The Dirac Equation in the Kerr-de Sitter Metric
- Autores: Batic D.1, Morgan K.1, Nowakowski M.2, Medina S.B.2
-
Afiliações:
- Department of Mathematics
- Departamento de Fisica
- Edição: Volume 24, Nº 3 (2018)
- Páginas: 224-244
- Seção: Article
- URL: https://ogarev-online.ru/0202-2893/article/view/176196
- DOI: https://doi.org/10.1134/S0202289318030040
- ID: 176196
Citar
Resumo
We consider a Fermion in the presence of a rotating BH immersed in a universe with a positive cosmological constant. After presenting a rigorous classification of the number and type of the horizons, we adopt the Carter tetrad to separate the aforementioned equation into radial and angular equations. We show how the Chandrasekhar ansatz leads to the construction of a symmetry operator that in the limit of a vanishing cosmological constant reproduces the square root of the squared total angular momentum operator for a Dirac particle in the Kerr metric. Furthermore, we prove that the the spectrum of the angular operator is discrete and consists of simple eigenvalues, and by means of the functional Bethe ansatz method we also derive a set of necessary and sufficient conditions for the angular operator to have polynomial solutions. Finally, we show that there exist no bound states for the Dirac equation in the non-extreme case.
Sobre autores
D. Batic
Department of Mathematics
Autor responsável pela correspondência
Email: dbatic@pi.ac.ae
Emirados Árabes Unidos, Abu Dhabi
K. Morgan
Department of Mathematics
Email: dbatic@pi.ac.ae
Jamaica, Kingston 6
M. Nowakowski
Departamento de Fisica
Email: dbatic@pi.ac.ae
Colômbia, Bogota
S. Medina
Departamento de Fisica
Email: dbatic@pi.ac.ae
Colômbia, Bogota
Arquivos suplementares
