Исследования последствий сильного извержения вулкана Райкоке в Центральных Курилах в 2019 г. с использованием спутниковых данных

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С использованием различных спутниковых данных исследовано пространственно-временное распространение содержания диоксида серы в период сильного эксплозивного извержения стратовулкана Райкоке, происходившего в 2019 г. Определена общая масса выброшенного SO2 на высоте 15 км. По результатам анализа многолетних временных рядов изменения аэрозольной оптической толщины, оценено влияние стратосферных аэрозолей на озоновый слой Земли и выявлены изменения содержания озона в столбе атмосферы. Показано, что после извержения этого вулкана значения оптической толщины стратосферного аэрозоля увеличились (до величины 2.3), что связано с активным преобразованием диоксида серы в серную кислоту и формированием шлейфов сульфатных аэрозолей. Обнаружено резкое снижение содержания озона (на 73 DU) после окончания вулканической деятельности, за которым последовало и значительное понижение температуры в стратосфере (на 8–17°C). Установлено, что повышенные значения извлеченной массы SO2 сохранялись спустя несколько дней после извержения, а затем экспоненциально уменьшалась со временем. Установлено также, что изменения общего содержания озона в столбе атмосферы согласуются с вариациями температур в стратосфере.

Полный текст

Доступ закрыт

Об авторах

В. Г. Бондур

Научно-исследовательский институт аэрокосмического мониторинга “АЭРОКОСМОС”

Автор, ответственный за переписку.
Email: office@aerocosmos.info
Россия, Москва

О. С. Воронова

Научно-исследовательский институт аэрокосмического мониторинга “АЭРОКОСМОС”

Email: office@aerocosmos.info
Россия, Москва

Список литературы

  1. Гирина О.А. О предвестнике извержений вулканов Камчатки, основанном на данных спутникового мониторинга // Вулканология и сейсмология, 2012, № 3, с. 14–22.
  2. Гирина О.А., Гордеев Е.И. Проект KVERT – снижение вулканической опасности для авиации при эксплозивных извержениях вулканов Камчатки и Северных Курил // Вестник ДВО РАН. 2007. № 2 (132). С. 100–109.
  3. Гирина О.А., Маневич А.Г., Мельников Д.В., Нуждаев А.А., Лупян Е.А. Активность вулканов Камчатки и Курильских островов в 2019 г. и их опасность для авиации // Вулканизм и связанные с ним процессы. Материалы XXIII ежегодной научной конференции, посвящённой Дню вулканолога, 2020 г. – Петропавловск-Камчатский: ИВиС ДВО РАН, 2020. P. 11–14.
  4. Дивинский Л.И., Ивлев Л.С. О воде и аэрозолях вулканического происхождения в высоких слоях атмосферы // Природная Среда. 2012. № 4 (25), С. 254–261.
  5. Зуев В.В., Зуева Н.Е. Вулканогенные возмущения стратосферы – главный регулятор долговременного поведения озоносферы в период с 1979 по 2008 г. // Оптика атмосферы и океана. 2011. Т. 24. № 01. С. 30–34.
  6. Ивлев Л.С., Колосов А.С., Терёхин С.Н. Эруптивные вулканические процессы: механизмы и характеристики // Вестник Санкт-Петербургского университета. 2008. Сер. 4. Вып. 2. С. 35–48.
  7. Кондратьев К.Я. Комплексный мониторинг последствий извержения вулкана Пинатубо // Исследования Земли из космоса. 1993. № 1. С. 111–122.
  8. Кондратьев К.Я., Ивлев Л.С., Крапивин В.Ф. Свойства, процессы образования и последствия воздействий атмосферного аэрозоля: от нано – до глобальных масштабов. – СПб.: ВВМ, 2007. – 858 с.
  9. Лаверов Н.П., Добрецов Н.Л., Богатиков О.А., Бондур В.Г., Гурбанов А.Г., Карамурзов Б.С., Коваленко В.И., Мелекесцев И.В., Нечаев Ю.В., Пономарева В.В., Рогожин Е.А., Собисевич А.Л., Собисевич Л.Е., Федотов С.А., Хренов А.П., Ярмолюк В.В. Новейший и современный вулканизм на территории России. М: Наука, 2005. 608 с.
  10. Маневич А.Г., Гирина О.А., Мельников Д.В., Бриль А.А., Романова И.М., Сорокин А.А., Крамарева Л.С., Королев С.П. Извержения вулкана Ключевской в 2023–2024 гг. по данным дистанционного мониторинга в информационной системе VolSatView // Современные проблемы дистанционного зондирования Земли из космоса. 2024. Т. 21. № 3. С. 94–103. https://doi.org/10.21046/2070-7401-2024-21-3-94-103
  11. Мельников Д.В., Ушаков С.В. Мониторинг атмосферного содержания SO2 при крупных извержениях вулканов Камчатки за 2007 г. посредством спутниковых методов исследований // Геофизический мониторинг и проблемы сейсмической безопасности Дальнего Востока России : тр. регион. науч.-техн. конф. 11–17 нояб. 2007 г., Петропавловск-Камч. / РАН; Геофиз. служба, Камч. фил. – Петропавловск-Камч., 2008. – Т. 1. – С. 101–104. http://www.emsd.ru/konf071112/pdf/t1/str101.pdf
  12. Озеров А.Ю., Гирина О.А., Жаринов Н.А., Белоусов А.Б., Демянчук Ю.В. Извержения вулканов Северной группы Камчатки в начале XXІ века // Вулканология и Сейсмология. 2020. №1. стр. 3–19. https://doi.org/10.31857/S0203030620010058
  13. Рашидов В.А., Гирина О.А., Озеров А.Ю., Павлов Н.Н. Извержение вулкана Райкоке (Курильские острова) в июне 2019 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2019 Вып. 42. № 2. С. 5–8. https://doi.org/10.31431/1816-5524-2019-2-42-5-8
  14. Семенов С.М., Израэль Ю.А., Груза Г.В., Ранькова Э.Я. Изменения глобальной температуры и региональные риски при некоторых стабилизационных сценариях антропогенной эмиссии диоксида углерода и метана. В кн.: Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. Т. 6: изменения климата: влияние земных и внеземных факторов / Отв. ред. Г.С. Голицын. М.: ИФА РАН, ИФЗ РАН, 2008, с. 24–36.
  15. Федотов С.А. Вулканизм и сейсмичность, наука, общество, события и жизнь (статьи, беседы и выступления 1952–2002 гг.). Петропавловск-Камчатский: Холдинговая компания “Новая Книга”, 2003. 184 с. ил.96. ISBN5-87750-101-1
  16. Федотов С.А. Магматические питающие системы и механизм извержений вулканов. – М.: Наука, 2006. – 455 с
  17. Bourassa A.E., Zawada D.J., Rieger L.A., Warnock T.W., Toohey M., Degenstein D.A. Tomographicretrievals of Hunga Tonga-Hunga Ha'apaivolcanic aerosol // Geophysical ResearchLetters, 2023. 50, e2022GL101978. https://doi.org/10.1029/2022GL101978
  18. Cai Z., Griessbach S., Hoffmann L. Improved estimation of volcanic SO2 injections from satellite retrievals and Lagrangian transport simulations: the 2019 Raikoke eruption // Atmos. Chem. Phys., 2022. 22, 6787–6809, https://doi.org/10.5194/acp-22-6787-2022
  19. Chouza F., Leblanc T. Barnes, J., Brewer M., Wang, P., Koon D. Long-term (1999–2019) variability of stratospheric aerosol over Mauna Loa, Hawaii, as seen by two co-located lidars and satellite measurements, // Atmos. Chem. Phys., 2020. 20, 6821–6839, https://doi.org/10.5194/acp-20-6821-2020
  20. Clarisse, L., Coheur P.-F., Theys N., Hurtmans D., Clerbaux C. The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements // Atmos. Chem. Phys., 2014. 14, 3095–3111, https://doi.org/10.5194/acp-14-3095-2014.
  21. de Leeuw J., Schmidt A., Witham C. S., Theys N., Taylor I.A., Grainger R.G., Pope R.J., Haywood J., Osborne M., Kristiansen N.I. The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide // Atmos. Chem. Phys., 2021. 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021,
  22. Fisher B.L., Krotkov N.A., Bhartia P.K., Li C., Carn S.A., Hughes E., Leonard P.J.T. A new discrete wavelength backscattered ultraviolet algorithm for consistent volcanic SO2 retrievals from multiple satellite missions // Atmos. Meas. Tech., 2019. 12, 5137–5153, https://doi.org/10.5194/amt-12-5137-2019
  23. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D., Haywood J., Lean J., Lowe D., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Dorland, R.V. Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., 129–234, Cambridge University Press, United Kingdom and New York, NY, USA, 2008.
  24. Gordeev E.I., Girina, O.A. Volcanoes and the threat they pose for aircraft // Vestnik Rossiiskoi Akademii Nauk, 2014, vol. 84, no. 2, pp. 134–142. https://doi.org/10.7868/S0869587314020121
  25. Gorkavyi N., Krotkov N., Li C., Lait L., Colarco P., Carn S., DeLand M., Newman P., Schoeberl M., Taha G., Torres O., Vasilkov A., Joiner J. Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations // Atmos. Meas. Tech., 2021. 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021
  26. Guffanti M., Casadevall T.J. Budding K. Encounters of aircraft with volcanic ash clouds: a compilation of known incidents, 1953–2009 // U.S. Geological Survey Data Series 545, 2010. ver. 1.0, 12 p., plus 4 appendixes including the compilation database.
  27. Haywood J. M., et al. Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model // J. Geophys. Res., 2010. 115, D21212, https://doi.org/10.1029/2010JD014447
  28. Jethva H., Torres O. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument // Atmos. Chem. Phys., 2011. 11, 10541–10551, https://doi.org/10.5194/acp-11-10541-2011
  29. Khaykin S. et al. Global perturbation of stratospheric water and aerosol burden by Hunga eruption // Commun. Earth Environ. 2022a. 3, 316. https://doi.org/10.1038/s43247-022-00652-x
  30. Khaykin S.M., de Laat A.T.J., Godin-Beekmann S. et al. Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke 2019 case // Sci Rep. 2022b. 12, 22409 https://doi.org/10.1038/s41598-022-27021-0
  31. Kloss C., Berthet G., Sellitto P., Ploeger F., Taha G., Tidiga M., Eremenko M., Bossolasco A., Jégou F., Renard J.-B., Legras B. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing // Atmos. Chem. Phys., 2021. 21, 535–560, https://doi.org/10.5194/acp-21-535-2021
  32. Krotkov N. A., et al. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China // J. Geophys. Res., 2008. 113, D16S40, https://doi.org/10.1029/2007JD008818
  33. Lu J., Lou S., Huang X., Xue L., Ding K., Liu T., et al. Stratosphericaerosol and ozone responses to theHunga Tonga-Hunga Ha'apai volcaniceruption // Geophysical Research. 2023. Letters,50, e2022GL102315. https://doi.org/10.1029/2022GL102315
  34. Marshall L.R., Maters E.C., Schmidt A. et al. Volcanic effects on climate: recent advances and future avenues // Bull Volcanol. 2022. 84, 54. https://doi.org/10.1007/s00445-022-01559-3
  35. Muser L. O. et al. Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: Evidence from the Raikoke 2019 eruption // Atmos. Chem. Phys. 20, 2020. 15015–15036. https://doi.org/10.5194/acp-20-15015-2020
  36. Pardini F., Burton M., Arzilli F., La Spina G., Polacci M. SO2 emissions, plume heights and magmatic processes inferred from satellite data: The 2015 Calbuco eruptions // Journal of Volcanology and Geothermal Research, 2018. 361, 12–24. https://doi.org/10.1016/j.jvolgeores.2018.08.001
  37. Platt U., Stutz J. Differential optical absorption spectroscopy – Springer–Verlag, New–York, Berlin, Heidelberg, 2008. – 593 p.
  38. Rasch P.J., Tilmes S., Turco R.P., Robock A., Oman L., Chen C.-C., Stenchikov G.L., Garcia R.R. An overview of geoengineering of climate using stratospheric sulphate aerosols, Philos. T. Roy. Soc. A, 2008. 366, 4007–4037, https://doi.org/10.1098/rsta.2008.0131
  39. Reed B.E., Peters D.M., McPheat R., Grainger R.G. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved from Spectral Mass Extinction // J. Geophys. Res. Atmos. 2018, 123, pp. 1339–1350, https://doi.org/10.1002/2017JD027362
  40. Robock A. Volcanic eruptions and climate // Rev. Geophys., 2000. 38, 191–219, https://doi.org/10.1029/1998RG000054
  41. Romero J. E., Morgavi D., Arzilli F., Daga R., Caselli A., Reckziegel F., Perugini D. Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): Analyses of tephra fall deposits // Journal of Volcanology and Geothermal Research, 2016. 317, 15–29. https://doi.org/10.1016/j.jvolgeores.2016.02.027
  42. Rybin A., Chibisova M., Webley P., Steensen T., Izbekov P., Neal C., Realmuto V. Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles // Bull. Volcanol., 2011. 73(9), 1377–1392, https://doi.org/10.1007/s00445-011-0481-0
  43. Sato M., Hansen J.E., McCormick M.P., Pollack J.B. Stratospheric aerosol optical depths, 1850–1990 // J. Geophys. Res. 1993. 98, 22987. https://doi.org/10.1029/93JD02553
  44. Sawamura P., et al. Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere, Environ. Res. Lett., 2012. 7(3), 034,013, https://doi.org/10.1088/1748-9326/7/3/034013
  45. Stenchikov G., Delworth T.L., Ramaswamy V., Stouffer R.J., Wittenberg A., Zeng F. Volcanic signals in oceans // J. Geophys. Res., 2009. 114, D16104, https://doi.org/10.1029/2008JD011673
  46. Stenchikov G., Ukhov A., Osipov S., Ahmadov R., Grell G., Cady-Pereira K., Mlawer E., Iacono M. How Does a Pinatubo-Size Volcanic Cloud Reach the Middle Stratosphere? // J. Geophys. Res.–Atmos., 2021. 126, e2020JD033829, https://doi.org/10.1029/2020JD033829
  47. Theys N., De Smedt I., Yu H., Danckaert T., van Gent J., Hörmann C., Wagner T., Hedelt P., Bauer H., Romahn F., Pedergnana M., Loyola D., Van Roozendael M. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis // Atmos. Meas. Tech., 2017. 10, 119–153, https://doi.org/10.5194/amt-10-119-2017
  48. Thompson D.W. Solomon S. Understanding recent stratospheric climate change, J. Climate, 2009. 22, 1934–1943, https://doi.org/10.1175/2008JCLI2482.1
  49. Thordarson Th., Self S. Atmospheric and environmental effects of the 1783 – 1784 Laki eruption: A review andreassessment // J. Geophys. Res., 2003. 108(D1), 4011, https://doi.org/10.1029/2001JD002042
  50. Toohey M., Krüger K., Schmidt H., Timmreck C., Sigl M., Stoffel M., Wilson R. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions // Nat. Geosci., 2019. 12, 100–107, https://doi.org/10.1038/s41561-018-0286-2
  51. Veefkind P., Sneep M. OMDOA03 README FILE: http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/ documents/v003/OMDOAO3 README V003.shtml (last access: 14 January 2012), 2009.
  52. Vermote E.F., Roger J.C., Ray J.P. MODIS Surface Reflectance User's Guide Collection 6. [Accessed 23 June 2016]; 2015 May; http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf
  53. von Savigny C., Timmreck C., Buehler S.A., Burrows J.P., Giorgetta M., Hegerl G., Horvath A., Hoshyaripour G. A., Hoose C., Quaas J., Malinina E., Rozanov A., Schmidt H., Thomason L., Toohey M., Vogel B.: The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption // Meteorol. Z., 2020. 29, 3–18, https://doi.org/10.1127/metz/2019/0999
  54. Watson E.J., Swindles G.T., Stevenson J.A., Savov I., Lawson I.T. The transport of Icelandic volcanic ash: Insights from northern European cryptotephra records // Journal of Geophysical Research: Solid Earth, 2016. 121, 7177–7192. https://doi.org/10.1002/2016JB013350
  55. Wells A.F., Jones A., Osborne M., Damany-Pearce L., Partridge D.G., Haywood J.M.: Including ash in UKESM1 model simulations of the Raikoke volcanic eruption reveals improved agreement with observations // Atmos. Chem. Phys., 2023, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023
  56. Yang K., Liu X., Bhartia P.K., Krotkov N.A., Carn S.A., Hughes E.J., Krueger A.J., Spurr R.J.D., Trahan S.G. Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application // J. Geophys. Res., 2010. 115, D00L09, https://doi.org/10.1029/2010JD013982

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Извержение вулкана Райкоке 22.06.2019 г.: а – изображение пеплового шлейфа от вулкана, полученное со спутника Terra (аппаратура MODIS); б – плотность вертикального столба диоксида серы (SO2) на высоте 15 км, получены по данным спутника Sentinel-5P (аппаратура TROPOMI) с использованием метода DOAS.

Скачать (296KB)
3. Рис. 2. Вертикальная плотность столба диоксида серы (SO2) на высоте 15 км, данные получены с помощью аппаратуры TROPOMI (спутник Sentinel-5P) с использованием метода DOAS. Перемещение вулканического облака SO2: а – 23, 27 и 30 июня 2019 г.; б – с 1 по 3 июля 2019 г.; в – с 4 по 22 июля 2019 г.

4. Рис. 3. Общая масса выбросов диоксида серы (SO2) распространившихся от вулкана Райкоке, кт (килотонны).

Скачать (230KB)
5. Рис. 4. Изменения параметров атмосферы в период сильной вулканической активности в 2019 г.: аэрозольной оптической толщины и содержания озона в столбе атмосферы по данным спутника Aura (прибор OMI), а также температуры в верхней, средней, нижней частях стратосферы по данным спутника Aqua (прибор AIRS).

Скачать (767KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».