Freddolino P.L. // Transcription. 2021. V. 12. № 4. P. 182. https://doi.org/10.1080/21541264.2021.1973865
  3. Minsky A., Shimoni E., Frenkiel-Krispin D. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. № 1. P. 50. https://doi.org/10.1038/nrm700
  4. Loiko N., Danilova Y., Moiseenko A. et al. // PLoS One. 2020. V. 15(10). № e0231562. https://doi.org/10.1371/journal.pone.0231562
  5. Крупянский Ю.Ф. // Хим. физика. 2021. Т. 40. № 3. С. 60. https://doi.org/10.31857/S0207401X21030079
  6. Крупянский Ю.Ф., Коваленко В.В., Лойко Н.Г. и др. // Биофизика. 2022. Т. 67. № 4. С. 638. https://doi.org/10.31857/S0006302922040020
  7. Almirón M., Link A.J., Furlong D., Kolter R. // Genes Dev. 1992. V. 612. P. 2646. https://doi.org/10.1101/gad.6.12b.2646
  8. Karas V.O., Westerlaken I., Meyer A.S. // J. Bacteriol. 2015. V. 197. № 19. P. 3206. https://doi.org/10.1128/jb.00650-15
  9. Orban K., Finkel S.E. // J. Bacteriol. 2022. V. 204. № e00036-22. https://doi.org/10.1128/jb.00036-22
  10. Grant R.A., Filman D.J., Finkel S.E. et al. // Nat. Struct. Biol. 1998. № 5. P. 294. https://doi.org/10.1038/nsb0498-294
  11. Frenkiel-Krispin D., Minsky A // J. Struct. Biol. 2006. V. 156. P. 311. https://doi.org/10.1016/j.jsb.2006.05.014
  12. Лойко Н.Г., Сузина Н.Е., Соина В.С. и др. // Микробиология. 2017. Т. 86. № 6. С. 703. https://www.elibrary.ru/item.asp?id=35516020
  13. Kovalenko V., Popov A., Santoni G. et al. // Acta Cryst. 2020. V. F76. P. 568. https://doi.org/10.1107/S2053230X20012571
  14. Синицын Д.О., Лойко Н.Г., Гуларян С.К. и др.// Хим. физика. 2017. Т. 36. № 9. С. 59. https://doi.org/10.1134%2FS1990793117050128
  15. Moiseenko A., Loiko N., Tereshkina K. et al. // Biochem. Biophys. Res. Commun. 2019. V. 517 № 3. P. 463. https://doi.org/10.1016%2Fj.bbrc.2019.07.103
  16. Ceci P., Cellai S., Falvo E. et al. // Nucleic Acids Res. 2004. V. 32(19). P. 5935. https://doi.org/10.1093/nar/gkh915
  17. Minsky A., Wolf S.G., Frenkiel D. et al. // Nature. 1999. V. 400. P. 83. https://doi.org/10.1038/21918
  18. Tereshkin E.V., Tereshkina K.B., Krupyanskii Y.F. // JPCS. 2021. V. 2056 (1). № 012016. https://doi.org/10.1088/1742-6596/2056/1/012016
  19. Loiko N.G., Tereshkin E.V., Kovalenko V.V. et al. // Microbiology. 2023. V. 92 (1). P. S78. https://doi.org/10.1134/S0026261723603640
  20. Tereshkin E., Tereshkina K., Loiko N. et al. // J. Biomol. Struct. Dyn. 2018. V. 37. P. 2600. https://doi.org/10.1080/07391102.2018.1492458
  21. Терешкин Э.В., Терешкина К.Б., Коваленко В.В. и др. // Хим. физика. 2019. V. 38. № 40. С. 48. https://doi.org/10.1134/S199079311905021X
  22. Терешкин Э.В., Терешкина К.Б., Лойко Н.Г. и др. // Хим. физика. 2023. Т. 42. № 5. С. 30. https://doi.org/10.31857/S0207401X23050138
  23. Uusitalo J.J., Ing´olfsson H.I., Akhshi P. et al. // JCTC. 2015. V. 11. № 8. P. 3932. https://doi.org/10.1021/acs.jctc.5b00286
  24. Tereshkin E.V., Tereshkina K.B., Krupyanskii Y.F. // Supercomput. Front. Innov. 2022. V. 9. № 2. P. 33. https://doi.org/10.14529/jsfi220203
  25. Antipov S.S., Tutukina M.N., Preobrazhenskaya E.V. et al. // PLoS One. 2017. V. 12. № e0182800. https://doi.org/10.1371/journal.pone.0182800
  26. Hess B., Kutzner C., van der Spoel D., Lindahl E. // J. Chem. Theory Comput. 2008. V. 4. P. 435. https://doi.org/10.1021/ct700301q
  27. Hadley K.R., McCabe C. // Mol. Simul. 2012. V. 38. P. 671. https://doi.org/10.1080/08927022.2012.671942
  28. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126(1). № 014101. https://doi.org/10.1063/1.2408420
  29. Aqvist J., Marelius J. // Comb. Chem. High Throughput Screening. 2001. V. 4. P. 613. https://doi.org/10.2174/1386207013330661
  30. Amadei A., Linssen A.B., Berendsen H.J. // Proteins. 1993. V. 17. № 4. P. 412. https://doi.org/10.1002/prot.340170408
  31. Azam T.A., Ishihama A. // J. Biol. Chem. 1999. V. 274(46). P. 33105. https://doi.org/10.1074/jbc.274.46.33105
  32. Jen-Jacobson L. // Biopolymers. 1997. V. 44. P. 153. https://doi.org/10.1002/(SICI)1097-0282(1997) 44:2<153::AID BIP4>3.0.CO;2-U
  33. Anashkina A.A. // Biophys Rev. 2023. V. 15. P. 1007. https://doi.org/10.1007/s12551-023-01137-7
  34. Miller J.L., Kollman P.A. // Phys. Chem. 1996. V. 100. № 20. P. 8587. https://doi.org/10.1021/jp9605358

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».