Propagation of a combustion wave at detonation transmission from a pipe into a free cylindrical gaseous charge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The combustion in a free cylindrical gas charge caused by detonation transmission from the initiating tube was experimentally investigated. The dependences of the combustion velocity change along this charge for stoichiometric mixtures of ethane, ethylene and propane with oxygen were obtained. A pulsating combustion pattern along the charge was observed, as a consequence of the damped oscillatory process. The speed of this process varied from the detonation velocity at the section of the initiating tube to 200–350 m/s at the end of the gas charge.

Sobre autores

V. Mikhalkin

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

S. Khomik

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

E. Anderzhanov

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

A. Ivantsov

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

A. Tereza

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

I. Chebotarev

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

A. Cherepanov

Semenov Federal Research Center for Chemical Physics

Email: sergei.khomik@gmail.com
Moscow, Russia

S. Medvedev

Semenov Federal Research Center for Chemical Physics

Autor responsável pela correspondência
Email: sergei.khomik@gmail.com
Moscow, Russia

Bibliografia

  1. Krivosheyev P, Penyazkov O. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 388. https://doi.org/10.1134/S1990793123020094
  2. Kiverin A.D., Medvedkov I.S. & Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1075. https://doi.org/10.1134/S1990793122060057
  3. Mikhalkin V.N., Sumskoi S.I., Tereza A.M. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 629. https://doi.org/10.1134/S1990793122040261
  4. Sumskoi S.I., Sof’in A.S., Zainetdinov S.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 1. P. 419. https://doi.org/10.1134/S199079312302015X
  5. Zeldovich Ya.B. // ZhETF. 1941. V. 11. № 1. P. 159.
  6. Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1112. https://doi.org/10.1134/S1990793122060082
  7. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Dokl. Acad. Nauk SSSR. 1987. V. 296. № 1. P. 88.
  8. Vasil’ev A.A., Zak D.V. // Combust. Explos. Shock Waves. 1986. V. 22. P. 463. https://doi.org/10.1007/BF00862893
  9. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Device for determining the critical diameter of gas detonation propagation in a free cylindrical explosive chargecharge. Сertificate of authorship. 1396765 SSSR.
  10. Bykova, N.G., Kusov, A.L., Kozlov, P.V. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 732. https://doi.org/10.1134/S1990793124700222
  11. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1285. https://doi.org/10.1134/S1990793123060167
  12. Borisov A.A., Mikhalkin V.N., Khomik S.V. // Soviet J. Chem. Phys. 1992. V. 8. № 6. P.1314.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).