Impact of Possible Climate Change on Extreme Annual Runoff from River Basins Located in Different Regions of the Globe


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For 11 large river basins (the Rhine, Tagus, Ganges, Lena, Upper Yellow, Upper Yangtze, Niger, Mackenzie, Upper Mississippi, Upper Amazon and Darling) located on different continents under a wide variety of natural conditions, series of annual river runoff were calculated by means of the land surface model SWAP for the period of 1962–2099. For the historical (base) period (1962–2005), meteorological forcing data were taken from the global WATCH data set. For the projection period (2006–2099), the results of simulations from five Atmosphere and Ocean General Circulation Models (AOGCMs: HadGEM2-ES, IPSL-CM5A -LR, MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) obtained for four climate change scenarios of the RCP-family were applied. The obtained series of annual runoff for each river basin were used to calculate climatic values and standard deviations of annual runoff for four climatic periods (1962–2005, 2006–2035, 2036–2065 and 2066–2099), which were then averaged over all AOGCMs and RCP-scenarios and used to construct distribution functions of annual runoff (for each river basin and climatic period) approximated by the lognormal distribution function of random variables. The constructed annual runoff distribution functions were applied for estimating the probabilities of occurrence of extremely high and extremely low values of annual runoff for each river and climatic period.

Об авторах

E. Gusev

Water Problems Institute, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: sowaso@yandex.ru
Россия, Moscow, 119333

O. Nasonova

Water Problems Institute, Russian Academy of Sciences

Email: sowaso@yandex.ru
Россия, Moscow, 119333

E. Kovalev

Water Problems Institute, Russian Academy of Sciences

Email: sowaso@yandex.ru
Россия, Moscow, 119333

G. Ayzel

Water Problems Institute, Russian Academy of Sciences

Email: sowaso@yandex.ru
Россия, Moscow, 119333

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».