Modal series expansions for plane gravitational waves
- Авторлар: Acedo L.1
-
Мекемелер:
- Instituto Universitario de Matemática Multidisciplinar, Building 8G, 2o floor
- Шығарылым: Том 22, № 3 (2016)
- Беттер: 251-257
- Бөлім: Article
- URL: https://ogarev-online.ru/0202-2893/article/view/176034
- DOI: https://doi.org/10.1134/S0202289316030026
- ID: 176034
Дәйексөз келтіру
Аннотация
Propagation of gravitational disturbances at the speed of light is one of the key predictions of the General Theory of Relativity. This result is now backed indirectly by the observations of the behavior of the ephemeris of binary pulsar systems. These new results have increased the interest in the mathematical theory of gravitational waves in the last decades, and severalmathematical approaches have been developed for a better understanding of the solutions. In this paper we develop a modal series expansion technique in which solutions can be built for plane waves from a seed integrable function. The convergence of these series is proven by the Raabe-Duhamel criteria, and we show that these solutions are characterized by a well-defined and finite curvature tensor and also a finite energy content.
Авторлар туралы
L. Acedo
Instituto Universitario de Matemática Multidisciplinar, Building 8G, 2o floor
Хат алмасуға жауапты Автор.
Email: luiacrod@imm.upv.es
Испания, Camino de Vera s/n, Valencia, E-46022
Қосымша файлдар
