Long-Term Satellite Monitoring of Various Types of Wildfires and Wildfire-Induced Emissions of Climate-Active Gases and Aerosols in Russia and in Its Large Regions

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Satellite monitoring results were used to study various types of wildfires that affected four vegetation types (forests, grasslands, shrubs, and agricultural areas) over the whole territory of the Russian Federation and its large regions individually in fire seasons (April - October) in 2001–2023. MCD64A1 information product was used to determine wildfire areas. The largest total values of wildfire areas for the entire territory of Russia during the studied period were recorded in 2002, 2003, and 2008, and over the past decade their maximum value was recorded in 2021, amounting to 117.0 thousand km2. Notably, the area of forest fires alone in 2021 reached a record value of 91.8 thousand km2. Annual fire-induced emissions of carbon-bearing climate-active gases СО, СО2, and CH4, and fine aerosols PM2.5 were estimated. The obtained estimates of fire areas and the fire-induced emissions of climate-active gases were compared with the results of other studies. A trend to reduced values of the total annual burned-out areas, as well as a progressive increase in the average annual fire radiation power (FRP) of all fire types that occurred in Russia during the studied 23-year period, were identified. It has been suggested that this is due to improvements in early fire detection and firefighting techniques, which have reduced the number of grassland fires and agricultural burnings, mostly in Russia’s European part. While the increase in annual average values of radiation power of hot spots is probably associated with climate change over the vast territory of Russia, manifested in an increase in temperature as well as the number and duration of dry periods.

Full Text

Restricted Access

About the authors

V. G. Bondur

AEROCOSMOS Research Institute for Aerospace Monitoring

Author for correspondence.
Email: office@aerocosmos.info
Russian Federation, Moscow

A. L. Zima

AEROCOSMOS Research Institute for Aerospace Monitoring

Email: office@aerocosmos.info
Russian Federation, Moscow

N. V. Feoktistova

AEROCOSMOS Research Institute for Aerospace Monitoring

Email: office@aerocosmos.info
Russian Federation, Moscow

References

  1. Akagi S.K., Yokelson R.J., Wiedinmyer C., Alvarado M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. Emission factors for open and domestic biomass burning for use in atmospheric models // Atmos. Chem. Phys., 2011. 11, P. 4039–4072. https://doi.org/10.5194/acp-11-4039-2011
  2. Andreae M.O. Emission of trace gases and aerosols from biomass burning – an updated assessment // Atmos. Chem. Phys., 2019. 19, P. 8523–8546. https://doi.org/10.5194/acp-19-8523-2019
  3. Bartalev S.A., Yegorov V.A., Yefremov V.Yu., Lupyan Ye.A., Stytsenko F.V., Flitman Ye.V. Otsenka ploshchadi pozharov na osnove kompleksirovaniya sputnikovykh dannykh raznogo prostranstvennogo razresheniya MODIS i Landsat-TM/ETM+ (Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012. V. 9. № 2. P. 9–27. (in Russian)
  4. Bartalev S.A., Stytsenko F.V., Egorov V.A., Lupyan Ye.A. Sputnikovaya otsenka ushcherba ot lesnykh pozharov v Rossii (Satellite-based assessment of Russian forest fire mortality) // Lesovedeniye. 2015. V. 2. P. 83-94. (in Russian)
  5. Bonan G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science (New York, N.Y.), 2008. 320(5882). P.1444–1449.
  6. Bondur V.G. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics. 2016. Vol. 52. No. 9. P. 1078-1091. https://doi.org/10.1134/S0001433816090103.
  7. Bondur V.G., Ginzburg A.S. Emission of Carbon-Bearing Gases and Aerosols from Natural Fires on the Territory of Russia Based on Space Monitoring // Doklady Earth Sciences. 2016. Vol. 466. No. 2. P. 148-152. https://doi.org/10.1134/S1028334X16020045.
  8. Bondur V.G., Gordo K.A. Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 9, P. 955-965. https://doi.org/10.1134/S0001433818090104
  9. Bondur V.G., Gordo K.A., Kladov V.L. Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in northern Eurasia according to satellite-monitoring data // Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 9, pp. 859-874. https://doi.org/10.1134/S0001433817090055
  10. Bondur V.G., Gordo K.A., Voronova O.S., Zima A.L., Feoktistova N.V. Intense Wildfires in Russia over a 22-Year Period According to Satellite Data. Fire, 2023, 6, 99. https://doi.org/10.3390/fire6030099
  11. Bondur V.G., Gordo K.A., Zima A.L. Satellite Research of the Effects of Wildfires on Various Vegetation-Cover Types in Russia // Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1570–1580. https://doi.org/10.1134/S0001433822120076.
  12. Bondur V.G., Tsidilina M.N., Kladov V.L., Gordo K.A. Irregular Variability of Spatiotemporal Distributions of Wildfires and Emissions of Harmful Trace Gases in Europe Based on Satellite Monitoring Data // Doklady Earth Sciences, 2019a, Vol. 485, Part 2, pp. 461–464. https://doi.org/10.1134/S1028334X19040202
  13. Bondur V.G., Tsidilina M.N., Cherepanova E.V. Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation // Izvestiya, Atmospheric and Oceanic Physics. 2019b. Vol. 55. No. 9. Р.1238-1253. https://doi.org/10.1134/S000143381909010X
  14. Chu T., Guo X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review // Remote Sens. 2014. Vol. 6. P. 470- 520. https://doi.org/10.3390/rs6010470.
  15. Egorov V.A., Bartalev S.A., Kolbudaev P.A., Plotnikov D.E., Khvostikov S.A. Land cover map of Russia derived from Proba-V satellite data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. V.15. P. 282-286. https://doi.org/10.21046/2070-7401-2018-15-2-282-286.
  16. Ershov D.V., Sochilova E.N. Assessment of direct pyrogenic carbon emissions in forests of Russia for 2020 according to remote monitoring data // Forest science issues. 2020. 4. 1-8. 10.31509/2658-607x-2020-3-4-1-8.
  17. Friedl M., Sulla-Menashe D. MCD12Q1 MODIS/ Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (Data set) // NASA EOSDIS Land Processes DAAC. 2015. https://doi.org/10.5067/MODIS/MCD12Q1.006.
  18. Giglio L., Boschetti L., Roy D.P., Humber M.L., Justice C.O. The Collection 6 MODIS burned area mapping algorithm and product // Remote Sensing of Environment. 2018. Vol. 217. P. 72–85. https://doi.org/10.1016/j.rse.2018.08.005.
  19. Giglio L., Justice C. MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V061 (Data set) // NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. https://doi.org/10.5067/MODIS/MOD14.061.
  20. Giglio L., Justice C., Boschetti L., Roy D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 (Data set) // NASA EOSDIS Land Processes DAAC. 2015. https://doi.org/10.5067/MODIS/MCD64A1.006.
  21. Humber M.L., Boschetti L., Giglio L., Justice C.O. Spatial and temporal intercomparison of four global burned area products // International Journal of Digital Earth. 2018. Vol. 12. No. 4. P. 460–484. https://doi.org/10.1080/17538947.2018.1433727.
  22. Junpen A., Roemmontri J., Boonman A., Cheewaphongphan P., Thao P.T.B., Garivait S. Spatial and temporal distribution of biomass open burning emissions in the greater mekong subregion. Climate 2020, 8, 90. https://doi.org/10.3390/cli8080090
  23. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA. 3056 pp. https://doi.org/10.1017/9781009325844.
  24. Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. Wildfires in the Siberian taiga // Ambio. 2021. Vol. 50, P.1953–1974. https://doi.org/10.1007/s13280-020-01490-x
  25. Korovin G.N., Isaev A.S. Okhrana lesov ot pozharov kak vazhneyshiy element natsional’noy bezopasnosti Rossii (Protection of forests from fires as the most important element of Russia’s national security) // Lesnoy vestnik. 2000. № 8-9. 121 p. (in Russian)
  26. Kurbatsky N.P. Klassifikatsiya lesnykh pozharov (Classification of forest fires) // Voprosy lesnogo khozyaystva. Krasnoyarsk, 1970. No. 3. P. 68-73. (in Russian)
  27. Kukavskaya E., Soja A., Petkov A. Ponomarev E., Ivanova G., Conard G. S. Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption // Can. J. Forest Res. 2013. Vol. 43. No. 5. P. 493–506. https://doi.org/10.1139/cjfr-2012-0367.
  28. Lappalainen H., Petäjä T., Kujansuu J., Kerminen V., Skorokhod A., Kasimov N., et al. Pan Eurasian Experiment (PEEX) – a research initiative meeting the grand challenges of the changing environment of the northern pan-eurasian arctic- boreal areas // Geography. Environment. Sustainability. 2014. Vol. 7. No. 2. P. 13-48. https://doi.org/10.24057/2071-9388-2014-7-2-13-48.
  29. Loupian E.A., Lozin D.V., Balashov I.V., Bartalev S. A., Stytsenko F. V. A Study of the Dependence of the Degree of Forest Damage by Fires on the Intensity of Burning According to Satellite-Monitoring Data // Cosmic Res, 2022. 60 (Suppl.1), P.46–56/ https://doi.org/10.1134/S001095252270006X
  30. Liu W., Lu F., Luo Y. et al. Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecol Evol. 2017; 7: 6220– 6230. https://doi.org/10.1002/ece3.3188
  31. Mouillot F., Schultz M.G., Yue C., Cadule P., Tansey K., Ciais P., Chuvieco E. Ten Years of Global Burned Area Products from Spaceborne Remote Sensing — A Review: Analysis of User Needs and Recommendations for Future Developments // International Journal of Applied Earth Observation and Geoinformation. 2014. Vol. 26. P. 64–79 https://doi.org/10.1016/ j.jag.2013.05.014.
  32. Ponomarev E.I., Shvetsov E.G., Kharuk V.I. The Intensity of Wildfires in Fire Emissions Estimates // Russian Journal of Ecology. 2018. Vol. 49. No. 6. P. 492–499. https://doi.org/10.1134/S1067413618060097.
  33. Ponomarev E.I.; Yakimov N.D.; Ponomareva T.V.; Yakubailik O.E.; Conard, S.G. Current Trend of Carbon Emissions from Wildfires in Siberia // Atmosphere 2021, 12, 559 pp. https://doi.org/10.3390/atmos12050559
  34. Ponomarev E.I., Zabrodin A.N., Shvetsov E.G., Ponomareva T.V. Wildfire Intensity and Fire Emissions in Siberia // Fire. 2023. Vol. 6. No. 7. 246 pp. https://doi.org/10.3390/fire6070246.
  35. Seiler W., Crutzen P.J. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning // Clim. Change. 1980. Vol. 2. No. 3. P. 207–247.
  36. Shvidenko, A.Z. Climate change and wildfires in Russia / A. Z. Shvidenko, D. G. Schepaschenko // Contemporary Problems of Ecology. – 2013. – Vol. 6, No. 7. – P. 683-692. – doi: 10.1134/S199542551307010X. – EDN SLJQHN.
  37. Shvidenko A.Z., Shchepashchenko D.G., Vaganov E.A., Sukhinin A.I. Emissiya parnikovykh gazov vsledstviye prirodnykh pozharov v Rossii v 1998-2012 gg. (Greenhouse gas emissions due to wildfires in Russia in 1998-2012) // Okhrana atmosfernogo vozdukha. Atmosfera. 2012. No. 1. P. 6-13. (in Russian)
  38. Shi Y., Zang S., Matsunaga T., Yamaguchi Y. A multiyear and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations // J. Cleaner Production. 2020. 270, 122511. https://doi.org/10.1016/j.jclepro.2020.122511
  39. Sukhinin A.I., French N.H.F., Kasischke E.S., Hewson J.H., Soja A.J., Csiszar I.A., Hyer E.J., Loboda T., Conrad S.G., Romasko V.I., Pavlichenko E.A., Miskiv S.I., Slinkina O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies // Remote Sensing of Environment. v. 93 (2004). pp. 546–564.
  40. The Third Assessment Report on Climate Change and its Consequences in the Russian Federation // Ed. by V.M. Kattsov (Roshydromet). St. Petersburg: Science-Intensive Technologies, 2022. 676 p.
  41. Valendik E.N., Matveyev P.M., Sofronov M.A. Krupnyye lesnyye pozhary (Large forest fires) // M.: Nauka, 1979. 197 pp. (in Russian).
  42. Wiedinmyer C., Akagi S.K., Yokelson R.J., Emmons L.K., Al-Saadi J.A., Orlando J.J., Soja A.J. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning // Geosci. Model Dev., 4, 625–641. https://doi.org/10.5194/gmd-4-625-2011
  43. Zalesov A.S. Klassifikatsiya lesnykh pozharov // Metodicheskiye ukazaniya po kursu “Lesnaya pirologiya” (Classification of forest fires. Methodical instructions for the course “Forest pyrology”) // Ekaterinburg: USLTU, 2011. 14 pp. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distributions of areas burned by fires for the whole territory of Russia, obtained from MCD64A1 data for the time period from 2001 to 2023: a - distributions by months in the fire-hazardous period (April-October), b - distributions by types of fires, shown in different colours (forest - green, shrub - blue, meadow-steppe - yellow, agricultural - red), dotted bars - total areas of all types of fires.

Download (423KB)
3. Fig. 2. Estimates of annual total emissions of carbon-containing gases CO2, CO and CH4 from different types of fires shown in different colours (forest fires in green, shrub fires in blue, meadow-steppe fires in yellow, agricultural fires in red) for large regions of Russia: a - European part of Russia (ECR), b - UFD, c - SFD, d - Far Eastern Federal District.

Download (449KB)
4. Fig. 3. Area distributions of meadow-steppe fires and agricultural fires in the south of the European part of the Russian territory in different months of 2006 (a) and 2019 (b).

Download (1MB)
5. Fig. 4. Annual emission volumes of carbon-containing gases CO (a), CO2 (b), CH4 (c) and PM2.5 fine aerosols (d) for different types of fires shown in different colours (forest fires in green, shrub fires in blue, meadow-steppe fires in yellow, agricultural fires in red) throughout Russia.

Download (560KB)
6. Fig. 5. Estimates of forest fire areas (blue columns) and annual CO2 emissions (blue line) from 2009 to 2023 obtained in this paper, Rosleskhoz data on forest fire areas (yellow columns), data on forest fire areas (green bars) and CO2 emission volumes (green dashed line) for the time period from 2010 to 2020 obtained in the same time period, as presented in (Ershov and Sochilova, 2022).

Download (249KB)
7. Fig. 6. Dynamics of annual fire areas (green - forest fires, yellow - other types of fires) occurring on the whole territory of the Russian Federation and annual average values of fire radiation power (FRP) from 2001 to 2023.

Download (192KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».