СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФОТОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА МЕТАЛЛ- ОРГАНИЧЕСКОГО КООРДИНАЦИОННОГО ПОЛИМЕРА [CD2(Bdc),Dabco]
- Авторы: Загузин А.С.1, Зайцев А.В.1,2, Коробейников Н.А.1, Рахманова М.И.1, Бондаренко М.А.1, Шуриков М.К.3, Федин В.П.1, Адонин С.А.1,4
-
Учреждения:
- Институт неорганической химии им. А.В. Николаева СО РАН
- Новосибирский национальный исследовательский государственный университет
- Исследовательская школа химических и биомедицинских технологий
- Федеральный исследовательский центр Иркутский институт химии им. А.Е. Фаворского СО РАН
- Выпуск: Том 51, № 12 (2025)
- Страницы: 783–791
- Раздел: Статьи
- URL: https://ogarev-online.ru/0132-344X/article/view/358350
- DOI: https://doi.org/10.7868/S3034549925120041
- ID: 358350
Цитировать
Аннотация
Взаимодействием нитрата кадмия, терефталевой кислоты (Bdc) и 1,4-диазабицикло [2.2.2] октана (Dabco) в N,N-диметилформамиде получен новый координационный полимер [Cd2(Bdc),Dabco] (I), строение которого определено методом рентгеноструктурного анализа (CCDC № 2441975). Данный МОКП демонстрирует высокую термическую стабильность, быстрая потеря массы начинается при температуре выше 420˚С. Соединение I проявляет фотолюминесценцию при 430 нм (λек = 380 нм) с временами жизни 5 и 12 не и квантовым выходом 6%.
Об авторах
А. С. Загузин
Институт неорганической химии им. А.В. Николаева СО РАН
Автор, ответственный за переписку.
Email: zaguzin@niic.nsc.ru
ORCID iD: 0000-0001-7269-1750
кандидат химических наук, старший научный сотрудник
Новосибирск, Российская ФедерацияА. В. Зайцев
Институт неорганической химии им. А.В. Николаева СО РАН; Новосибирский национальный исследовательский государственный университет
Email: a.zaitsev8@g.nsu.ru
старший лаборант Новосибирск, Российская Федерация; Новосибирск, Российская Федерация
Н. А. Коробейников
Институт неорганической химии им. А.В. Николаева СО РАН
Email: korobeynikov@niic.nsc.ru
ORCID iD: 0000-0003-3399-5975
кандидат химических наук, научный сотрудник Новосибирск, Российская Федерация
М. И. Рахманова
Институт неорганической химии им. А.В. Николаева СО РАН
Email: rakhmanova_m@mail.ru
ORCID iD: 0000-0002-2169-9768
кандидат физико-математических наук, старший научный сотрудник Новосибирск, Российская Федерация
М. А. Бондаренко
Институт неорганической химии им. А.В. Николаева СО РАН
Email: bondarenko@niic.nsc.ru
ORCID iD: 0000-0002-4957-1870
кандидат химических наук, старший научный сотрудник Новосибирск, Российская Федерация
М. К. Шуриков
Исследовательская школа химических и биомедицинских технологий
Email: mks10@tpu.ru
ORCID iD: 0009-0008-4058-0878
младший научный сотрудник Томск, Российская Федерация
В. П. Федин
Институт неорганической химии им. А.В. Николаева СО РАН
Email: cluster@niic.nsc.ru
ORCID iD: 0000-0001-8922-0066
доктор химических наук, главный научный сотрудник Новосибирск, Российская Федерация
С. А. Адонин
Институт неорганической химии им. А.В. Николаева СО РАН; Федеральный исследовательский центр Иркутский институт химии им. А.Е. Фаворского СО РАН
Email: adonin@niic.nsc.ru
ORCID iD: 0000-0002-9889-5273
доктор химических наук, ведущий научный сотрудник
Новосибирск, Российская Федерация; Иркутск, Российская ФедерацияСписок литературы
- Gorbunova Y.G., Fedin V.P., Blatov V.A. //Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5050
- Zhukov L.A., Lysova A.A., Samsonenko D.G. et al. //J. Struct. Chem. 2024. V. 65. № 10. P. 2111. https://doi.org/10.1134/S0022476624100196
- Cheplakova A.M., Eliseev E.A., Samsonenko D.G. et al. //J. Struct. Chem. 2024. V. 65. № 6. P. 1219. https://doi.org/10.1134/S0022476624060106
- Trofimova O.Y., Ershova I. V, Maleeva A. V et al. //J. Inorg. Organomet. Polym. Mater. 2024. V. 34. № 6. P. 2779. https://doi.org/10.1007/s10904-024-03013-7
- Bushuev V.A., Gogoleva N. V, Nikolaevskii S.A. et al. //Molecules. 2024. V. 29. № 9. https://doi.org/10.3390/molecules29092125
- Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. //Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 75. https://doi.org/10.1134/S1070328420020104
- Rubtsova I.K., Shmelev M.A., Nikolaevskii S.A. et al. //Russ. Chem. Bull. 2024. V. 73. № 10. P. 2852. https://doi.org/10.1007/s11172-024-4402-8
- Yashkova K.A., Mel’nikov S.N., Nikolaevskii S.A. et al. //J. Struct. Chem. 2021. V. 62. № 9. P. 1378. https://doi.org/10.1134/S0022476621090067
- Trofimova O.Y., Maleeva A.V., Ershova I.V. et al. //Molecules. 2021. V. 26. № 9. https://doi.org/10.3390/molecules26092486
- Maleeva A. V, Trofimova O.Y., Kocherova T.N. et al. //Russ. J. Coord. Chem. 2023. V. 49. № 11. P. 718. https://doi.org/10.1134/S1070328423600742
- Sapianik A.A., Lutsenko I.A., Kiskin M.A. et al. //Russ. Chem. Bull. 2016. V. 65. № 11. P. 2601. https://doi.org/10.1007/s11172-016-1624-4
- Bazyakina N.L., Kochina A.O., Baranov E. V. et al. //Russ. Chem. Bull. 2024. V. 73. № 6. P. 1590. https://doi.org/10.1007/s11172-024-4275-x
- Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. //Nanomaterials. 2023. V. 13. № 20. P. 2773. https://doi.org/10.3390/nano13202773
- Sapianik A.A., Kovalenko K.A., Samsonenko D.G. et al. //Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
- Sapianik A.A., Dudko E.R., Kovalenko K.A. et al. //ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
- Seromlyanova K.A., Mushtakov A.G., Murtazin D.V. et al. //Pet. Chem. 2023. V. 63. № 2. P. 233. https://doi.org/10.1134/S0965544123020263
- Isaeva V.I., Chernyshev V.V., Fomkin A.A. et al. //Microporous Mesoporous Mater. 2020. V. 300. P. 110136. https://doi.org/10.1016/j.micromeso.2020.110136
- Isaeva V.I., Tarasov A.L., Tkachenko O.P. et al. //J. Porous Mater. 2025. V. 32. № 1. P. 263. https://doi.org/10.1007/s10934-024-01695-5
- Isaeva V.I., Nefedov O.M., Kustov L.M. //Catal. 2018. V. 8. № 9. P. 368. https://doi.org/10.3390/CATAL8090368
- Yu X., Ryadun A.A., Kovalenko K.A. et al. //Dalton. Trans. 2023. V. 52. № 25. P. 8695. https://doi.org/10.1039/D3DT01323E
- Yu X., Ryadun A.A., Potapov A.S. et al. //J. Hazard. Mater. 2023. V. 452. P. 131289. https://doi.org/10.1016/j.jhazmat.2023.131289
- Zhang Y., Yuan S., Day G. et al. //Coord. Chem. Rev. 2018. V. 354. P. 28. https://doi.org/10.1016/j.ccr.2017.06.007
- Dong W., Xiu C.F., Liu C.Y. et al. //Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1973. https://doi.org/10.1134/S0036023622100618
- Behnaz Ranjkesh, Masoumeh Taherimehr //Russ. J. Inorg. Chem. 2021. V. 66. № 1. P. 68. https://doi.org/10.1134/S0036023621010150
- Yambulatov D.S., Nikolaevskii S.A., Shmelev M.A. et al. //Mendeleev Commun. 2021. V. 31. № 5. P. 624. https://doi.org/10.1016/j.mencom.2021.09.011
- Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. //Inorg. Chim. Acta. 2020. V. 508. Р. 119643. https://doi.org/10.1016/j.ica.2020.119643
- Lutsenko I.A., Kiskin M.A., Nikolaevskii S.A. et al. //ChemistrySelect 2019. V. 4. № 48. P. 14261. https://doi.org/10.1002/slct.201904585
- Nikolaevskii S.A., Yambulatov D.S., Voronina J. et al. //ChemistrySelect 2020. V. 5. № 41. P. 12829. https://doi.org/10.1002/slct.202002982
- Bazhina E.S., Aleksandrov G.G., Kiskin M.A. et al. //Russ. Chem. Bull. 2016. V. 65. № 1. P. 249. https://doi.org/10.1007/s11172-016-1293-3
- Bazhina E.S., Shmelev M.A., Voronina J.K. et al. //New J. Chem. 2023. V. 47. № 41. P. 19251. https://doi.org/10.1039/d3nj03027j
- Bazhina E.S., Shmelev M.A., Korlyukov A.A. et al. //Russ. Chem. Bull. 2024. V. 73. № 4. P. 890. https://doi.org/10.1007/s11172-024-4203-0
- Zorina-Tikhonova E.N., Gogoleva N.V., Aleksandrov E.V. et al. //Russ. Chem. Bull. 2016. V. 65. № 3. P. 759. https://doi.org/10.1007/s11172-016-1370-7
- Jian-Min Zhou X.-C.N. //Wuji Huaxue Xuebao, Chinese J. Inorg. Chem. 2012. V. 28. № 5. P. 1055.
- Sheldrick G.M. //Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. //Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O. V., Bourhis L.J., Gildea R.J. et al. //J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Casanova D., Alemany P., Bofill J.M. et al. //Chem. Eur. J. 2003. V. 9. № 6. P. 1281. https://doi.org/10.1002/chem.200390145
- Seki K., Mori W. //J. Phys. Chem. B 2002. V. 106. № 6. P. 1380. https://doi.org/10.1021/jp0130416
- Rosi N.L., Eckert J., Eddaoudi M. et al. //Science. 2003. V. 300. № 5622. P. 1127. https://doi.org/10.1126/science.1083440
- Dybtsev D.N., Chun H., Kim K. //Angew. Chem. Int. Ed. 2004. V. 43. № 38. P. 5033. https://doi.org/10.1002/anie.200460712
- Chun H., Dybtsev D.N., Kim H. et al. //Chem. Eur. J. 2005. V. 11. № 12. P. 3521. https://doi.org/10.1002/chem.200401201
- Uemura K., Yamasaki Y., Komagawa Y. et al. //Angew. Chem. Int. Ed. 2007. V. 46. № 35. P. 6662. https://doi.org/10.1002/anie.200702390
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. //Polyhedron. 2022. V. 212. P. 115587. https://doi.org/10.1016/j.poly.2021.115587
- Zhu L., Xiao H. //Z. Anorg. Allg. Chem. 2008. V. 634. № 5. P. 845. https://doi.org/10.1002/zaac.200700580
- Turner G.F., McKellar S.C., Allan D.R. et al. //Chem. Sci. 2021. V. 12. № 41. P. 13793. https://doi.org/10.1039/d1sc03108b
- Cadman L.K., Bristow J.K., Stubbs N.E. et al. //Dalton. Trans. 2016. V. 45. № 10. P. 4316. https://doi.org/10.1039/c5dt04045k
- Burrows A.D., Frost C.G., Kandiah M. et al. //Inorg. Chim. Acta. 2011. V. 366. № 1. P. 303. https://doi.org/10.1016/j.ica.2010.11.025
- Zhang Z., Gao W., Wojtas L. et al. //Angew. Chem. Int. Ed. 2012. V. 51. № 37. P. 9330. https://doi.org/10.1002/anie.201203594
- Hunt R.W.G., Pointer M.R. Measuring colour. John Wiley & Sons, 2011.
Дополнительные файлы


