Features of polytetrafluoroethylene application in high-dose dosimetry of accelerated protons by the method of electron paramagnetic resonance
- Авторлар: Vazirova E.N.1, Sarychev M.N.1, Artemov M.Y.1, Milman I.I.2, Surdo A.I.2, Αbashev R.M.3
-
Мекемелер:
- Ural Federal University
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Шығарылым: № 7 (2025)
- Беттер: 17-25
- Бөлім: Radiation methods
- URL: https://ogarev-online.ru/0130-3082/article/view/288974
- DOI: https://doi.org/10.31857/S0130308225070024
- ID: 288974
Дәйексөз келтіру
Аннотация
EPR — a high-dose dosimetry method for use in monitoring radiation technologies has been tested for a proton beam with an energy of 18 MeV using a domestic brand of polytetrafluoroethylene as a radiation detector and an original EPR spectrometer. It has been shown that the dose range of the EPR signal is limited to 1.5 MGy, after which saturation occurs. Doses exceeding this value can be measured using additional signals in the EPR spectrum. It was found that irradiation of the detectors leads to their gamma radioactivity. The energy of the gamma radiation and the half-life of the source corresponded to the isotope 18F obtained in the nuclear reaction 18O(p, n)18F, which indicated the presence of oxygen in the detector material, which determines their paramagnetic properties
Авторлар туралы
Ekaterina Vazirova
Ural Federal University
Email: e.n.agdantseva@urfu.ru
Ресей, 620002 Yekaterinburg, Mira str., 19
Maksim Sarychev
Ural Federal University
Email: m.n.sarychev@urfu.ru
Ресей, 620002 Yekaterinburg, Mira str., 19
Mikhail Artemov
Ural Federal University
Email: Mikhail.Artyomov@urfu.ru
Ресей, 620002 Yekaterinburg, Mira str., 19
Igor Milman
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: i.i.milman@urfu.ru
Ресей, 620108 Yekaterinburg, S. Kovalevskaya str., 18
Aleksandr Surdo
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: surdo@imp.uran.ru
Ресей, 620108 Yekaterinburg, S. Kovalevskaya str., 18
Rinat Αbashev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: abashevrm@imp.uran.ru
Ресей, 620108 Yekaterinburg, S. Kovalevskaya str., 18
Әдебиет тізімі
- Karamyshev O.V., Bunyatov K.S., Gibinsky A.L., Gurskiy S.V., Karamysheva G.A., Lyapin I.D., Malinin V.A., Popov D.V., Shirkov G.D., Shirkov S.G. Research and Development of the SC230 Superconducting Cyclotron for Proton Therapy // Physics of Particles and Nuclei Letters. 2021. V. 18. No. 1. P. 63—74. https://doi.org/10.1134/S1547477121010088
- Chernyaev A.P., Varzar S.M., Belousov A.V., Zheltonozhskaya M.V., Lykova E.N. Prospects of Development of Radiation Technologies in Russia // Physics of Atomic Nuclei. 2019. V. 82. No. 5. P. 513—527. https://doi.org/10.1134/S1063778819040070
- Obodovsky I.M. Sources of ionizing radiation. Dolgoprudny: Intellect, 2016.
- Chernyaev A.P. Radiation Technologies. Science. National Economy Medicine. Moscow: Moscow University Press, 2019.
- Alimov A.S. Practical Application of Electron Accelerators. Moscow: Nauchno-Issled. Inst. Yadern. Fiz. Mosk. Gos. Univ., 2011.
- Zabaev V.N. Accelerator Applications in Science and Industry. Tomsk: Tomsk Polytechnic University Publ. House, 2008.
- Sokovnin S.Yu. Nanosecond Electron Accelerators for Radiation Technologies. Yekaterinburg: Ural State Agrarian University, 2017.
- Salimov R.A. High-energy electron accelerators for industrial applications // Physics-Uspekhi. 2000. V. 43. No. 2. P. 189—192. https://doi.org/10.1070/PU2000v043n02ABEH000671
- Alimov A.S. Bliznyuk U.A., Borchegovskaya P.U., Varzar S.M., Elansky S.N., Ishkhanov B.S., Litvinov U.U., Matveychuk I.V., Nikolaeva A.A., Rozanov V.V., Studenikin F.R., Chernyaev A.P., Shvedunov V.I., Yurov D.S. Using Accelerated Electron Beams for the Radiation Processing of Foodstuffs and Biomaterials // Bulletin of the Russian Academy of Sciences: Physics. 2017. V. 81. No. 6. P. 743—747. https://doi.org/10.3103/S106287381706003X
- Kurnosov A.I., Yudin V.V. Technology of Manufacturing Semiconductor Devices. Moscow: Vysshaya Shkola, 1974.
- Chen R., McKeever S.W.S. Theory of Thermoluminescence and Related Phenomena. Singapore: World Scientific, 1997. https://doi.org/10.1142/2781
- Yukihara E.G., McKeever S.W.S., Andersen C.E., Bos A.J.J., Bailiff I.K., Yoshimura E.M., Sawakuchi G.O., Bossin L., Christensen J.B. Luminescence dosimetry // Nature Reviews Methods Primers. 2022. V. 2. No. 26. P. 1—21. https://doi.org/10.1038/s43586-022-00102-0
- Pikaev A.K. Dosimetry in Radiation Chemistry. Moscow: Nauka, 1975.
- Schonbacher Н., Furstner M., Vincke H. High-Level Dosimetric Methods // Radiation Protection Dosimetry. 2009. V. 137. Is. 1—2. P. 83—93. https://doi.org/10.1093/rpd/ncp195
- Bradshaw W.W., Cadena D.G., Craword G.W., Spetzler H.A. The use of alanine as solid dosimeter // Radiation Research. 1962. V. 17. P. 11—21. https://doi.org/10.2307/3571206
- ISO/ASTM 51607: 2004. Standard Practice for Use of Alanin-EPR Dosimetry System. Annual Book of ASTM Standards.
- Guidelines for the development, validation and routine of industrial radiation processed. Vienna: International Atomic Energy Agency, 2013. 148 p. (IAEA radiation technology series. ISSN 2220—7341. No. 4).
- GOST 34157—2017. Standard Practice for Dosimetry in Electron Beam and X-Ray (Bremsstrahlung) Irradiation Facilities for Food Processing, 2019.
- GOST 8.651—2016. State system for ensuring the uniformity of measurements. Medical products. Radiation sterilization. Dosimetric techniques, 2017.
- GET 83-2017. The state primary standard of the unit of the paramagnetic center quantity. FSUE VNIIFTRI.
- Leskov A.S., Kuvykina M.B., Tenishev V.P. Dosimetric system on the basis of EPR-spectroscopy with use state primary standards of power of the absorbed dose and Standard of number of the paramagnetic centers // Journal of Physics: Conference Series. 2019. V. 1420. No. 012014. P. 1—3. https://doi.org/10.1088/1742-6596/1420/1/012014
- Pavlov A.N., Chizh T.V., Snegirev A.S., Sanzharova N.I., Chernyaev A.P., Borshegovskaya P.Yu., Ipatova V.S., Dorn Yu.A. Technological process of food irradiation and dosimetric support // Radiatsionnaya Gygiena = Radiation Hygiene. 2020. V. 13. No. 4. P. 40—50. https://doi.org/10.21514/1998-426X-2020-13-4-40-50
- Milman I.I., Surdo A.I., Abashev R.M., Tsmokalyuk A.N., Berdenev N.E., Agdantseva E.N., Popova M.A. Polytetrafluorethylene in High-Dose EPR Dosimetry for Monitoring Radiation Technologies // Russian Journal of Nondestructive Testing. 2019. V. 55. P. 868—874. https://doi.org/10.1134/S106183091911007X
- Vazirova E.N., Abashev R.M., Milman I.I., Surdo A.I. Optical testing of degradation of films of polytetrafluoroethylene and its modification under electron irradiation // Russian Journal of Nondestructive Testing. 2023. V. 59. P. 1291—1296. https://doi.org/10.1134/S1061830923700584
- Rokeakh A.I., Artyomov M.Yu. Continuous wave desktop coherent superheterodyne X-band EPR spectrometer // Journal of Magnetic Resonance. 2022. V. 338. No. 107206. P. 1—18. https://doi.org/10.1016/j.jmr.2022.107206
- Ivanov I.N., Nikolaenko O.K. Activation Analysis with Use of Short-Lived Nuclides. Moscow: Energoatomizdat, 1987.
- Hess E., Takacs S., Scholten B., Tarkanyi F., Coenen H.H., Qaim S.M. Excitation function of 18O(p, n)18F nuclear reaction from up to 30 MeV // Radiochimica Acta. 2001. V. 89. P. 357—362. https://doi.org/10.1524/ract.2001.89.6.357
- Milman I.I., Surdo A.I., Abashev R.M., Sarychev M.N., Moiseykin E.V. Cyclotron production of 18F in TLD 500 and other new usage potentialities of anion-deficient corundum // Radiation Measurements. 2017. V. 106. P. 210—213. https://doi.org/10.1016/j.radmeas.2017.03.040
- Klimanov V.A., Galjautdinova J.J., Zabelin M.V. Proton Radiotherapy: Current Status and Future Prospects. Part 1. Physical and Technical Aspects // Journal of oncology: diagnostic radiology and radiotherapy. 2018. V. 1. No. 4. P. 14—33. https://doi.org/10.37174/2587-7593-2018-1-4-14-33
- Espana S., Sanchez-Parcerisa D., Ibanez P., Sánchez-Tembleque V., Udías J.M., Onecha V.V., Gutierrez-Uzquiza A., Bäcker C.M., Bäumer C., Herrmann K., Costa P.F., Timmermann B., Fraile L.M. Direct proton range verification using oxygen-18 enriched water as a contrast agent // Radiation Physics and Chemistry. 2021. V. 182. No. 109385. P. 1—9. https://doi.org/10.1016/j.radphyschem.2021.109385
- Milinchuk V.K., Klinshpont E.R., Pshezhetskii S.Ya. Makroradikaly (Macroradicals). Moscow: Khimiya, 1980.
- Shaimukhametova I.F., Bogdanova S.A., Allayarov S.R., Demidov S.V. Influence of Gamma Irradiation on the Surface Energy Characteristics and Wetting of Polytetrafluoroethylene // High Energy Chemistry. 2021. V. 55. No. 5. P. 381—387. https://doi.org/10.1134/S001814392105009X
- Jinglong G., Zaochun N., Yanhui L. The investigation of the structural change and the wetting behavior of electron beam irradiated PTFE film // e-Polymers. 2016. V. 16. Is. 2. P. 111—115. https://doi.org/10.1515/epoly-2015-0223
- Allayarov S.R., Dixon D.A., Allayarov R.S. Influence of Gamma Irradiation on the Chemical Composition of Polychlorotrifluoroethylene and Polytetrafluoroethylene // High Energy Chemistry. 2020. V. 54. No. 4. P. 285—290. https://doi.org/10.1134/S0018143920040037
- Wu Y., Sun C., Wu Y., Xing Y., Xiao J., Guo B., Wang Y., Sui Y. The degradation behavior and mechanism of polytetrafluoroethylene under low energy proton irradiation // Nuclear Instruments and Methods in Physics Research Section B. 2018. V. 430. P. 47—53. https://doi.org/10.1016/j.nimb.2018.06.005
- Kiselev V.M., Kislyakov I.M., Bagrov I.V., Starodubtsev A.M., Gogoleva N.G., Wang J. Singlet oxygen generation under optical excitation of polytetrafluoroethylene // Reactive and Functional Polymers. 2023. V. 193. No. 105755. P. 1—7. https://doi.org/10.1016/j.reactfunctpolym.2023.105755
Қосымша файлдар
