Long-Term Satellite Monitoring of Various Types of Wildfires and Wildfire-Induced Emissions of Climate-Active Gases and Aerosols in Russia and in Its Large Regions
- Authors: Bondur V.G.1, Zima A.L.1, Feoktistova N.V.1
-
Affiliations:
- AEROCOSMOS Research Institute for Aerospace Monitoring
- Issue: No 5 (2024)
- Pages: 19-34
- Section: ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКОЙ ИНФОРМАЦИИ О ЗЕМЛЕ
- URL: https://ogarev-online.ru/0205-9614/article/view/281360
- DOI: https://doi.org/10.31857/S0205961424050021
- EDN: https://elibrary.ru/RSGXXC
- ID: 281360
Cite item
Abstract
Satellite monitoring results were used to study various types of wildfires that affected four vegetation types (forests, grasslands, shrubs, and agricultural areas) over the whole territory of the Russian Federation and its large regions individually in fire seasons (April - October) in 2001–2023. MCD64A1 information product was used to determine wildfire areas. The largest total values of wildfire areas for the entire territory of Russia during the studied period were recorded in 2002, 2003, and 2008, and over the past decade their maximum value was recorded in 2021, amounting to 117.0 thousand km2. Notably, the area of forest fires alone in 2021 reached a record value of 91.8 thousand km2. Annual fire-induced emissions of carbon-bearing climate-active gases СО, СО2, and CH4, and fine aerosols PM2.5 were estimated. The obtained estimates of fire areas and the fire-induced emissions of climate-active gases were compared with the results of other studies. A trend to reduced values of the total annual burned-out areas, as well as a progressive increase in the average annual fire radiation power (FRP) of all fire types that occurred in Russia during the studied 23-year period, were identified. It has been suggested that this is due to improvements in early fire detection and firefighting techniques, which have reduced the number of grassland fires and agricultural burnings, mostly in Russia’s European part. While the increase in annual average values of radiation power of hot spots is probably associated with climate change over the vast territory of Russia, manifested in an increase in temperature as well as the number and duration of dry periods.
Full Text

About the authors
V. G. Bondur
AEROCOSMOS Research Institute for Aerospace Monitoring
Author for correspondence.
Email: office@aerocosmos.info
Russian Federation, Moscow
A. L. Zima
AEROCOSMOS Research Institute for Aerospace Monitoring
Email: office@aerocosmos.info
Russian Federation, Moscow
N. V. Feoktistova
AEROCOSMOS Research Institute for Aerospace Monitoring
Email: office@aerocosmos.info
Russian Federation, Moscow
References
- Akagi S.K., Yokelson R.J., Wiedinmyer C., Alvarado M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. Emission factors for open and domestic biomass burning for use in atmospheric models // Atmos. Chem. Phys., 2011. 11, P. 4039–4072. https://doi.org/10.5194/acp-11-4039-2011
- Andreae M.O. Emission of trace gases and aerosols from biomass burning – an updated assessment // Atmos. Chem. Phys., 2019. 19, P. 8523–8546. https://doi.org/10.5194/acp-19-8523-2019
- Bartalev S.A., Yegorov V.A., Yefremov V.Yu., Lupyan Ye.A., Stytsenko F.V., Flitman Ye.V. Otsenka ploshchadi pozharov na osnove kompleksirovaniya sputnikovykh dannykh raznogo prostranstvennogo razresheniya MODIS i Landsat-TM/ETM+ (Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012. V. 9. № 2. P. 9–27. (in Russian)
- Bartalev S.A., Stytsenko F.V., Egorov V.A., Lupyan Ye.A. Sputnikovaya otsenka ushcherba ot lesnykh pozharov v Rossii (Satellite-based assessment of Russian forest fire mortality) // Lesovedeniye. 2015. V. 2. P. 83-94. (in Russian)
- Bonan G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science (New York, N.Y.), 2008. 320(5882). P.1444–1449.
- Bondur V.G. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics. 2016. Vol. 52. No. 9. P. 1078-1091. https://doi.org/10.1134/S0001433816090103.
- Bondur V.G., Ginzburg A.S. Emission of Carbon-Bearing Gases and Aerosols from Natural Fires on the Territory of Russia Based on Space Monitoring // Doklady Earth Sciences. 2016. Vol. 466. No. 2. P. 148-152. https://doi.org/10.1134/S1028334X16020045.
- Bondur V.G., Gordo K.A. Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia // Izvestiya, Atmospheric and Oceanic Physics, 2018, Vol. 54, No. 9, P. 955-965. https://doi.org/10.1134/S0001433818090104
- Bondur V.G., Gordo K.A., Kladov V.L. Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in northern Eurasia according to satellite-monitoring data // Izvestiya, Atmospheric and Oceanic Physics, 2017, Vol. 53, No. 9, pp. 859-874. https://doi.org/10.1134/S0001433817090055
- Bondur V.G., Gordo K.A., Voronova O.S., Zima A.L., Feoktistova N.V. Intense Wildfires in Russia over a 22-Year Period According to Satellite Data. Fire, 2023, 6, 99. https://doi.org/10.3390/fire6030099
- Bondur V.G., Gordo K.A., Zima A.L. Satellite Research of the Effects of Wildfires on Various Vegetation-Cover Types in Russia // Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 12, pp. 1570–1580. https://doi.org/10.1134/S0001433822120076.
- Bondur V.G., Tsidilina M.N., Kladov V.L., Gordo K.A. Irregular Variability of Spatiotemporal Distributions of Wildfires and Emissions of Harmful Trace Gases in Europe Based on Satellite Monitoring Data // Doklady Earth Sciences, 2019a, Vol. 485, Part 2, pp. 461–464. https://doi.org/10.1134/S1028334X19040202
- Bondur V.G., Tsidilina M.N., Cherepanova E.V. Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation // Izvestiya, Atmospheric and Oceanic Physics. 2019b. Vol. 55. No. 9. Р.1238-1253. https://doi.org/10.1134/S000143381909010X
- Chu T., Guo X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review // Remote Sens. 2014. Vol. 6. P. 470- 520. https://doi.org/10.3390/rs6010470.
- Egorov V.A., Bartalev S.A., Kolbudaev P.A., Plotnikov D.E., Khvostikov S.A. Land cover map of Russia derived from Proba-V satellite data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. V.15. P. 282-286. https://doi.org/10.21046/2070-7401-2018-15-2-282-286.
- Ershov D.V., Sochilova E.N. Assessment of direct pyrogenic carbon emissions in forests of Russia for 2020 according to remote monitoring data // Forest science issues. 2020. 4. 1-8. 10.31509/2658-607x-2020-3-4-1-8.
- Friedl M., Sulla-Menashe D. MCD12Q1 MODIS/ Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (Data set) // NASA EOSDIS Land Processes DAAC. 2015. https://doi.org/10.5067/MODIS/MCD12Q1.006.
- Giglio L., Boschetti L., Roy D.P., Humber M.L., Justice C.O. The Collection 6 MODIS burned area mapping algorithm and product // Remote Sensing of Environment. 2018. Vol. 217. P. 72–85. https://doi.org/10.1016/j.rse.2018.08.005.
- Giglio L., Justice C. MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V061 (Data set) // NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. https://doi.org/10.5067/MODIS/MOD14.061.
- Giglio L., Justice C., Boschetti L., Roy D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 (Data set) // NASA EOSDIS Land Processes DAAC. 2015. https://doi.org/10.5067/MODIS/MCD64A1.006.
- Humber M.L., Boschetti L., Giglio L., Justice C.O. Spatial and temporal intercomparison of four global burned area products // International Journal of Digital Earth. 2018. Vol. 12. No. 4. P. 460–484. https://doi.org/10.1080/17538947.2018.1433727.
- Junpen A., Roemmontri J., Boonman A., Cheewaphongphan P., Thao P.T.B., Garivait S. Spatial and temporal distribution of biomass open burning emissions in the greater mekong subregion. Climate 2020, 8, 90. https://doi.org/10.3390/cli8080090
- IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA. 3056 pp. https://doi.org/10.1017/9781009325844.
- Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. Wildfires in the Siberian taiga // Ambio. 2021. Vol. 50, P.1953–1974. https://doi.org/10.1007/s13280-020-01490-x
- Korovin G.N., Isaev A.S. Okhrana lesov ot pozharov kak vazhneyshiy element natsional’noy bezopasnosti Rossii (Protection of forests from fires as the most important element of Russia’s national security) // Lesnoy vestnik. 2000. № 8-9. 121 p. (in Russian)
- Kurbatsky N.P. Klassifikatsiya lesnykh pozharov (Classification of forest fires) // Voprosy lesnogo khozyaystva. Krasnoyarsk, 1970. No. 3. P. 68-73. (in Russian)
- Kukavskaya E., Soja A., Petkov A. Ponomarev E., Ivanova G., Conard G. S. Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption // Can. J. Forest Res. 2013. Vol. 43. No. 5. P. 493–506. https://doi.org/10.1139/cjfr-2012-0367.
- Lappalainen H., Petäjä T., Kujansuu J., Kerminen V., Skorokhod A., Kasimov N., et al. Pan Eurasian Experiment (PEEX) – a research initiative meeting the grand challenges of the changing environment of the northern pan-eurasian arctic- boreal areas // Geography. Environment. Sustainability. 2014. Vol. 7. No. 2. P. 13-48. https://doi.org/10.24057/2071-9388-2014-7-2-13-48.
- Loupian E.A., Lozin D.V., Balashov I.V., Bartalev S. A., Stytsenko F. V. A Study of the Dependence of the Degree of Forest Damage by Fires on the Intensity of Burning According to Satellite-Monitoring Data // Cosmic Res, 2022. 60 (Suppl.1), P.46–56/ https://doi.org/10.1134/S001095252270006X
- Liu W., Lu F., Luo Y. et al. Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecol Evol. 2017; 7: 6220– 6230. https://doi.org/10.1002/ece3.3188
- Mouillot F., Schultz M.G., Yue C., Cadule P., Tansey K., Ciais P., Chuvieco E. Ten Years of Global Burned Area Products from Spaceborne Remote Sensing — A Review: Analysis of User Needs and Recommendations for Future Developments // International Journal of Applied Earth Observation and Geoinformation. 2014. Vol. 26. P. 64–79 https://doi.org/10.1016/ j.jag.2013.05.014.
- Ponomarev E.I., Shvetsov E.G., Kharuk V.I. The Intensity of Wildfires in Fire Emissions Estimates // Russian Journal of Ecology. 2018. Vol. 49. No. 6. P. 492–499. https://doi.org/10.1134/S1067413618060097.
- Ponomarev E.I.; Yakimov N.D.; Ponomareva T.V.; Yakubailik O.E.; Conard, S.G. Current Trend of Carbon Emissions from Wildfires in Siberia // Atmosphere 2021, 12, 559 pp. https://doi.org/10.3390/atmos12050559
- Ponomarev E.I., Zabrodin A.N., Shvetsov E.G., Ponomareva T.V. Wildfire Intensity and Fire Emissions in Siberia // Fire. 2023. Vol. 6. No. 7. 246 pp. https://doi.org/10.3390/fire6070246.
- Seiler W., Crutzen P.J. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning // Clim. Change. 1980. Vol. 2. No. 3. P. 207–247.
- Shvidenko, A.Z. Climate change and wildfires in Russia / A. Z. Shvidenko, D. G. Schepaschenko // Contemporary Problems of Ecology. – 2013. – Vol. 6, No. 7. – P. 683-692. – doi: 10.1134/S199542551307010X. – EDN SLJQHN.
- Shvidenko A.Z., Shchepashchenko D.G., Vaganov E.A., Sukhinin A.I. Emissiya parnikovykh gazov vsledstviye prirodnykh pozharov v Rossii v 1998-2012 gg. (Greenhouse gas emissions due to wildfires in Russia in 1998-2012) // Okhrana atmosfernogo vozdukha. Atmosfera. 2012. No. 1. P. 6-13. (in Russian)
- Shi Y., Zang S., Matsunaga T., Yamaguchi Y. A multiyear and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations // J. Cleaner Production. 2020. 270, 122511. https://doi.org/10.1016/j.jclepro.2020.122511
- Sukhinin A.I., French N.H.F., Kasischke E.S., Hewson J.H., Soja A.J., Csiszar I.A., Hyer E.J., Loboda T., Conrad S.G., Romasko V.I., Pavlichenko E.A., Miskiv S.I., Slinkina O.A. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies // Remote Sensing of Environment. v. 93 (2004). pp. 546–564.
- The Third Assessment Report on Climate Change and its Consequences in the Russian Federation // Ed. by V.M. Kattsov (Roshydromet). St. Petersburg: Science-Intensive Technologies, 2022. 676 p.
- Valendik E.N., Matveyev P.M., Sofronov M.A. Krupnyye lesnyye pozhary (Large forest fires) // M.: Nauka, 1979. 197 pp. (in Russian).
- Wiedinmyer C., Akagi S.K., Yokelson R.J., Emmons L.K., Al-Saadi J.A., Orlando J.J., Soja A.J. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning // Geosci. Model Dev., 4, 625–641. https://doi.org/10.5194/gmd-4-625-2011
- Zalesov A.S. Klassifikatsiya lesnykh pozharov // Metodicheskiye ukazaniya po kursu “Lesnaya pirologiya” (Classification of forest fires. Methodical instructions for the course “Forest pyrology”) // Ekaterinburg: USLTU, 2011. 14 pp. (in Russian)
Supplementary files
