УЛК 547.022

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ Cd(II) С РЕДОКС-АКТИВНЫМИ ИНДОФЕНОЛЬНЫМИ ЛИГАНДАМИ

© 2024 г. Е. П. Ивахненко^{1, *}, Ю. Г. Витковская¹, Н. И. Мережко¹, П. А. Князев¹, Г. С. Бородкин¹, К. А. Лысенко², В. И. Минкин¹

¹НИИ физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия ²Московский государственный университет им. М. В. Ломоносова, Москва, Россия

*e-mail: ivakhnenko@sfedu.ru

Поступила в редакцию 22.06.2023 г. После доработки 08.08.2023 г. Принята к публикации 12.09.2023 г.

Осуществлен синтез аддуктов I, II и III комплексов Cd(II) с редокс-амфотерными 2,6-ди-(*мрет*-бутил)-4-((2-гидроксифенил)имино)циклогекса-2,5-диеноновыми лигандами L^1 и L^2 . Строение координированных комплексов I, II и III установлено с помощью PCA (CCDC № 1838319 (II), 1838310 (III) и подтверждено данными ЯМР 1 H, 13 C, 13 Cd (для комплексов I и III) и ИК-спектроскопии.

Ключевые слова: редокс-активные лиганды, индофенолы, комплексы кадмия(II), тетраядерные комплексы кадмия(II), рентгеноструктурный анализ

DOI: 10.31857/S0132344X24040017 EDN: NQECRK

Возрастающий интерес к изучению строения и свойств координационных соединений кадмия, отнесенных Всемирной организацией здравоохранения, наряду с соединениями свинца и ртути, к числу трех наиболее токсичных типов веществ [1], в значительной степени обусловливается тем, что в последние годы удалось обнаружить комплексы Cd(II) с органическими лигандами, проявившие высокую антимикробную резистентность [2, 3] и повышенную активность против пораженных раком стволовых клеток [4]. Лиганды, образующие комплексы этого типа, преимущественно представлены полидентатными хелатирующими структурами на основе гидрокси- и тиопроизводных оснований Шиффа и гидразонов [3–9]. При этом представляется интересным использование лигандов с рассредоточенными редокс-активными центрами, способными не только координироваться с атомом металла, но и участвовать в окислительно-восстановительных процессах в связанном виде. В настоящей работе нами осуществлен синтез и изучено кристаллическое и молекулярное строение новых гексакоординированных комплексов Cd(II) с редокс-амфотерными 2,6-ди-(*тем*-бутил)-4-((2-гидроксифенил) имино)циклогекса-2,5-диеноновыми дами (L^1 и L^2), содержащими два активных редокс-центра, фенольный и n-хиноноиминовый [10, 11] (схема 1).

Схема 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все реагенты и растворители были приобретены у коммерческих поставщиков (Aldrich) и использовались без дополнительной очистки. Использованные в синтезе o-индофенолы L^1 и L^2 получены по методике [11]. Соединения охарактеризованы методами спектроскопии ЯМР 1 H, 13 C и 113 Cd. Спектры ЯМР были зарегистрированы на спектрометрах Varian UNITY-300 (300 МГц для 1 H) и Bruker AVANCE-600 (600 МГц для 1 H, 151 МГц для

¹³С и 133 МГц для ¹¹³Сd) ЦКП ЮФУ "Молекулярная спектроскопия" в растворах CDCl₃, DMSOd₆ и асеtone-d₆, сигналы отнесены к сигналам остаточных протонов дейтерированных растворителей (7.24, 2.49 и 2.05 м.д. соответственно для ¹Н и 77.0 м.д., 39.5, 206.3 и 29.8 м.д. для ¹³С), ЯМР ¹¹³Сd химические сдвиги приведены относительно эталонного соединения Me_2Cd ($\delta = 0$ м.д.). ИК-спектры поликристаллических образцов исследованных соединений снимали на спектрометрах Varian Excalibur 3100 FRT-IR и Bruker Vertex 70. Элементный анализ на С, H, N выполняли на приборе Carlo Erba Instruments TCM 480.

Синтез бис (2,6-ди-(трет-бутил)-4-((2-фено-лято)имино)циклогекса-2,5-диенон)кадмия (I). Раствор 0.133 г (0.5 ммоль) дигидрата ацетата Сd(II) в 10 мл метанола добавляли к раствору 0.423 г (1.0 ммоль) o-индофенола L^1 . Реакционную смесь нагревали 30 мин, после охлаждения оставляли при комнатной температуре на 24 ч. Осадок отфильтровывали и сушили. Получили темно-зеленый кристаллический порошок. Выход -68%. $T_{nn} = 224$ °C.

ИК-спектр (v, см⁻¹): 2953 (СН₃), 2906 (СН₃), 2866 (СН₃), 1631 (С=О), 1613 (С=N_{пикл}), 1477 (С=С_{ар}), 1455 (С=С_{ар}). Спектр ЯМР ¹Н (асеtone-d₆; δ , м.д.; $^3J_{\rm H-H}$, Γ и): 1.05 (с., 18H, 2(СН₃)₃), 1.21 (с., 18H, 2(СН₃)₃), 1.29 (с., 18H, 2(СН₃)₃), 1.45 (с., 18H, 2(СН₃)₃), 6.78 (с., 2H, H_{ар}), 7.24—7.41 (м., 6H, H_{ар}). Спектр ЯМР ¹³С (асеtone-d₆, δ , м.д.): 31.31, 34.21, 35.31, 35.73, 54.07, 68.59, 68.72, 119.28, 124.47, 127.04, 128.50, 130.29, 134.15, 135.26, 136.49, 140.46, 150.66, 151.09, 152.24, 153.58, 165.80, 186.92, 197.48, 209.31, 209.34. Спектр ЯМР ¹¹³Сd (acetone-d₆, δ , м.д.): -637.98.

Найдено, %: С 70.17; H 8.49; N 2.98. Для $C_{56}H_{80}N_2O_4Cd$ вычислено, %: С 70.23; H 8.42; N 2.93.

Синтез бис (2,6-ди-(трет-бутил)-4-((2-фенолято)имино)циклогекса-2,5-диенон) (2,2'-дипиридил) кадмия (II). Раствор 0.133 г (0.5 ммоль) дигидрата ацетата Cd(II) в 10 мл метанола добавляли к раствору 0.423 г (1.0 ммоль) o-индофенола L^1 и 0.078 г (0.5 ммоль) 2,2'-дипиридила в 30 мл метанола. Реакционную смесь нагревали 30 мин, после охлаждения оставляли при комнатной температуре на 24 ч. Осадок отфильтровывали и сушили. Получили темно-зеленый кристаллический порошок. Выход — 64%. $T_{nn} = 210$ °C.

ИК-спектр (v, см $^{-1}$): 2951 (CH $_3$), 2907 (CH $_3$), 2865 (CH $_3$), 1653 (C=O), 1607 (C=N $_{_{\tiny LIJKJ}}$), 1479 (C=C $_{_{\tiny ap}}$), 1454 (C=C $_{_{\tiny ap}}$).

Найдено, %: С 71.14; Н 7.94; N 5.04. Для $C_{66}H_{88}N_4O_4Cd$ вычислено, %: С 71.17; Н 7.96; N 5.03.

Синтез гекса (2,6-ди-(*трет*-бутил)-4-((2-фенолято)имино)циклогекса-2,5-диенон) бис (ацетато) тетракадмий (III). Раствор 0.133 г (0.5 ммоль) дигидрата ацетата Cd(II) в 10 мл метанола добавляли к раствору 0.423 г (1.0 ммоль) o-индофенола L^2 в 30 мл метанола. Реакционную смесь нагревали 30 мин, после охлаждения оставляли при комнатной температуре на 24 ч. Осадок отфильтровывали и сушили. Получили фиолетовый кристаллический порошок. Выход — 85%. $T_{\text{пл}} = 300$ °C.

ИК-спектр (v, см⁻¹): 2999 (СН₂), 2959 (СН₃), 2869 (СН₃), 1686 (С=О), 1624 (Č=N_{ШИКЛ}), 1587 (С=N_{ШИКЛ}), 1482 (С=С_{ар}), 1455 (С=С_{ар}). Спектр ЯМР ¹H (DMSO-d₆; δ , м.д.; ³J_{H-H}, Γ Ц): 0.84 $(c., 36H, 4(CH_3)_3), 1.01 (c., 36H, 4(CH_3)_3), 1.03 (c., 36H, 4(CH_3)_3)$ 18H, $2(CH_3)_3$, 1.40 (c., 18H, $2(CH_3)_3$), 2.14 (c., 6H, $2CH_3$), 5.71 (д., 2H, H_{ap} , $^3J = 8.2$), 5.76 (т., 2H, H_{ap} , $^{3}J = 8.2$), 6.15 (T., 2H, $^{4}H_{ap}$), $^{3}J = 8.2$), 6.20 ($^{2}H_{ap}$), 6.37 ($^{2}H_{ap}$), 6.37 ($^{2}H_{ap}$), 6.37 ($^{2}H_{ap}$), 6.49 (T., 4H, H_{ap} , ${}^{3}J = 7.9$), 6.70 (д., 2H, H_{ap} , ${}^{3}J = 2.3$), 6.92 $(\text{д.}, 4\text{H}, \text{H}_{ap}, {}^{3}J = 2.5), 7.02 (\text{д.}, 4\text{H}, \text{H}_{ap}, {}^{3}J = 2.5), 7.28$ $(T., 4H, H_{ap}, {}^{3}J = 7.9), 7.66 (д., 4H, H_{ap}, {}^{3}J = 7.9), 7.84 (д., 2H, H_{ap}, {}^{3}J = 2.3).$ Спектр ЯМР 13 С (DMSO-d₆; б, м.д.): 29.13, 29.46, 29.55, 29.85, 35.52, 35.58, 35.87, 116.51, 116.70, 121.69, 122.02, 123.69, 124.73, 125.48, 125.69, 130.80, 131.88, 132.39, 132.96, 135.43, 135.99, 152.09, 153.41, 153.82, 153.94, 157.29, 159.24, 161.79, 180.64, 186.42, 188.12. Спектр ЯМР ¹¹³Cd (DMSO-d₆, δ, м. д.): –622.53, -691.22.

Найдено, %: С 61.26; Н 6.23; N 3.47. Для $C_{124}H_{150}N_6O_{16}Cd_4$ вычислено, %: С 61.28; Н 6.22; N 3.46.

РСА проведен на дифрактометре Bruker APEX II Duo (MoK_{α} -излучение, графитовый монохроматор, ω -сканирование). Атомы водорода локализованы из разностных Фурье-синтезов электронной плотности и уточнены в изотропном приближении по модели "наездника". Расшифровка и уточнение структур проведены по комплексу программ SHELXTL PLUS [12]. Основные кристаллографические данные и параметры уточнения для II, III приведены в табл. 1, длины связей и валентные углы — в табл. 2.

Таблица 1. Основные кристаллографические данные и параметры уточнения для структур II и III

	Значение		
Параметр	II	III	
Брутто-формула	$C_{69}H_{100}CdN_4O_7$	C ₁₂₄ H ₁₅₀ Cd ₄ N ₆ O ₁₆	
M	1209.92	2436.22	
<i>T</i> , K	120(2)	120(2)	
Сингония	Моноклинная	Триклинная	
Пространственная группа	$P2_{1}/c$	$P\bar{1}$	
Z	4	1	
a, Å	10.849(2)	12.950(5)	
b, Å	27.151(5)	13.724(5)	
c, Å	23.083(5)	17.225(6)	
α, град	90	86.269(6)	
3, град	91.74(3)	82.727(6)	
ү, град	90	80.170(5)	
V, Å ³	6796(2)	2989.1(19)	
ρ (выч.), г/см ³	1.183	1.353	
u, см ⁻¹	0.373	0.766	
F(000)	2584	1259	
$2\theta_{ ext{max}}$, град	50	50	
число измеренных отражений	86077	23865	
Число независимых отражений	26958	13506	
Число отражений с $I > 2\theta(I)$	19512	7541	
Число уточняемых параметров	785	699	
$R_{1}, wR_{2} (I > 2\theta(I))$	0.0427, 0.0991	0.0543, 0.0999	
R_1 , wR_2 (все данные)	0.0696, 0.1118	0.1198, 0.1238	
GOOF	1.014	0.904	
$\Delta ho_{ m max}/ ho_{ m min}$, e Å $^{-3}$	0.008 / 0.000	0.001 / 0.000	

Таблица 2. Основные длины связей (Å) и валентные углы (град) комплексов II и III

Связь	d, Å	Связь	d, Å		
II					
Cd(1)-O(1A)	2.2548(12)	O(1A)-C(2A)	1.3157(18)		
Cd(1)–(O1)	2.2734(11)	O(2)-C(10)	1.2494(19)		
Cd(1)-N(1)	2.3550(14)	O(2A)-C(10A)	1.2499(19)		
Cd(1)-N(1A)	2.3610(13)	N(1)–C(1)	1.4036(19)		
Cd(1)-N(1B)	2.3650(14)	N(1)–C(7)	1.3188(19)		
Cd(1)-N(2B)	2.3757(15)	N(1A)-C(1A)	1.3970(19)		
O(1)–C(2)	1.3158(18)	N(1A)-C(7A)	1.3182(19)		
III					
Cd(1)-O(1)	2.231(4)	O(1)-C(2)	1.336(6)		
Cd(1)-O(1B)	2.253(3)	O(1A)-C(1A)	1.347(7)		
Cd(1)-N(1B)	2.331(4)	O(1B)-C(1B)	1.342(6)		
Cd(1)-O(1A)	2.341(4)	O(2)-C(10)	1.220(7)		
Cd(1) $-O(1A)$	2.363(3)	O(2A)-C(10A)	1.227(6)		
Cd(1)-N(1)	2.391(4)	O(2B)-C(10B)	1.218(6)		
Cd(2)-O(1)	2.247(4)	N(1)–C(1)	1.408(7)		
Cd(2)-O(1B)	2.275(4)	N(1)-C(7)	1.309(6)		
Cd(2)-O(1S)	2.285(4)	N(1A)-C(2A)	1.406(7)		
Cd(2)-N(1A)	2.337(5)	N(1A)-C(7A)	1.307(7)		

Таблица 2. Окончание

Cd(2)-O(2S)	2.348(4)	N(1B)-C(2B)	1.419(6)
Cd(2)-O(1A)	2.372(4)	N(1B)-C(7B)	1.302(6)
Угол	ω, град	Угол	ω, град
	II		
O(1A)Cd(1)O(1)	176.69(4)	N(1)Cd(1)N(1B)	98.21(5)
O(1A)Cd(1)N(1)	105.77(5)	N(1A)Cd(1)N(1B)	162.62(5)
O(1)Cd(1)N(1)	71.15(4)	O(1A)Cd(1)N(2B)	87.33(5)
O(1A)Cd(1)N(1A)	71.71(4)	O(1)Cd(1)N(2B)	95.91(5)
O(1)Cd(1)N(1A)	107.14(4)	N(1)Cd(1)N(2B)	163.84(5)
N(1)Cd(1)N(1A)	96.03(5)	N(1A)Cd(1)N(2B)	97.09(5)
O(1A)Cd(1)N(1B)	94.76(5)	N(1B)Cd(1)N(2B)	70.79(5)
O(1)Cd(1)N(1B)	86.95(5)	_	_
	III		
O(1)Cd(1)O(1B)	173.67(14)	O(1)Cd(2)O(1B)	103.83(13)
O(1)Cd(1)N(1B)	112.79(14)	O(1)Cd(2)O(1S)	103.84(14)
O(1B)Cd(1)N(1B)	72.83(14)	O(1B)Cd(2)O(1S)	102.49(15)
O(1)Cd(1)O(1A)	93.01(13)	O(1)Cd(2)N(1A)	143.01(15)
O(1B)Cd(1)O(1A)	81.67(13)	O(1B)Cd(2)N(1A)	85.78(15)
N(1B)Cd(1)O(1A)	153.81(13)	O(1S)Cd(2)N(1A)	108.82(15)
O(1)Cd(1)O(1A)	76.01(12)	O(1)Cd(2)O(2S)	93.22(15)
O(1B)Cd(1)O(1A)	106.15(13)	O(1B)Cd(2)O(2S)	156.51(15)
N(1B)Cd(1)O(1A)	102.11(14)	O(1S)Cd(2)O(2S)	57.07(17)
O(1A)Cd(1)O(1A)	79.02(14)	N(1A)Cd(2)O(2S)	90.25(16)
O(1)Cd(1)N(1)	72.11(14)	O(1)Cd(2)O(1A)	75.52(12)
O(1B)Cd(1)N(1)	104.78(14)	O(1B)Cd(2)O(1A)	80.57(12)
N(1B)Cd(1)N(1)	97.15(15)	O(1S)Cd(2)O(1A)	176.93(15)
O(1A)Cd(1)N(1)	95.00(14)	N(1A)Cd(2)O(1A)	70.93(14)
O(1A)Cd(1)N(1)	147.20(14)	O(2S)Cd(2)O(1A)	119.89(16)

Полные данные РСА для II, III доступны в Кембриджском банке структурных данных (ССDС № 1838319 и 1838310; deposit@ccdc. cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

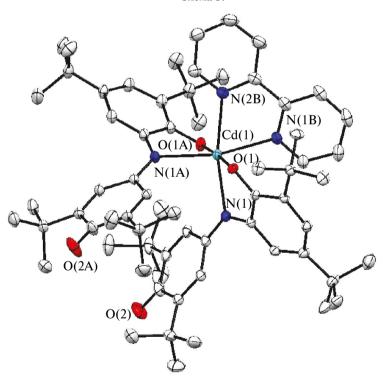
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Реакция лиганда L¹, в котором o-гидроксильный центр пространственно-экранирован двумя объемными mpem-бутильными группами с ацетатом кадмия, ведет к образованию тетраэдрического комплекса I (схема 2). Строение комплекса I установлено методами спектроскопии ЯМР ¹H, ¹³С и ¹¹¹3Cd (ЯМР ¹¹¹3Cd, acetone-d₆, δ = -637.98 м.д.) и данными ИК-спектроскопии.

Реакция лиганда L¹ с ацетатом кадмия в присутствии эквимольного количества NN-хелатирующего 2,2'-дипиридила ведет к образованию октаэдрического комплекса II (схема 3) с выходом 64%. Строение комплекса II установлено ме-

тодами рентгеноструктурного анализа (рис. 1) и данными ИК-спектроскопии.

Исследование комплекса II методом РСА показало, что за счет присутствия 2,2'-дипиридила координационный узел существует в виде искаженного октаэдра, в котором атом кадмия координирован с двумя атомами кислорода (длины связей равны 2.2548(12) и 2.2734(11) Å) и четырьмя атомами азота (длины связей 2.3550(14)— 2.3757(15) Å). Валентные углы C(1)N(1)C(7) в лигандах равны 123.76° и 124.30° соответственно. Длины связей C—O(1) и C—O(1A) координационного узла (1.3157(18)—1.3158(18) Å) соответствуют катехолатной редокс-форме лиганда [13].


В отличие от пространственно-экранированного лиганда L^1 его аналог с неэкранированной гидроксильной группой L^2 в реакции с ацетатом кадмия(II) (схема 4) образует тетраядерный комплекс с необычной молекулярной структурой III. В спектре ЯМР 113 Cd III фиксируются сигналы

$$\begin{array}{c} Cd(CH_3COO)_2\\ \hline CH_3OH,\ reflux,\ 0.5\ h\\ \hline L^1 \end{array}$$

Схема 2.

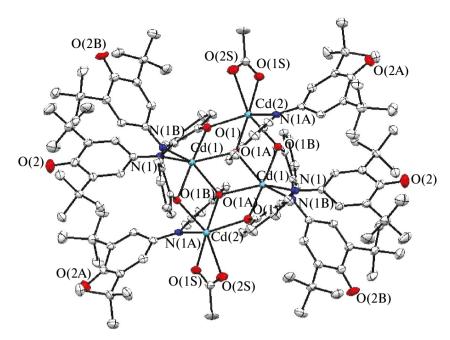
$$t-Bu$$
 $t-Bu$
 $t-Bu$

Схема 3.

Рис. 1. Молекулярная структура комплекса II (атомы водорода не показаны, остальные атомы представлены термическими эллипсоидами с 50%-ной вероятностью).

атомов кадмия двух разных структурных типов (рис. 2).

Как следует из данных рентгеноструктурного определения молекулярного строения комплекса III (рис. 3), шесть молекул лиганда L² коорди-


нированы четырьмя атомами кадмия двух типов и дополнительно двумя ацетатными фрагментами. Все четыре атома кадмия находятся в центре искаженных октаэдров. Атомы Cd(1) координируются двумя азотами (2.331 и 2.391 Å) и четырьмя кислородами четырех лигандов (2.230—

-620 -625 -630 -635 -640 -645 -650 -655 -660 -665 -670 -675 -680 -685 -690 б, м.д.

Рис. 2. Спектр ЯМР ¹¹³Сd комплекса III (CDCl₃, 303 K).

 $2.362 \, \text{Å}$), тогда как атомы Cd(2) координируются одним атомом азота ($2.337 \, \text{Å}$) и пятью атомами кислорода ($2.247-2.372 \, \text{Å}$) трех лигандов и одного ацетатного фрагмента. Необходимо отметить, что атомы O(1) и O(1B) одновременно координируют атом Cd(1) и атом Cd(2), тогда как атомы O(1A) одновременно координируют два

атома Cd(1) и один атом Cd(2). Валентные углы в лигандах C(2)N(1)C(7) равны 121.42° , 121.28° и 124.09° соответственно. Плоскости фенольного и циклогексадиенонового циклов лигандов развернуты друг относительно друга на 44.30° , 35.93° и 40.76° соответственно. Длины связей C—О координационного узла (1.336(6)-1.347(7)

Рис. 3. Молекулярное строение комплекса III (атомы водорода не показаны, остальные атомы представлены термическими эллипсоидами с 50%-ной вероятностью).

Å) соответствуют катехолатной редокс-форме лиганда [13].

Ранее были описаны карбоксилатные комплексы кадмия(II), которые образуют кубические полиядерные структуры с четырьмя атомами кадмия и мостиковыми атомами кислорода [14–16], однако в случае комплекса III, вероятно, за счет стерического влияния индофенольных лигандов с объемными *трет*-бутильными формирование кубической структуры затруднено. При этом "внешние" атомы Cd(2) остаются координированными ацетатными группами [17].

Таким образом, взаимодействие o-индофенольных лигандов L^1 и L^2 с ацетатом кадмия(II) ведет к образованию комплексов различного состава. На примере лиганда L^1 с пространственно-экранированными двумя объемными mpem-бутильными группами в индофенольном фрагменте показано образование комплекса с тетраэдрическим координационным узлом и возможность его докоординации NN-хелатирующими соединениями до комплекса с октаэдрическим координационным узлом. При этом отсутствие объемных mpem-бутильных групп в индофенольном фрагменте лиганда L^2 снимают стерические ограничения, что ведет к образованию полиядерных комплексов Cd(II).

Авторы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (государственное задание в сфере научной деятельности, проект № FENW-2023-0017).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ten Chemicals of Major Public Health Concern. World Health Organization Geneva (Switzerland), 2010. P. 1.
- 2. *Kokanov S.B.*, *Filipović N.R.*, *Višnjevac A. et al.* // Appl. Organometal. Chem. 2022. V. 37. № 1. P. 6942.
- 3. *Irfan R.M., Shaheen M.A., Saleem M. et al.* // Arabian J. Chem. V. 14. № 10. P. 103308.
- 4. *Todorović R., Cvijetić I., Rodić M.V. et al.* // J. Inorg. Biochem. V. 190. P. 45.
- 5. *Mousavi S.A., Montazerozohori M., Naghiha R. et al.* // Appl. Organometal. Chem. 2020. V. 34. № 4. P. e5550.
- 6. *Kishore D.*, *Kumar D.* // J. Coord. Chem. 2011. V. 64. № 12. P. 2130.
- 7. Гусев А.Н., Шульгин В.Ф., Кискин М.А. и др. // Коорд. химия. 2011. Т. 37. № 2. С. 119 (Gusev A.N., Shul'gin V.F., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2011. V. 37. № 2. Р. 117).
 - https://doi.org/10.1134/S1070328411010052
- 8. Saghatforoush L.A., Aminkhani A., Ershad S. et al. // Molecules. 2008. V. 13. P. 804.
- 9. *Bjørklund G., Crisponi G., Nurchi V.M. et al.* // Molecules. 2019. V. 24. № 18. P. 3247.

- 10. Олехнович Л.П., Ивахненко Е.П., Любченко С.Н. и др. // Рос. хим. журн. 2004. Т. 48. № 1. С. 103.
- 11. *Ивахненко Е.П., Витковская Ю.Г., Лысенко К.А. и др.* // Журн. неорган. химии. 2023. Т. 68. № 9.
- Sheldrick G.M. // Acta Crystalllogr. A. 2008. V. 64.
 P. 112.
- 13. *Bhattacharya S., Gupta P., Basuli F. et al.* // Inorg. Chem. 2002. V. 41. P. 5810.
- 14. Noth H., Thomann M. // Chem. Ber. 1995. V. 128. P. 923.
- 15. *Кузнецова Г.Н., Ямбулатов Д.С., Кискин М.А. и др.* // Коорд. химия. 2020. Т. 46. № 8. С. 493 (*Kuznetsova G.N., Yambulatov D.S., Kiskin M.A. et al.* // Russ. J. Coord. Chem. 2020. V. 46. № 8. P. 553). https://doi.org/10.1134/S1070328420080047
- 16. *Tong M.-L.*, *Zheng S.-L.*, *Shi J.-X. et al.* // J. Chem. Soc., Dalton Trans. 2002. V. 8. P. 1727.
- 17. *Liles D.C., McPartlin M., Tasker P.A.* // J. Chem. Soc., Chem. Commun. 1976. V. 14. P. 549.

Cadmium(II) Complexes with Redox-Active Indophenol Ligands: Synthesis and Structures

E. P. Ivakhnenko^{1, *}, Yu. G. Vitkovskaya¹, N. I. Merezhko¹, P. A. Knyazev¹, G. S. Borodkin¹, K. A. Lysenko², and V. I. Minkin¹

¹Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia ²Moscow State University, Moscow, Russia

*e-mail: ivakhnenko@sfedu.ru

The Cd(II) complexes with redox amphoteric 2,6-di-(*tret*-butyl)-4-((2-hydroxyphenyl) imino)cyclohexa-2,5-dienone ligands L1 and L2 (adducts I, II, and III) are synthesized. The structures of coordinated complexes I, II, and III are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 1838319 (II) and 1838310 (III)) and confirmed by the 1H, 13C, and 113Cd NMR spectroscopy (for complexes I and III) and IR spectroscopy data.

Keywords: redox-active ligands, indophenols, cadmium(II) complexes, tetranuclear cadmium(II) complexes, XRD

REFERENCES

- 1. *Jungwirth, U., Kowol, C.R., Keppler, B.K., et al.*, Antioxid. Redox. Signaling, 2011, vol. 15, p. 1085.
- 2. *Brown, J.M. and Wilson, W.R.*, Nat. Rev. Cancer, 2004, vol. 4, p. 437.
- 3. Denny, W.A., Cancer Invest., 2004, vol. 22, p. 604.
- 4. *Graf, N. and Lippard, S.J.*, Adv. Drug. Deliv. Rev., 2012, vol. 64, p. 993.
- 5. *Ware, D.C., Siim, B.G., Robinson, K.G., et al.*, Inorg. Chem., 1991, vol. 30, p. 3750.
- 6. Craig, P.R., Brothers, P.J., Clark, G.R., et al., Dalton Trans., 2004, vol. 4, p. 611.
- 7. Failes, T.W., Cullinane, C., Diakos, C.I., et al., Chem.-Eur. J., 2007, vol. 13, p. 2974.
- 8. Karnthaler-Benbakka, M.S.C., Groza, M.S.D., Kryeziu, M.K., et al., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 12930.
- 9. Palmeira-Mello, M.V., Caballero, A.B., Ribeiro, J.M.,

- et al., J. Inorg. Biochem., 2020, vol. 211, p. 111211.
- 10. *Souza, I.S.A., Santana, S.S., Gomez, J.G., et al.*, Dalton Trans., 2020, vol. 49, p. 16425.
- 11. *Khakina*, *E.A.*, *Nikovskii*, *I.A.*, *Babakina*, *D.A.*, *et al.*, Russ. J. Coord. Chem., 2023, vol. 49, p. 24. https://doi.org/10.1134/S1070328422700105
- 12. *Cioncoloni, G., Senn, H.M., Sproules, S., et al.*, Dalton Trans., 2016, vol. 45, p. 15575.
- 13. Vlcek, A.A., Inorg. Chem., 1967, vol. 6, p. 1425.
- 14. *Ma*, *D.-L.*, *Wu*, *C.*, *Cheng*, *S.-S.*, *et al.*, Int. J. Mol. Sci., 2019, vol. 20, p. 341.
- 15. *Sheldrick*, *G.M.*, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, p. 112.
- 16. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- 17. Stamatatos, T.C., Bell, A., Cooper, P., et al., Inorg. Chem. Commun., 2005, vol. 8, p. 533.
- 18. Alvarez, S., Chem. Rev., 2015, vol. 115, p. 13447.