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Рассмотрены линейные уравнения Вольтерра первого рода. Выделен класс таких задач, которые имеют един-
ственное решение, для численного решения которых предложены коллокационно-вариационные методы.
Суть данных алгоритмов заключается в том, что приближенное решение находят в узлах равномерной сет-
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Полученную таким образом систему дополняют условием минимума целевой функции, которая аппрокси-
мирует квадрат нормы приближенного решения. В итоге получают задачу квадратичного программирования:
целевая функция (квадрат нормы приближенного решения) — квадратичная, ограничения (условия коллока-
ции) — равенства. Данная задача решается методом множителей Лагранжа. Детально рассмотрены достаточ-
но простые методы третьего порядка. Приведены результаты расчетов тестовых задач. Обсуждается дальней-
шее развитие данного подхода для численного решения других классов интегральных уравнений. Библ. 12.
Табл. 4.
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1. ВВЕДЕНИЕ

Статья посвящена численному решению линейных интегральных уравнений Вольтерра вида

t∫︁
0

K(t, τ)x(τ) dτ = f (t), 0 ≤ τ ≤ t ≤ 1, (1)

где f (t) и K(t, τ) — заданные функции с достаточно гладкими элементами, x(t) — искомая функция. При

K(t, t) ̸= 0 ∀t ∈ [0, 1], f (0) = 0, (2)

и непрерывных функциях K(t, t),K′t (τ, t)|τ=t, f ′(t) существует единственное непрерывное решение данной задачи
(см., например, [1], [2]).

Подходы к численному решению уравнения (1) с условием (2) можно найти в монографиях [4]–[6] (колло-
кационные и многошаговые методы), [7] (блочные методы), диссертации [8]. В [9] представлены результаты по
данной тематике и трудности, которые возникают при разработке методов решения уравнения (1).

В настоящей работе предложены одношаговые методы решения обозначенных задач, которые себя отлич-
но зарекомендовали при решении дифференциально-алгебраических уравнений (см. [10] и приведенную там
библиографию) и являются обобщением статьи [11].

1) Работа выполнена при финансовой поддержке РНФ (код проекта № 22-11-00173).
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2. КВАДРАТУРНЫЕ ФОРМУЛЫ И АЛГОРИТМЫ

При построении методов решения исходной задачи нам потребуются некоторые результаты из теории при-
ближенного интегрирования. Подробно остановимся на четырехточечных квадратурных формулах третьего по-
рядка, которые потребуются для дальнейшего изложения.

Зададим на отрезке [0, 1] равномерную сетку ti = ih, i = 0, 1, . . . ,N, h = 1/N, и положим, что для достаточно
гладкой функции g(t) известно g(ti). Тогда

ti∫︁
ti−3

g(t) dt ≈ h[b1gi−3 + b2gi−2 + b3gi−1 + b4gi], (3)

ti−1∫︁
ti−3

g(t) dt ≈ h[a1gi−3 + a2gi−2 + a3gi−1 + a4gi], (4)

где коэффициенты a j, b j, j = 1, 4, удовлетворяют условиям третьего порядка, т.е. квадратурные формулы (3), (4)
точны для любых полиномов степени не выше трех.

Опуская элементарные выкладки, получим, что данные коэффициенты являются решением СЛАУ⎛⎝ 1 1 1 1
0 1 2 3
0 1 4 9

⎞⎠
⎛⎜⎜⎝

a1 b1
a2 b2
a3 b3
a4 b4

⎞⎟⎟⎠ =
⎛⎝ 2 3

2 4.5
8/3 9

⎞⎠ . (5)

Полагая в (5) a1 = a, b1 = b — свободные параметры, получим, что решением СЛАУ (5) являются

(a1, a2, a3, a4) = (a, 7/3 − 3a,−2/3 + 3a, 1/3 − a), (6)

(b1, b2, b3, b4) = (b, 2.25 − 3b, 3b, 0.75 − b). (7)

Приступим к описанию методов приближенного решения ИУВ (1) предполагая, что x0 = x(0) задано или
заранее вычислено. Данные алгоритмы основаны на квадратурных формулах (3) и (4) с коэффициентами, удо-
влетворяющими соотношениям (6) и (7) соответственно. Для простоты изложения положим N кратно трем и
обозначим

fi = f (ti), Ki j = K(ti, t j), xi ≈ x(ti).

В этом случае для уравнения (1) будем иметь

ti−1∫︁
0

K(ti−1, τ)x(τ) dτ =

3h∫︁
0

K(ti−1, τ)x(τ) dτ +

5h∫︁
3h

K(ti−1, τ)x(τ) dτ + · · · +

ti−1∫︁
ti−3

K(ti−1, τ)x(τ) dτ =

= h[b1Ki−1,0x0 + b2Ki−1,1x1 + b3Ki−1,2x2 + b4Ki−1,3x3) + (b1Ki−1,3x3 + b2Ki−1,4x4+

+b3Ki−1,5x5 + b4Ki−1,6x6) + · · · + (a1Ki−1,i−3xi−3 + a2Ki−1,i−2xi−2 + a3Ki−1,i−1xi−1 + a4Ki−1,ixi)] =

= h
i−3∑︁
j=0

pi jKi−1, jx j + h[a1Ki−1,i−3xi−3 + a2Ki−1,i−2xi−2 + a3Ki−1,i−1xi−1 + a4Ki−1,ixi] = fi−1

(8)

и

ti∫︁
0

K(ti, τ)x(τ) dτ =

3h∫︁
0

K(ti, τ)x(τ) dτ +

6h∫︁
3h

K(ti, τ)x(τ) dτ + · · · +

ti∫︁
ti−3

K(ti, τ)x(τ) dτ =

= h[(b1Ki,0x0 + b2Ki,1x1 + b3Ki,2x2 + b4Ki,3x3) + (b1Ki,3x3 + b2Ki,4x4 + b3Ki,5x5 + b4Ki,6x6) + · · · + (b1Ki,i−3xi−3+

+b2Ki,i−2xi−2 + b3Ki,i−1xi−1 + b4Ki,ixi)] = h
i−3∑︁
j=0

pi jKi, jx j + h[b1Ki,i−3xi−3 + b2Ki,i−2xi−2 + b3Ki,i−1xi−1 + b4Ki,ixi] = fi,

(9)

i = 3, 6, 9, . . . ,N.
Точки ti−1 и ti будем называть коллокационными точками или узлами коллокации.
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Полагая x(0) = x0 заданным и используя вышеприведенные квадратурные формулы, получим, что xi−2, xi−1
и xi являются решением СЛАУ

(︂
ha2Ki−1,i−2 ha3Ki−1,i−1 ha4Ki−1,i
hb2Ki,i−2 hb3Ki,i−1 hb4Ki,i

)︂⎛⎝ xi−2
xi−1
xi

⎞⎠ = −h

⎛⎝ ∑︀i−3
j=0 pi jKi−1, jx j + a1Ki−1,i−3xi−3∑︀i−3

j=0 pi jKi, jx j + b1Ki,i−3xi−3

⎞⎠ +
⎛⎝ fi−1

fi

⎞⎠
или в векторно-матричном виде

AiXi = Bi, (10)

где

Ai =

(︂
ha2Ki−1,i−2 ha3Ki−1,i−1 ha4Ki−1,i
hb2Ki,i−2 hb3Ki,i−1 hb4Ki,i

)︂
, Xi = (xi−2, xi−1, xi)Т,

Bi = −h

⎛⎝ ∑︀i−3
j=0 pi jKi−1, jx j + a1Ki−1,i−3xi−3∑︀i−3

j=0 pi jKi, jx j + b1Ki,i−3xi−3

⎞⎠ +
⎛⎝ fi−1

fi

⎞⎠ .
Данные системы имеют размерность (2 × 3), т.е. являются недоопределенными.
Будем смотреть на СЛАУ (10) как на ограничения типа равенств для поиска минимума квадрата нормы при-

ближенного решения yi(t), t ∈ [ti−3, ti], yi+1(ti) = yi(ti), t ∈ [ti−3, ti] i = 3, 4, . . . ,N,В этом случае мы будем иметь задачу
на условный минимум

‖y‖2 → min (11)

при ограничениях типа равенств (10).
Если норма функции y(xi−3, xi−2, xi−1, xi, t) выбрана неудачно, например, в пространстве непрерывных или

непрерывно-дифференцируемых функций, то задача (11) с ограничениями (10) будет достаточно сложной, по-
этому будем считать

1) y(t) = L3(xi−3, xi−2, xi−1, xi, t) — интерполяционный полином третьей степени, проходящий через точки
(xi−m, ti−m), m = 0, 1, 2, 3;

2)

‖y(t)‖2 = ‖L3(·)‖2 =
r∑︁

m=0

ti∫︁
ti−3

L(m)
3 (t)L(m)

3 (t) dt, 0 ≤ r ≤ 3. (12)

Здесь мы ограничимся частным случаем (12), а именно, r = 3 и для вычисления определенного интеграла в
формуле (12) воспользуемся какой-либо известной квадратурной формулой ( см., например, [12]). Тогда имеем

‖L3(·)‖2 =
3∑︁

m=0

ti∫︁
ti−3

L(m)
3 (xi−3, xi−2, xi−1, xi, t)L

(m)
3 (xi−3, xi−2, xi−1, xi, t) dt ≈

≈ h

⎡⎣⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

α
0
mxi−3+m

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)/h

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α3
mxi−3+m)/h3

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2
⎤⎦ = φ(xi−2, xi−1, xi),

(13)

где
∑︀3

m=0(αq
mxi−3+m)/hq ≈ x(q)(ξp

i ), ξp
i ∈ [ti−3, ti], а норма конечномерного вектора здесь понимается как евклидова.

Коэффициенты α
q
m зависят от выбора квадратурной формулы и формулы приближенного вычисления

L(m)
3 (xi−3, xi−2, xi−1, xi, t).

Коэффициентыα3
m определены единственным образом из очевидного равенства∆3xi = (xi−3xi−1+3xi−2−xi−3),

т.е. α3 = (1,−3, 3,−1).
Например, при t̄ = ti−3 коэффициенты α0 = (0, 0, 0, 1), α1 = 1/6(2,−9, 18,−11), α2 = (−1, 4,−5, 2).
При t̄ = ti−2 коэффициенты α0 = (0, 0, 1, 0), α1 = 1/6(−1, 6,−3,−2), α2 = (0, 1,−2, 0).
При t̄ = ti−1 коэффициенты α0 = (0, 1, 0, 0), α1 = 1/6(2, 3,−6, 1), α2 = (1,−2, 1, 0).
При t̄ = ti коэффициенты α0 = (1, 0, 0, 0), α1 = 1/6(11,−18, 9,−2), α2 = (2,−5, 4,−1).
Таким образом, учитывая, что x0 задано, на каждом отрезке интегрирования [ti−3, ti], i = 3, 6, . . . ,N, имеем

задачу квадратичного программирования: найти минимум целевой функции φ(xi−2, xi−1, xi) при ограничениях
типа равенств (10).
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В силу того что умножение целевой функции (13) на произвольное ненулевой число не влияет на нахожде-
ние аргумента условного минимума, то данная задача эквивалентна задаче

minψ(xi, xi−1, xi−2) = h6

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

α
0
mxi−3+m

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h4

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)/h

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ ‖∆3xi‖
2 (14)

с ограничениями (10).
Так как первое, второе и третье слагаемые в (14) содержат малые слагаемые порядка h6, h4, h2 соответствен-

но, то их можно отбросить (или часть из них). Например, ограничиваясь в (14) только третьим и четвертым
слагаемым или только последним получим, две задачи математического программирования:

1) найти

minψ1(xi, xi−1, xi−2) = h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ ‖∆3xi‖
2, (15)

2) найти
minψ2(xi, xi−1, xi−2) = ‖∆3xi‖

2 (16)

при ограничениях типа равенств (10).
Задачи (15), (10) и (16), (10) можно решить методом множителей Лагранжа. Так как целевые функции (15)

и (16) являются квадратичными, а ограничения (10) есть равенства, то решением данных задач является реше-
ние соответствующих СЛАУ. Например, решением задач (16) с ограничениями (10) является решение СЛАУ
вида

𝒜iXi = ℬi, (17)

где

𝒜i =

⎛⎝ 3 −3 1
hb2Ki−1,i−2 hb3Ki−1,i−1 hb4Ki−1,i
ha2Ki,i−2 ha3Ki,i−1 ha4Ki,i

⎞⎠ , (18)

Xi = (xi−2, xi−1, xi)⊤,

ℬi = (xi−3, B⊤i )⊤,

где вектор Bi определен по формуле (10).
Утверждение. Пусть для интегрального уравнения (1) выполнены условия:
1) элементы K(t, τ), f (t) принадлежат классу C4

[0,1];
2) K(t, t) ̸= 0∀t ∈ [0, 1], f (0) = 0, x0 = x(0).
Тогда справедлива оценка ‖xi − x(ti)‖ = O(h3), i = 3, 4, . . . ,N, где xi−2, xi−1, xi являются решениями задач (17).
Доказательство основано на дискретном аналоге леммы Гронуолла–Беллмана (см. [3], [6]).
Отметим, что если положить в (12) r < 3, то получим другое семейство алгоритмов. Например, при r = 2 (по

аналогии с задачей (14)) будем иметь задачи на условный минимум квадратичной функции:
1) найти

minΩ(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h4

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α0
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(19)

при ограничениях типа равенств (10).
При r = 1 будем иметь
2) найти

minΓ(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α0
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(20)

при ограничениях типа равенств (10).
По аналогии с (13) данные задачи эквивалентны поиску условного минимума функций Ω(xi, xi−1, xi−2) и

Γ(xi, xi−1, xi−2) соответственно.
Так же, как и для случая r = 3, для случая r = 2 в формуле (19) слагаемые, содержащие h4 или h4 и h2, можно

отбросить. А для r = 1 можно отбросить слагаемое, содержащее h2.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



ЧИСЛЕННЫЕ РЕШЕНИЯ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ВОЛЬТЕРРА ПЕРВОГО РОДА 7

Тогда получим семейство алгоритмов: для r = 2 найти

minΩ1(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(21)

или

minΩ2(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(22)

при ограничениях типа равенств (10).
Для r = 1 будем иметь семейство методов: найти

minΓ1(xi, xi−1, xi−2, h) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(23)

при ограничениях типа равенств (10).
Для решения задач (21)–(23) можно применять метод множителей Лагранжа. Условный минимум функций

Ω, Ω1, Ω2 и Γ, Γ1 в этом случае находится точно из решения соответствующих СЛАУ.
Отметим, что исследование на устойчивость и скорость сходимости методов (19)–(23) представляет собой

отдельный интерес. Свойства данных алгоритмов будут зависеть не только от выбора квадратурных формул (см.
формулу (6)), т.е. от параметров a и b, но и от выбора аппроксимации производных решения (см. формулы (12)
и (13)), т.е. от параметров αl

m, 0 ≤ l,m ≤ 3. Были рассмотрены различные варианты таких подходов. Предвари-
тельный анализ данных алгоритмов показал, что они обладают свойством устойчивости.

3. ЧИСЛЕННЫЕ РАСЧЕТЫ

В данном разделе приведены расчеты тестовых примеров по алгоритму (17) с параметрами a = 1/3(1, 4, 1, 0)⊤,
b = 1/4(3, 0, 9, 0)⊤. Результаты представлены в виде таблиц. Принято обозначение er = maxi=1,N |x(ti − xi|.

Пример 1 (см. [6], с. 149). Рассмотрим ИУ

(r2 + 1)
∫︁ t

0
cos(t − τ)x(τ)dτ = sin(t) + r

(︀
exp(rt) − cos(t)

)︀
, t ∈ [0, 1],

точное решение которого x(t) = exp(rt). Результаты расчетов при r = 1, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

представлены в табл. 1.
Результаты расчетов этого примера при значении параметров a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤, r = 1

представлены в табл. 2.
Пример 2 (см. [6], с. 517). Рассмотрим ИУ

α

∫︁ t

0
exp(α(t − τ)x(τ)dτ = (exp(αt) − exp(−αt))/2, t ∈ [0, 1],

точное решение которого x(t) = exp(−αt). Результаты расчетов при значениях параметров α = 3,
a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤ представлены в табл. 3.

Результаты расчетов данного примера при значении параметров a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤, α = 3
представлены в табл. 4.

Численные расчеты данных примеров согласуются с утверждением. Кроме приведенных выше примеров
были проведены многочисленные расчеты других тестовых примеров, которые не содержат жестких компо-
нент, при различных выборах параметров a и b по алгоритму (17). Данные эксперименты также хорошо согла-
суются с утверждением.

Таблица 1. Численные расчеты примера 1 при r = 1, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

h 0.1 0.05 0.025

er 0.0039 0.0006 0.00009

Таблица 2. Численные расчеты примера 1 при r = 1, a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤

h 0.1 0.05 0.025

er 0.0027 0.0004 0.00006
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Таблица 3. Расчеты для примера 2 при значениях параметров α = 3, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

h 0.1 0.05 0.025

er 0.085 0.012 0.0018

Таблица 4. Результаты расчетов примера 2 при значении параметров α = 3, a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤

h 0.1 0.05 0.025

er 0.02 0.0035 0.00052

4. ЗАКЛЮЧЕНИЕ

В настоящей статье был выделен класс интегральных уравнений Вольтерра первого рода, для численно-
го решения которых предложены коллокационно-вариационные методы третьего порядка. Данные алгорит-
мы сводятся к решению задачи математического (квадратичного) программирования – целевая функция-
квадратичная (некий аналог квадрата нормы приближенного решения) с ограничениями типа равенств (усло-
вие коллокации). Такая задача эквивалентна нахождению решения невырожденной СЛАУ. Численные расчеты
показали перспективность дальнейшей разработки данного подхода. Далее планируется детальное исследова-
ние коллокационно-вариационных методов (21)–(23), методов более высокого порядка и для более общих за-
дач, в частности, для интегральных уравнений Вольтерра, имеющих степень неустойчивости (см. [3]) больше
единицы и уравнений первого рода с ядром, содержащим слабую особенность.
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Abstract. Linear Volterra equations of the first kind are considered. A class of problems that have a single
solution is identified, and collocation-variational methods are proposed to solve them numerically. The
essence of these algorithms is that the approximate solution is found at the nodes of a uniform grid (the
collocation condition) that yield an underdetermined system of linear algebraic equations. The system thus
obtained is supplemented by the condition of minimum of the objective function, which approximates the
squared norm of the approximate solution. As a result, a quadratic programming problem is obtained, viz.
the objective function (the squared norm of the approximate solution) is quadratic, and the constraints
(the collocation conditions) are equalities. This problem is solved by the method of Lagrange multipliers.
Sufficiently simple third-order methods are considered in detail. The calculation results for test problems
are given. Further development of this approach to solve other classes of integral equations numerically is
discussed.
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Approximation of spectral and boundary-value problems arising in the stability analysis of incompressible boundary
layers is considered. As an alternative to the collocation method with mappings, the Galerkin–collocation method
based on Laguerre functions is adopted. A robust numerical implementation of the latter method is discussed. The
methods are compared within the stability analysis of the Blasius and Ekman layers. The Galerkin-collocation method
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1. INTRODUCTION

Three-dimensional small-amplitude disturbances against a main laminar flow are of interest in numerical studies of
boundary-layer instabilities. Equations governing the evolution of such disturbances are considered on the half-line y > 0,
where y is the wall-normal coordinate, with the boundary conditions

u = v = w = 0 at y = 0, y→ +∞ (1.1)

for the velocity components u, v and w (see, e.g., [1–3]). The boundary conditions (1.1) represent the no-slip condition
at the flow-exposed surface y = 0 and decaying of disturbances at far distance from the surface. This paper devotes to
approximations on y of such problems.

Spectral methods, including collocation and Galerkin–collocation methods, are a good choice for the approximation
of governing equations, since the equations are linear while sought disturbances are smooth functions of y. Within the
collocation method, the solution is approximated by a series of infinitely-differentiable functions with a non-finite
supply; and the expansion coefficients are determined by requiring the equations to be satisfied at given grid nodes called
collocation points. Within the Galerkin–collocation method, the equations are approximated in the weak form, Lagrange
interpolation functions associated with some grid are used as trial and test functions, and the inner products are computed
by a high-order quadrature formula associated with the same grid. Note that the Galerkin–collocation method is often
called the Galerkin method with numerical integration [4]. For problems considered on a finite interval, these spectral
methods are discussed, for example, in [4–6]; and procedures from the well-known software packages [7, 8] can be used
for the numerical implementation of these methods.

There are three main approaches for approximating problems considered on the half-line y > 0 under the boundary
conditions (1.1). The first one introduces an artificial boundary at finite but large distance ymax from the surface. Then
the equations are considered on the interval (0, ymax) under some (e.g., zero or asymptotic [9]) boundary conditions at
y = ymax instead of those at infinity. Coupled with a spectral method for the finite interval, this approach is widely used
in numerical studies of boundary-layer instabilities (see [3] and references therein). This approach requires choosing the
sufficient value of ymax for a particular problem, and ymax might depend on flow parameters. Note that boundary conditions
for the velocity components at any y = ymax might allow for solutions that do not decay as y → +∞. For boundary-layer
stability problems, solutions with such a behavior are known; these solutions correspond to the modes of continuous
spectrum [1, 3], with their physical relevance being still an open question.

The second approach uses a mapping that transform a system of functions with well-established approximation
properties on a finite interval (for example, the Lagrange interpolation polynomials associated with the Chebyshev points)

1) The work is supported by the Russian Science Foundation (grant No. 22-11-00025).
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into that on a half-line [4, 10]. The approximation properties of such mapped systems of functions are discussed in [11].
From [12,13] onwards, various mappings are compared for model problems. This approach is used in hydrodynamic and
aerodynamic applications [10, 14, 15].

The third approach [11,16] uses the Laguerre functions L̂k(y) = Lk(y) exp(−y/2), where Lk is the Laguerre polynomial
of degree k. As to our knowledge, spectral methods based on the Laguerre functions have not been previously used for
studying boundary-layer instabilities.

In [11] the convergence of the spectral Galerkin method based on either mapped systems of polynomials or the
Laguerre functions is studied theoretically. Upper bounds on the approximation errors are obtained for both type of
methods and then verified on model elliptic equations. Note that these bounds are obtained in different norms. For the
method based on the Laguerre functions, the norm is the usual (i.e., with the unit weight function) ℒ2-norm over the
half-line; this norm has a clear physical interpretation in the study of boundary-layer instabilities — it is the disturbance
kinetic energy density. For the method based on mapped systems of polynomials, that is the weighted norm determined
by the mapping. The work [11] provides a number of examples, where either the first method converges faster than the
second one, or the second one converges faster than the first one, or both methods show close results. It is of interest to
compare these methods for boundary-layer stability problems.

The present work is organized as follows. In Section 2, we describe the approximation by the Galerkin–collocation
method based on the Laguerre functions of the equations governing evolution of small-amplitude disturbances of viscous
incompressible boundary layers. Section 3 devotes to a robust numerical implementation of this method. Section 4
compares the proposed method with the collocation method with mappings for the stability analysis of the Blasius and
Ekman layers. Section 5 summarizes the results.

Throughout this paper, ‖ · ‖2 denotes the 2-norm for vectors and matrices, the superscripts T and * denote the symbols
of transposition and conjugate transposition respectively, and δi j denotes the Kronecker delta.

2. APPROXIMATION OF PROBLEMS ARISING WITHIN THE STABILITY ANALYSIS OF BOUNDARY
LAYERS

In the Cartesian coordinates, x (streamwise), y (wall-normal) and z (spanwise), consider a flow of a viscous
incompressible fluid over the flat surface y = 0. Against the background of a main laminar flow, we consider three-
dimensional small-amplitude time-dependent disturbances which are represented as follows

(u′, v′,w′, p′) = (u, v,w, p)eiαx+iγz, (2.1)

where u, v, w, and p are the complex-valued amplitudes of the streamwise, wall-normal and spanwise velocity
components, and the pressure, respectively. The amplitudes depend only on y and t. Here t is the time, α is the streamwise
wavenumber, and γ is the spanwise wavenumber.

Two problems are considered in this paper to present and compare approximation methods in the wall-normal
direction y.

The first problem is the temporal stability analysis of the Blasius layer under the local-parallel assumption. In this
case, it is assumed that the linear dimensionless equations governing the evolution of small-amplitude disturbances are as
follows

∂u
∂t
+ iαUBu +

dUB

dy
v + iαp −

1
Re
∆αγu = 0,

∂v
∂t
+ iαUBv +

∂p
∂y
−

1
Re
∆αγv = 0,

∂w
∂t
+ iαUBw + iγp −

1
Re
∆αγw = 0,

iαu +
∂v
∂y
+ iγw = 0,

(2.2)

where Re is the Reynolds number, and ∆αγ = −α2 + ∂2/∂y2 − γ2. The streamwise velocity UB(y) = d f /dy of the main flow
depends only on y; and f satisfies the Blasius equation

2
d3 f
dy3 +

d2 f
dy2 f = 0, f (0) = f ′(0) = 0, f ′(+∞) = 1,

which can be solved by standard numerical methods (see, e.g., references in [3]). A physical interpretation of the
equations (2.2) as well as the definition of the Reynolds number can be found in [2, 3].
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The second problem is the temporal stability analysis of the Ekman layer. In this case, it is assumed that the linear
dimensionless equations governing the evolution of small-amplitude disturbances are as follows

∂u
∂t
+ (iαUE + iγWE)u +

dUE

dy
v + iαp −

1
Re
∆αγu =

1
Ro

w,

∂v
∂t
+ (iαUE + iγWE)v +

∂p
∂y
−

1
Re
∆αγv = 0,

∂w
∂t
+ (iαUE + iγWE)w +

dWE

dy
v + iγp −

1
Re
∆αγw = −

1
Ro

u,

iαu +
∂v
∂y
+ iγw = 0,

(2.3)

where Re is the Reynolds number, and Ro = Re/2 is the Rossby number. The streamwise velocity UE(y) = 1−cos(y)e−y and
spanwise velocity WE(y) = sin(y)e−y of the main flow depend only on y and are known analytically. A physical interpretation
of the equations (2.3) as well as the definition of the Reynolds and Rossby numbers can be found in [14].

Within the stability analysis, the velocity components satisfy the boundary conditions (1.1) for both considered
problems. In addition, we consider the disturbance kinetic energy density

ℰ =

+∞∫︁
0

|u|2 + |v|2 + |w|2 dy (2.4)

as a physically-relevant measure of disturbance magnitude.

2.1. Approximation by the Galerkin–collocation method based on the Laguerre functions

Let us consider the equations (2.2) under the boundary conditions (1.1). Suppose ℒ2 is the space of complex-valued
functions square-integrable over the half-line y > 0. This space is equipped with the inner product and the norm that is
similar to the energy functional (2.4). Supposeℋ0 is the space, whose elements satisfy zero boundary condition at y = 0
and belong to ℒ2 together with their first derivatives. Let us multiply the momentum equations by fu, fv, fw ∈ ℋ0 and the
continuity equation by fp ∈ ℒ2; and integrate these equations over the half-line y > 0, using the integration by parts.
Thus, we obtain the weak form of the equations (2.2). We seek for u, v,w ∈ ℋ0 and p ∈ ℒ2 (at any fixed t) such that the
weak form of the equations (2.2) is valid for any fu, fv, fw ∈ ℋ0 and fp ∈ ℒ2.

Let Lk be the Laguerre polynomial of degree k. Suppose 0 = y0 < · · · < yn is the Laguerre–Gauss–Radau grid, whose
non-zero nodes are the roots of the derivative of Ln+1. The Laguerre–Gauss–Radau quadrature formula

+∞∫︁
0

f (y)e−y dy ≈
n∑︁

i=0

f (yi)κi, κi =
1

(n + 1)L2
n(yi)

associated with this grid is exact for any polynomial of degree 2n or less [17]. Then, the following quadrature formula is
valid

+∞∫︁
0

f (y) dy ≈
n∑︁

i=0

f (yi)κ̂i, κ̂i = κieyi . (2.5)

Suppose ℓi(y) are the Lagrange interpolation polynomials for the Laguerre–Gauss–Radau grid. Likewise, ℓ̄i(y) are
those for the grid y1 < · · · < yn. It is easy to see that

ℓi(y) =
Ln(y) − Ln+1(y)
(y − yi)Ln(yi)

. (2.6)

In the sequel, functions of the form

ψi(y) = ℓi(y)e−(y−yi)/2, i = 0, . . . , n,

ϕi(y) = ℓ̄i(y)e−(y−yi)/2, i = 1, . . . , n,
(2.7)

are called the Laguerre interpolation functions. The functions ψi(y) at 1 ≤ i ≤ n equal zero at y = 0. These functions
are used as trial functions for the velocity components, and as test functions for the momentum equations. The functions
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ϕi(y) are used as trial functions for the pressure, and as test functions for the continuity equation. The quadrature formula
(2.5) is used for computing the inner products.

Let us point out the approximation of some operators in the weak form of (2.2). Let gv be the approximation of a
function fromℋ0 byψi (i = 1, . . . , n), and gv be the column whose elements are the corresponding expansion coefficients.
Likewise, let gp be the approximation of a function from ℒ2 by ϕi (i = 1, . . . , n), and gp be the column whose elements
are the corresponding expansion coefficients. Then, the following equalities are valid

+∞∫︁
0

dgv

dy
dgv

dy
dy =

(︀
DT KDgv, gv

)︀
, (2.8)

+∞∫︁
0

gp
dgv

dy
dy =

(︀
DT KPgp, gv

)︀
,

+∞∫︁
0

dgv

dy
gp dy =

(︀
PT KDgv, gp

)︀
, (2.9)

where the Euclidean inner product is denoted by the braces, K is the diagonal matrix of order n + 1 whose entries are the
quadrature weights (2.5), D is the matrix of size (n + 1) × n whose entries are the derivatives of ψi(y) (i = 1, . . . , n) at the
Laguerre-Gauss-Radau nodes, and P is the matrix of size (n+ 1)× n whose entries are the values of ϕi(y) at the Laguerre-
Gauss-Radau nodes. Note that the equalities (2.8), (2.9) hold since the quadrature (2.5) is exact for any function of the
form p(y)e−y, where p(y) is a polynomial of degree 2n or less. The matrix D is called the differentiation matrix. The matrix
P is called the projection matrix; only ϕi(y0) have to be computed since ϕi(y j) = δi j at the interior nodes by definition.
The computation of the matrices D and P is discussed in Section 3.

As a result of the described approximation of the equations (2.2), we obtain a system of ordinary differential and
algebraic equations of the form

dv
dt
= Jv + Gp,

Fv = 0,
(2.10)

where v is the 3n-component column, whose elements represent the values of the velocity components at the interior
grid nodes. In (2.10), v is additionally scaled such that ‖v‖22 correspond to the energy functional (2.4). Here J, G, and
F are matrices of size 3n × 3n, 3n × n, and n × 3n, respectively. The ordinary differential equations in (2.10) correspond
to the momentum equations, while the algebraic equations correspond to the continuity equation. From (2.8) and (2.9),
it is easy to see that the discrete analogue of the Laplace operator is a symmetric negative-definite matrix as well as the
equality F = −G* is valid.

Similar to the polynomial interpolation, approximation properties of the functions (2.7) are determined by the
Lebesgue function Φ(y) and the Lebesgue constant LΦ

Φ(y) =
n∑︁

i=0

|ψi(y)|, LΦ = max
y>0
Φ(y). (2.11)

At given n, the function Φ(y) is equal to 1 at y = yi and decays exponentially at y > yn. Figure 1 shows the function Φ(y)
at n = 32; it is qualitatively the same at other n. As for the polynomial interpolation, the Lebesgue constant LΦ increases
with n. Figure 1 shows that the increase of LΦ is at logarithmic rate. In addition, the increase of LΦ is compared to the
increase of the Lebesgue constant for polynomial interpolation at the Chebyshev points. It is shown that the values of LΦ
are slightly smaller, while the growth rate is similar.

2.2. Scaling for the stability analysis of boundary layers

Within the boundary-layer stability analysis, there are two characteristic wall-normal length scales — the thickness
of the laminar boundary layer yBL, and the finite height ymax such that disturbances might be regarded as negligible at
y > ymax. The value of yBL can be found before the stability analysis, using only the main flow data (see introduction
in [18] and references therein). In contrast, the value of ymax can be found only within the stability analysis by studying
the convergence of the sought disturbances with increasing ymax. We also note that some disturbances (e.g., Tollmien–
Schlichting waves) can extend significantly above the boundary layer, i.e., ymax can be much larger than yBL. This physical
discussion leads to the following requirements. The grid nodes should be separated such that both the boundary-layer
domain (0 < y < yBL) and its outside are covered. In addition, as n increases, both the number of nodes inside and outside
the boundary layer must increase.

Therefore, the Laguerre–Gauss–Rado grid 0 = y0 < · · · < yn should be scaled, since these nodes are distributed along
the entire half-line y ≥ 0, with yn increasing with n. For example, one can satisfy these requirements by the scaling

yi := yi/σ, κ̂i := κ̂i/σ, ψ
′
j(y) := σψ′j(y), (2.12)
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Figure 1. On the left: the Lebesgue functionΦ(y) (2.11) at n = 32. The Laguerre–Gauss–Radau nodes are marked with green dots. On
the right: the increase of LΦ (green solid) with n, and that of the Lebesgue constant for the polynomial interpolation for the Chebyshev
grid (black dashed).
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Figure 2. On the left: the Laguerre–Gauss–Radau nodes under the scaling (2.12) at fixed yBL = 5 and at n = 2k, where k = 4, . . . , 9.
The independent variable y is stretched along the vertical axis. On the right: the quadrature weights κ̂i (2.5) under the scaling (2.12) at
the same yBL and n.

where σ = ym/yBL is a scaling factor, and m is the integer part of n/2. This scaling means that the half of the grid nodes
lies inside the boundary layer. An advantage of (2.12) is that this scaling does not depend on ymax. Note that this is not the
only possible way of scaling. For example, one can additionally adjust the parameter m for a particular problem.

Figure 2 shows the Laguerre–Gauss–Radau nodes yi and weights κ̂i under the scaling (2.12) at various n with yBL
being fixed. Note that yn increases slowly with n and κ̂n decreases with n under the scaling (2.12).

2.3. Approximation by the collocation method with mappings

Let us briefly describe the approximation of the equations (2.2) under the boundary conditions (1.1) by collocation
method.

Let −1 = s0 < · · · < sn+1 = 1 be the Chebyshev points, i.e., si = − cos (πi/(n + 1)). Suppose li(s) are the Lagrange
interpolation polynomials for this grid, and l̄i(s) are those for the grid s1 < · · · < sn. Let y = g(s) (s = g−1(y)) be a smooth
monotonic function that ensures an one-to-one mapping between the interval −1 ≤ s ≤ 1 and the half-line y ≥ 0 such
that g(−1) = 0, g(0) = yBL, and g(1) = +∞. Such a mapping guarantees that the half of the grid nodes yg

i = g(si) lies
inside the boundary layer, similarly to the scaling (2.12). Then we use the functions ψg

i (y) = li(g−1(y)) as basis functions
for the velocity components and the functions ϕg

i (y) = l̄i(g−1(y)) as basis functions for the pressure. The functions ψg
i (y)
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at 1 ≤ i ≤ n satisfy zero boundary conditions at y = 0 and y → +∞. The approximation properties of such functions are
discussed in [11].

For computing the energy functional (2.4), we use the quadrature formula

+∞∫︁
0

f (y) dy =

1∫︁
−1

f (g(s))
dg
ds

ds ≈
n∑︁

i=0

f (yg
i )κ̂i,

where κ̂i = κi(dg/ds(si)), and κi are the weights of the Clenshaw–Curtis quadrature [6]. This formula is exact for any
functions of the form l(g−1(y)), where l is a polynomial of degree n or less. The values of the derivatives of ψg

i (y) and ϕg
i (y)

at the grid nodes can be computed by the procedures from [7] or [8], coupled with the chain rule.
As a result of the described approximation of the equations (2.2), we obtain a system of ordinary differential and

algebraic equations of the form (2.10). Note that the collocation method does not ensure that the discrete analogue of the
Laplace operator is a symmetric negative-definite matrix. In addition, the equality F = −G* does not hold, in general.

As a mapping, the following ones are used in the present paper

g(s) = yBL tan
(︁
π

4
(1 + s)

)︁
, g−1(y) =

4
π

arctan
(︂

y
yBL

)︂
− 1, (2.13)

g(s) = yBL
1 + s
1 − s

, g−1(y) =
y − yBL

y + yBL
, (2.14)

g(s) = −
yBL

ln(2)
ln
(︂

1 − s
2

)︂
, g−1(y) = 1 − 2−y/yBL+1. (2.15)

The algebraic (2.14) and exponential (2.15) mappings are known [4]; and the mapping with the tangent function (2.13) is
currently implemented in LOTRAN software package [15], which is designed for predicting an onset of laminar–turbulent
transition in industrial applications.

Figure 3 shows the streamwise velocity UB(y) of the Blasius layer and the streamwise UE(y) and spanwise WE(y)
velocities of the Ekman layer. For both considered main flows, the typical values of yBL (see, [9,14]) are marked, while the
values of ymax correspond to the upper limits of the subfigures. In addition, Figure 3 shows the Laguerre–Gauss–Radau
nodes under the scaling (2.12), and the grid nodes yg

i obtained by either the mapping (2.13), (2.14), or (2.15).

3. NUMERICAL IMPLEMENTATION OF THE GALERKIN–COLLOCATION METHOD

To implement the approximation method described in Section 2.1, one has to compute the nodes yi and weights κ̂i of
the quadrature formula (2.5), the derivatives of ψi(y) (2.7) at the grid nodes, and the values of ϕi(y) (2.7) at y = 0. In this
section, we provide an algorithm for computing these quantities; the proposed algorithm is stable, including the case of
large n.

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

yBL

yBL

y y

UE(y)
WE(y)

Figure 3. The independent variable y is along the vertical axis. On the left: the Blasius velocity profile UB(y) (yBL = 4.27, ymax = 40).
On the right: the Ekman velocity profiles, UE(y) and WE(y) (yBL = 5, ymax = 20). The Laguerre–Gauss–Radau nodes under the scaling
(2.12) (green dots) and the Chebyshev points under the mappings (2.13), (2.14), and (2.15) (red, blue and pink dots, respectively) at
n = 32.
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By definition [19], the Laguerre polynomials are orthogonal in the inner product

+∞∫︁
0

Lk(y)Lm(y)e−y dy = δkm

with the exponential weight function. They satisfy the following three-term relations

L0(y) = 1, L1(y) = 1 − y,

−kLk−1(y) + (2k + 1)Lk(y) − (k + 1)Lk+1(y) = yLk(y),
(3.1)

and can be represented as

Lk(y) =
ey

k!
dk
(︀
e−yyk

)︀
dyk . (3.2)

In addition, the Laguerre polynomials satisfy the relations

L′n+1(y) − L′n(y) = −Ln(y), (3.3)

yL′n+1(y) = (n + 1)(Ln+1(y) − Ln(y)), (3.4)

whose derivation from (3.1) and (3.2) is straightforward, see [20].

It is known [17] that the Laguerre–Gauss–Radau nodes yi are eigenvalues of the symmetric tridiagonal matrix⎡⎢⎢⎢⎢⎢⎣
1 −1 0
−1 3 −2

. . .
. . .

. . .
−(n − 1) 2n − 1 −n

0 −n n

⎤⎥⎥⎥⎥⎥⎦ . (3.5)

This allows for the robust computation of yi.

3.1. Some results

The quadrature weights κ̂i (2.5) are determined by Ln(yi), which can be computed by the three-term relations (3.1).
At large n and i, the values of |Ln(yi)| appear to be very large (up to the machine infinity), and the values of κi appear to
be very small (up to the machine zero). Therefore, the stable computation of κ̂i = κieyi is an issue. At the same time, the
values of κ̂i are bounded from below since the Laguerre functions are bounded, |L̂n(y)| ≤ 1, at any n and y [16].

We propose to compute the weights κ̂i (2.5) by

κ̂i =
exp (yi − 2 ln(|Ln(yi)|))

n + 1
, (3.6)

with an additional scaling at computing Ln(yi) by (3.1). If we have |Lk(yi)| > c at some k < n, where c is a given threshold
parameter, then we divide the previously computed Lk(yi) and Lk−1(yi) by c and keep using the three-term relation. This
scaling by c is done whenever the result exceeds c in absolute value. As a result, we have ln(|Ln(yi)|) = nc ln(c)+ ln(|L̃n(yi)|),
where nc is the number of fractions done, and L̃n(yi) is the value obtained by the procedure. Numerical experiments show
the overall procedure is robust to round-off errors at large n and i; the computed values of κ̂i up to n = 512 are shown in
Figure 2.

Let us consider the numerical interpolation by the Laguerre interpolation functions (2.7). The following statement is
valid.

Lemma 1. Suppose the function f (y) is equal to fi at some grid 0 ≤ ỹ1 < · · · < ỹn. Then, the interpolant In( f ) constructed with
the functions of the form

ℓ̃i(y)e−(y−ỹi)/2,

where ℓ̃i(y) are the Lagrange interpolation polynomials for this grid, is represented as

In( f ) =

(︃
n∑︁

i=1

λ̂i

y − ỹi
fi

)︃⧸︁(︃ n∑︁
i=1

λ̂ie(y−ỹi)/2

y − ỹi

)︃
, (3.7)

where λ̂i =
eỹi/2∏︀

k ̸=i
(ỹi − ỹk)

.
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Proof. It is straightforward that the following representation

In( f ) = ℓ̃(y)e−y/2
n∑︁

i=1

λ̂i

y − yi
fi (3.8)

is valid, where ℓ̃(y) =
n∏︀

i=1
(y − ỹi). Then, (3.8) and

1 ≡
n∑︁

i=1

ℓ̃i(y) = ℓ̃(y)
n∑︁

i=1

λ̂ie−ỹi/2

y − ỹi
,

end the proof.

As for the polynomial interpolation (see, e.g., [6]), the representation (3.7) is called the barycentric form of the
interpolant, while λ̂i are called the barycentric weights. The barycentric weights can be computed in a robust way due
to the following statement.

Theorem 1. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, and κ̂i are the quadrature weights in (2.5).
Then, the barycentric weights λ̂i for this grid, and those λ̂0

i for the grid y1 < · · · < yn, are represented as

λ̂i = c(n)(−1)i
√︀
κ̂i, (3.9)

λ̂
0
i = c(n)(−1)iyi

√︀
κ̂i, (3.10)

where

c(n) =
(−1)n

√
n + 1

(n + 1)!
.

Proof. Let us prove (3.10) first. The polynomial ℓ0(y) =
n∏︀

i=1
(y − yi) has the same roots as L′n+1(y); therefore, these

polynomials differ only by a multiplicative factor. Using that the leading coefficient of Ln+1(y) is equal to (−1)n+1/(n+ 1)!,
we obtain that

λ̂
0
i =

eyi/2

ℓ′0(yi)
=

eyi/2

(−1)n+1n!L′′n+1(yi)
. (3.11)

For the interior Laguerre–Gauss–Radau nodes, it is valid that

yiL′′n+1(yi) = −(n + 1)L′n(yi) = −(n + 1)Ln(yi), (3.12)

where the left equality is obtained by taking the first derivative of (3.4), and the right one follows from (3.3). Substituting
(3.12) into (3.11) and using the definition of κ̂i (2.5), we obtain the statement (3.10) up to a sign. To end the proof, note
that λ̂0

i have to change the sign, with λ̂0
n > 0.

To prove (3.9), note that

ℓ(y) =
n∏︁

i=0

(y − yi) = yℓ0(y),

and therefore

λ̂i =
eyi/2

ℓ′(yi)
=

eyi/2

ℓ0(yi) + yiℓ
′
0(yi)
. (3.13)

For the interior grid nodes the first term in the denominator of (3.13) equals 0, while the second term is expressed in terms
of λ̂i; those lead to (3.9) at i > 0. For the boundary node y0 = 0, we have ℓ(0) = (−1)n+1n!L′n+1(0). To end the proof, note
that the Laguerre polynomials satisfy L′k(0) = −k, and therefore λ̂0

0 = (−1)n/(n + 1)!.

Note that the statement similar to (3.9) is proven in [21] for the polynomial interpolation for the Laguerre–Gauss–Radau
grid.

The barycentric weights λ̂i and λ̂0
i contain the multiplicative factor c(n), which decays at very large rate with increasing

n. At some n, this factor becomes smaller than the machine zero. However, there is no need to compute c(n) for the
interpolant representation (3.7), since the barycentric weights are involved both in the nominator and denominator.
Thus, the interpolant representation (3.7) with the barycentric weights computed by Theorem 1 allow for the numerical
interpolation from the Laguerre–Gauss-Radau grid to another grid. In addition, substituting (3.10) into (3.7) at the point
y = 0, the following corollary is obtained.
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Corollary 1. Suppose 0 < y1 < · · · < yn are the interior Laguerre–Gauss–Radau nodes, κ̂ j are the quadrature weights in
(2.5) corresponding to these nodes, and ϕ j(y) are the Laguerre interpolation functions (2.7) for this grid. Then,

ϕ j(0) =
(−1) j

√︀
κ̂ j

n∑︀
j=1

(−1) j
√︀
κ̂ je−y j/2

.

One can also derive the explicit formula for the derivatives of the interpolation Laguerre functions ψ j(y) (2.7) at the
Laguerre–Gauss–Radau nodes. Note that such formula is given in [16], Eq. (3.17), but without a proof.

Theorem 2. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, κ̂i are the quadrature weights in (2.5), and
ψ j(y) are the Laguerre interpolating functions (2.7) for this grid. Then

ψ
′
j(yi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)i+ j

√︀
κ̂ j

√
κ̂i(yi − y j)

, i ̸= j,

0, i = j ̸= 0,

−
n + 1

2
, i = j = 0.

Proof. The derivative of the function ψ j(y) (2.7) is as follows

ψ
′
j(y) =

(︂
ℓ′j(y) −

1
2
ℓ j(y)

)︂
e−(y−y j)/2, (3.14)

where ℓ j(y) are the Lagrange interpolation polynomials. By (2.6), it is valid that

(y − y j)ℓ j(y) =
Ln(y) − Ln+1(y)

Ln(y j)
. (3.15)

By taking the derivative of (3.15), we obtain that

ℓ′j(yi) =
Ln(yi)

(yi − y j)Ln(y j)

at i ̸= j. Substituting this expression to (3.14) and using the result for the barycentric weights (3.9), we prove the theorem
at i ̸= j.

By taking the second derivative of (3.15), we obtain that

2ℓ′j(y j) =
L′n(y j)
Ln(y j)

.

At y0 = 0, it is valid that Ln(0) = 1 and L′n(0) = −n. At other nodes y j, it is valid that L′n(y j) = Ln(y j) (3.3). Thus,

2ℓ′j(y j) =

{︃
1, j ̸= 0,
−n, j = 0.

(3.16)

The substitution of (3.16) into (3.14) ends the proof at i = j.

To sum up, the Galerkin–collocation method based on the Laguerre functions can be implemented as follows. The
Laguerre–Gauss–Radau nodes yi are computed as the eigenvalues of (3.5). The quadrature weights κ̂i associated with
this grid are computed by (3.6) with an additional scaling while using the three-term relations (3.1). Then, the values and
derivatives of the functions (2.7) at the grid nodes are computed, see Corollary 1 and Theorem 2. For the interpolation of
a grid function given at the nodes yi to another grid, the barycentric formula (3.7) is used, where the barycentric weights
are computed by Theorem 1; the multiplicative factor c(n) is common for all barycentric weights at given n, therefore there
is no need to compute it. The proposed algorithm performs robustly, including the case of large n.
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4. NUMERICAL EXPERIMENTS

As a result of the approximation of either the system (2.2) or (2.3) under the boundary conditions (1.1) by either the
Galerkin–collocation method from Section 2.1 or the collocation method from Section 2.3, we obtain a differential-
algebraic system of the form (2.10).

Note that v lies in the kernel of F. Let QF be a rectangular matrix, whose columns form an orthonormal basis in the
kernel of F. Likewise, let QG be a rectangular matrix, whose columns form an orthonormal basis in the kernel of G*.
Under an additional assumption that both F, G and Q*GQF are of full rank, the system (2.10) is equivalent to the system of
ordinary differential equations

dq
dt
= Hq, (4.17)

whereq = QFv, and H =
(︀
Q*GQF

)︀−1 Q*GJQF . The detailed justification of such a reduction of differential-algebraic systems
is given in [22]; the assumption made is valid for the considered problems. Note that the approximation by the Galerkin–
collocation method ensures that F = −G*, and therefore QF = QG. It is also worth noting that ‖q‖22 = ‖v‖

2
2 is the discrete

analogue of the energy functional (2.4).
Within the numerical stability analysis, the eigenvalue of H with the largest real part is of the most interest [2, 3]. This

eigenvalue is called the leading eigenvalue, and the corresponding eigenvector is called the leading eigenvector; we denote
the leading eigenvalue by λmax. The another quantity of physical interest [2, 3] is

Γmax = max
0≤t≤T

‖ exp{tH}‖22,

which is called the maximum energy amplification. The quantity Γmax represents the maximum possible growth of the
dusturbance kinetic energy density at given time period t ∈ [0,T ]. In case the matrix H is non-normal, the value of Γmax
might significantly exceed the growth of the leading eigenvector exp (2λmaxT ) [2, 3]; in this case, the initial disturbance
at which Γmax is achieved (which is called the optimal disturbance [2, 3]) usually differs from the leading eigenvector.
The maximum energy amplification Γmax can be computed by the efficient matrix algorithm [23] based on a low-rank
approximation; this algorithm guarantees the result with a given accuracy.

To compare the approximation methods, we study the convergence of both scalar characteristics λmax and Γmax.
Comparing the methods by the convergence of vector characteristics, namely either the leading eigenvector or the optimal
disturbance, could not be done quantitatively due to additional errors from interpolation from one grid to another.

For the considered test problems, the stability analysis can be performed only numerically. To establish the referential
values λ̂max and Γ̂max, we set the artificial boundary ymax with zero boundary conditions for the velocity components at
y = ymax and then approximate the equations by the Galerkin–collocation method with the Lagrange interpolation
polynomials for the Gauss–Lobatto grid as trial and test functions. The approximation properties of these basis functions
are well-established [4], while the method was widely used for hydrodynamic stability problems considered on finite
domains. Therefore, this method is reliable that is the most important for obtaining referential values. For boundary-
layer stability problems, this method is certainly inefficient, since the Gauss–Lobatto nodes are refined both to y = 0
and y = ymax, while the value of ymax has to be tuned manually. Tracking the convergence of the referential solution by
increasing n and ymax, we achieve the convergence of λ̂max and Γ̂max up to a desired precision.

As the first test problem, we perform temporal stability analysis of the Ekman layer (2.3). The Ekman layer could be
considered as the simplest model of atmospheric boundary layers, with its stability being studied in detail (see [14] and
references therein). Using the results of [14], we choose the parameter values as Re = 500, yBL = 5, α = −|k| sin(ε),
γ = |k| cos(ε), and T = 50, where |k| = 0.5, ε = π/9. The referential values of the leading eigenvalue λ̂max = 0.02375517 +
+ 0.026959526i and the maximum energy amplification Γ̂max = 207.14602 are computed at ymax = 20 and n = 128.

Figure 4 demonstrates the relative errors at computing λmax and Γmax for various approximation methods. All methods
show an exponential convergence rate of λmax with increasing n. However, only the Galerkin–collocation method based
on the Laguerre functions shows an exponential convergence rate of Γmax. Note that Γmax converges slightly faster than
λmax for this method. It is also worth noting that there are no significant differences between collocation methods at various
mappings. Additional experiments not presented in this paper show that these findings remain qualitatively the same at
increasing or decreasing the Reynolds number.

As the second test problem, we perform temporal stability analysis of the Blasius layer (2.2). This main flow could
be considered as the simplest model of aerodynamic boundary layers, with its stability being studied in detail (see [2, 3]
and references therein). Using the results of [9], we choose the parameter values as Re = 999, α = 0.25, and γ = 0 for
computing λmax; and the parameter values Re = 999, α = 0.3, γ = 1, T = 50 for computing Γmax. The typical boundary-
layer thickness is yBL = 4.27. The referential values of the leading eigenvalue λ̂max = 0.00213694 − 0.08843026i and the
maximum energy amplification Γ̂max = 279.334811 are computed at ymax = 40 and n = 256.
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Figure 4. The relative error at computing λmax (on the left) and Γmax (on the right) with increasing n for the Ekman layer. Results for
the Galerkin–collocation method based on the Laguerre functions with scaling (2.12) are marked with green. Those for the method
used to obtain referential values are marked with black. Those for the collocation methods with mappings (2.13), (2.14) and (2.15) are
marked with red, blue and pink, respectively.
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Figure 5. The relative error at computing λmax (on the left) and Γmax (on the right) with increasing n for the Blasius layer. The colors
mean the same as for Figure 4. In addition, results for the Galerkin–collocation method based on the Laguerre functions with scaling
(2.12) are shown at larger yBL = 5.5 (green dotted).

Figure 5 demonstrates the relative errors at computing λmax and Γmax for various approximation methods. The
collocation method shows an exponential convergence rate of λmax with increasing n; and there are no significant
differences between mappings used. In contrast, for the Galerkin–collocation method based on the Laguerre functions,
the accuracy that can be achieved is limited; nevertheless, the obtained accuracy might be more than enough in
applications. This issue is remedied by choosing a larger yBL, that is also shown in Figure 5. One can also improve the
scaling (2.12) by increasing the share of the nodes outside the boundary layer.

As for the Ekman layer, the Galerkin collocation method based on the Laguerre functions shows an exponential
convergence rate of Γmax, while the collocation method leads to a slower convergence of Γmax. This disadvantage of the
collocation method appears to be irremediable; and the reason is an ill approximation of the operator d2/dy2, which leads
to the presence of slowly damped unphysical solutions. The basis for this conclusion are as follows. First, it is observed
that convergence to the referential value Γ̂max for the collocation method is from above, i.e., Γmax > Γ̂max. Second, let
us consider the discrete analogue of the operator d2/dy2 on the half-line under zero boundary conditions at y = 0 and
y = +∞; denote this matrix by L. The collocation method, in general, does not ensure the symmetry of L, although in this
case it provides negative definiteness. Nevertheless, the matrix L resulted as the approximation by the collocation method
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has a large condition number (e.g., of order 109 at n = 32 at the mapping (2.13)), and the spectrum of L contains several
very small in absolute value negative eigenvalues corresponding to strongly oscillating eigenvectors. For comparison, L has
the conditional number of order 105 at n = 32, when approximated by the Galerkin–collocation method based on the
Laguerre functions.

5. SUMMARY

This paper proposes the Galerkin collocation method based on the Laguerre functions for approximating spectral
and boundary-value problems arising in studying boundary-layer instabilities. These problems considered on the half-
line y > 0, where y is the wall-normal coordinate. The robust numerical implementation of this method is proposed (see
Section 3), including the procedure for computing the weights of the Laguerre–Gauss–Radau quadrature formula, the
explicit expressions for values and derivatives of the Laguerre interpolation functions at the grid nodes, and the procedure
for numerical interpolation from the Laguerre–Gauss–Radau grid to another grid.

Within temporal stability analysis of the Blasius and Ekman layers, the proposed method is compared to the collocation
method with mappings; the latter method is often used for numerical analysis of boundary-layer instabilities. The
comparison is made at computing both the leading eigenvalue λmax and the maximum energy amplification Γmax. It is
shown that both type of methods show an exponential convergence rate of λmax; and differences between the methods
are insignificant. However, the Galerkin–collocation method based on the Laguerre functions shows an exponential
convergence rate of Γmax, while the collocation method leads to a slower convergence of this quantity. It is shown that
Γmax converges faster than λmax for the Galerkin–collocation method based on the Laguerre functions.

The Galerkin collocation method based on the Laguerre functions might be successfully applied as the wall-normal
approximation for more complex boundary-layer stability problems (see the recent work [24]).

The author of this work declares that he has no conflicts of interest.
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Abstract. Approximation of spectral and boundary-value problems arising in the stability analysis
of incompressible boundary layers is considered. As an alternative to the collocation method with
mappings, the Galerkin–collocation method based on Laguerre functions is adopted. A robust numerical
implementation of the latter method is discussed. The methods are compared within the stability analysis of
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Рассмотрена первая начально-краевая задача для параболической системы второго порядка в полуограничен-
ной области на плоскости. Коэффициенты системы удовлетворяют двойному условию Дини. Функция, зада-
ющая боковую границу области, непрерывно дифференцируема на отрезке. При непрерывно дифференци-
руемой правой части граничного условия первого рода и начальной функции, которая является непрерывной
и ограниченной вместе со своими первой и второй производными, установлено, что решение поставленной
задачи непрерывно и ограниченно в замыкании области вместе со своими старшими производными. Дока-
заны соответствующие оценки. Дано интегральное представление решения. Если боковая граница области
имеет “углы”, а граничная функция – кусочно-непрерывную производную, то в этом случае доказано, что,
несмотря на негладкость боковой границы и граничной функции, старшие производные решения непрерыв-
ны всюду в замыкании области, кроме угловых точек, и при этом ограничены. Библ. 22.

Ключевые слова: параболические системы, первая начально-краевая задача, негладкая боковая граница, гра-
ничные интегральные уравнения, условие Дини.
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ВВЕДЕНИЕ

Предметом исследования настоящей работы является первая начально-краевая задача для параболической
cистемы второго порядка (одномерной по пространственной переменной) с коэффициентами, удовлетворяю-
щими двойному условию Дини, в полуограниченной области Ω на плоскости.

Если коэффициенты параболической системы удовлетворяют условию Гёльдера, функция g, задающая бо-
ковую границу области, достаточно гладкая, а именно, из класса H1+α/2[0,T ], где 0 < α < 1, и если правая
часть граничного условия первого рода ψ ∈ H1+α/2[0,T ], начальная функция h ∈ H2+α(R), правая часть системы
f ∈ Hα,α/2(D), то согласно [1] (см. также [2, c. 706]) существует единственное решение первой начально-краевой
задачи в классе H2+α,1+α/2(Ω).

Естественно возникает вопрос: если в цитируемом выше результате В.А.Солонникова (см. [1]) положить
α = 0 в условиях для боковой границы, правой части граничного условия и начальной функции, то можно ли
утверждать, что решение будет принадлежать пространству C2,1(Ω).

В настоящей статье дается положительный ответ на этот вопрос для параболической системы второго по-
рядка с коэффициентами, которые удовлетворяют двойному условию Дини, в полуограниченной области на
плоскости. А именно, для такой системы доказывается, что если g ∈ C1[0,T ],ψ ∈ C1[0,T ], h ∈ C2(R) и f ∈ Hω(D),
гдеω ∈ 𝒟 (см. ниже (1)), то решение первой начально-краевой задачи принадлежит классу ̂︀C2,1(Ω) (см. ниже (2)).
Пространство ̂︀C2,1(Ω) совпадает с пространством H2+α,1+α/2(Ω) при подстановке в определение последнего α = 0,
при этом их нормы эквивалентны. Доказываются соответствующие оценки. Дается интегральное представле-
ние решения.

“Пошаговое” применение полученного результата позволяет рассмотреть случай, когда боковая граница
областиΩ является негладкой, а именно, может иметь “углы”. В этом случае доказывается, что если функции g
и ψ имеют кусочно-непрерывные производные на отрезке [0,T ], h ∈ C2(R), f ∈ Hω(D), где ω ∈ 𝒟, то (несмотря
на негладкость боковой границы и граничной функции) старшие производные решения непрерывны всюду в
замыкании области, кроме угловых точек, и при этом ограничены. Доказываются соответствующие оценки.
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Однозначная разрешимость в классе C2,1(Ω) ∩ C1,0(Ω) рассматриваемых в данной работе задач следует из
[3]–[6].

Достаточно слабые условия на коэффициенты системы, боковую границу области, правую часть гранич-
ного условия первого рода и начальную функцию не позволяют применить известные методы, которые ис-
пользуются для изучения характера гладкости решения первой начально-краевой задачи (см. [1], [2, c. 461]) в
пространстве H2+α,1+α/2(Ω), где 0 < α < 1.

Ранее в [7], [8] была изучена первая начально-краевая задача с нулевым начальным условием для однород-
ной параболической системы в области Ω, боковая граница которой допускает наличие “клюва” при t = 0.
Если ψ ∈ C1[0,T ], то при выполнении двух естественных условий согласования (ψ(0) = ψ′(0) = 0), несмотря
на негладкость боковой границы области, было показано, что такая задача разрешима в классе ̂︀C2,1(Ω). Метод
настоящей статьи существенно опирается на этот результат.

Заметим, что начально-краевые задачи для параболических систем моделируют процессы тепло- и массопе-
реноса в многокомпонентных материалах (см., например, [9]–[11]), а рассматриваемый характер негладкости
боковой границы области – возможное резкое изменение границ некоторых металлов (железо, марганец, ти-
тан, олово и др.) при фазовых превращениях (см., например, [12, c. 49–52]).

В настоящей работе также исследуется задача Коши в полосе D на плоскости. Хорошо известно, согласно [1]
(см. также [2, c. 361]), что если коэффициенты параболической системы удовлетворяют условию Гёльдера и
если начальная функция h ∈ H2+α(R), правая часть системы f ∈ Hα,α/2(D), где 0 < α < 1, то задача однозначно
разрешима в пространстве H2+α,1+α/2(D).

Мы изучаем вопрос о характере гладкости решения, когда в цитируемом выше результате В.А.Солонникова
(см. [1]) рассматривается α = 0. А именно, для неоднородной параболической системы с коэффициентами,
удовлетворяющими двойному словию Дини, доказывается, что если h ∈ C2(R) и f ∈ Hω(D), где ω ∈ 𝒟, то
решение задачи Коши принадлежит пространству ̂︀C2,1(D) (в [13] этот случай был рассмотрен для однородной
системы). При этом решение имеет вид суммы параболических потенциалов Пуассона и объемных масс. Этот
результат используется при рассмотрении указанной выше первой начально-краевой задачи, а также имеет са-
мостоятельный интерес.

Работа состоит из пяти разделов. В разд. 1 вводятся функциональные пространства и формулируются основ-
ные теоремы. Раздел 2 посвящен рассмотрению задачи Коши и изучению вопроса о характере регулярности ее
решения. В разд. 3 устанавливается разрешимость рассмотренной ранее в [8] первой начально-краевой задачи
в области c негладкой при t = 0 боковой границей и исследуется характер гладкости полученного решения при
отсутствии второго условия согласования. Раздел 4 посвящен доказательству теорем о характере регулярности и
об интегральном представлении решения первой начально-краевой задачи в области с боковой границей клас-
са C1[0,T ]. В разд. 5 доказывается теорема о характере регулярности решения поставленной задачи в области,
боковая граница которой может иметь “углы”.

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ И ФОРМУЛИРОВКА ОСНОВНОГО РЕЗУЛЬТАТА

Пусть числа T > 0, m ∈ N фиксированы. Для любого отрезка [α, β] ⊂ [0,T ] введем пространство C[α, β]
непрерывных (вектор-) функций φ : [α, β]→ Rm, с нормой

‖φ; [α, β]‖(0) = max
t∈[α,β]

|φ(t)|.

Через C1[α, β] обозначим пространство (вектор-) функцийψ : [α, β]→ Rm, непрерывных вместе со своей первой
производной, с нормой

‖ψ; [α, β]‖(1) = max
t∈[α,β]

|ψ(t)| + max
t∈[α,β]

|ψ′(t)|.

Через C2(R) обозначим пространство (вектор-) функций h : R → Rm, непрерывных и ограниченных вместе со
своей первой и второй производными, с нормой

‖h;R‖(2) =

2∑︁
k=0

sup
x∈R
|h(k)(x)|.

Модулем непрерывности, согласно [14, с. 150–151], называем непрерывную, неубывающую, полуаддитивную
функцию ω : [0,+∞)→ R такую, что ω(0) = 0. Модуль непрерывности ω удовлетворяет условию Дини, если

̃︀ω(z) =

z∫︁
0

ω(x)x−1dx < ∞, z > 0. (1)
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Через𝒟 обозначим множество, состоящее из модулей непрерывности, удовлетворяющих условию (1).
На плоскости R2 переменных x и t рассматриваем полосу

D = {(x, t) ∈ R2 | x ∈ R, 0 < t < T }.

Через Hω(D) обозначим пространство непрерывных (вектор-) функций f : D → Rm, для которых конечно
выражение

‖ f ; D‖ω = sup
(x,t)∈D

| f (x, t)| + sup
(x,t),(x+∆x,t)∈D

|∆x|̸=0

| f (x + ∆x, t) − f (x, t)|
ω(|∆x|)

,

где ω ̸≡ 0 – модуль непрерывности.
Пусть Ω ⊂ D. Через C(Ω) обозначим пространство (вектор-) функций u, непрерывных в Ω. Положим

C2,1(Ω) – пространство (вектор-) функций u, непрерывных и ограниченных вместе со своими первыми по x, t и
второй производной по x в Ω.

Следуя [2, c. 16], через H2+α,1+α/2(Ω), 0 < α < 1, обозначим пространство (вектор-) функций u, непрерывных
вместе со своими первыми по x, t и второй производной по x в Ω, для которых конечно выражение

‖u‖(2+α)
Ω =

∑︁
2l+k⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+

+
∑︁

2l+k=2

(︁
sup

(x,t),(x+∆x,t)∈Ω
|∆x|≠0

1
|∆x|α

⃒⃒⃒
∆x
∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+ sup

(x,t),(x,t+∆t)∈Ω
|∆t|̸=0

1
|∆t|α/2

⃒⃒⃒
∆t
∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒)︁
+

+ sup
(x,t),(x,t+∆t)∈Ω

|∆t|̸=0

1
|∆t|(1+α)/2

⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
.

Здесь и далее
∆x f (x, t) = f (x + ∆x, t) − f (x, t), ∆t f (x, t) = f (x, t + ∆t) − f (x, t),

для любой функции f .
Для матрицы B (или вектора b) через |B| (соответственно, |b|) обозначаем максимум из модулей элементов B

(компонент b).
Под значениями (вектор-) функций и их производных на границе области понимаем их предельные значе-

ния “изнутри” области.
Через ̂︀C2,1(Ω) обозначим подпространство (вектор-) функций u ∈ C2,1(Ω), для которых конечно выражение

‖u;Ω‖(2) =
∑︁

2l+k⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂l+ku
∂tl∂xk(x, t)

⃒⃒⃒
+ sup

(x,t),(x,t+∆t)∈Ω
|∆t|̸=0

1
|∆t|1/2

⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
. (2)

Кроме того, полагаем

̂︀C
0

2,1
(Ω) = {u ∈ ̂︀C2,1(Ω) : u(x, 0) =

∂u
∂x

(x, 0) =
∂2u
∂x2(x, 0) =

∂u
∂t

(x, 0) = 0}.

Заметим, что пространство ̂︀C2,1(Ω) совпадает с пространством H2+α,1+α/2(Ω) при подстановке в определение по-
следнего α = 0, при этом нормы ‖·;Ω‖(2) и ‖·‖2+0

Ω эквивалентны.
Через C1,0(Ω) обозначим пространство (вектор-) функций u, непрерывных и ограниченных вместе со своей

первой производной по x в Ω, с нормой

‖u;Ω‖(1) = sup
(x,t)∈Ω

⃒⃒⃒
u(x, t)

⃒⃒⃒
+ sup

(x,t)∈Ω

⃒⃒⃒∂u
∂x

(x, t)
⃒⃒⃒
.

Пусть ω0 – модуль непрерывности, удовлетворяющий двойному условию Дини:

̃︀̃︀ω0(z) =

z∫︁
0

y−1dy

y∫︁
0

ω0(ξ)ξ−1dξ < ∞, z > 0,
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и такой, что для некоторого ε0 ∈ (0, 1) функция ν(z) = ω0(z)z−ε0 , z > 0, почти убывает, а именно, существует C > 0
такое, что ν(z1) ⩽ Cν(z2), z1 ⩾ z2 > 0.

В полосе D рассмотрим равномерно параболический по Петровскому (см. [15]) оператор

Lu =
∂u
∂t
−

2∑︁
k=0

Ak(x, t)
∂ku
∂xk ,

где u = (u1, u2, . . . , um)⊤, m ∈ N, и Ak = ||ai jk ||
m
i, j=1, k = 0, 1, 2, суть m × m матрицы, элементы которых — веществен-

нозначные функции, определенные в D и удовлетворяющие следующим условиям:
(a) для собственных чисел µr матрицы A2 выполнено Re µr(x, t) ⩾ δ для некоторого δ > 0 и всех (x, t) ∈ D,

r = 1, . . . ,m;
(б) функции ai jk ограничены в D и справедливы оценки⃒⃒⃒

ai jk(x + ∆x, t + ∆t) − ai jk(x, t)
⃒⃒⃒
⩽ ω0(|∆x| + |∆t|1/2),

где (x, t), (x + ∆x, t + ∆t) ∈ D, i, j = 1, . . . ,m, k = 0, 1, 2.

Пусть

Z(x, t; A2(ξ, τ)) =
1

2π

+∞∫︁
−∞

eiσx exp(−A2(ξ, τ)σ2t)dσ,

где x, ξ ∈ R, t > 0, 0 ⩽ τ ⩽ T . Справедливы неравенства (см. [16, c. 298, 306]):⃒⃒⃒ ∂l+kZ
∂tl∂xk(x, t; A2(ξ, τ))

⃒⃒⃒
⩽ C(l, k)t−(2l+k+1)/2 exp(−cx2/t), (3)

⃒⃒⃒ ∂l+kZ
∂tl∂xk(x, t; A2(ξ + ∆ξ, τ)) −

∂l+kZ
∂tl∂xk(x, t; A2(ξ, τ))

⃒⃒⃒
⩽ C(l, k)t−(2l+k+1)/2

ω0(|∆ξ|) exp(−cx2/t), (4)

где x, ξ, ξ + ∆ξ ∈ R, t > 0, 0 ⩽ τ ⩽ T , k, l ⩾ 0.

Положим D* = {(x, t; ξ, τ) ∈ D×D : t > τ}. Известно (см. [17], если m = 1, и [18], если m ⩾ 2), что при условиях
(a), (б) существует фундаментальная матрица решений Γ(x, t; ξ, τ) системы Lu = 0, для нее выполнены оценки:⃒⃒⃒ ∂l+kΓ

∂tl∂xk(x, t; ξ, τ)
⃒⃒⃒
⩽ C(t − τ)−(2l+k+1)/2 exp

(︁
−c

(x − ξ)2

t − τ

)︁
, 0 ⩽ 2l + k ⩽ 2, (5)

и, кроме того, для функции
W(x, t; ξ, τ) ≡ Γ(x, t; ξ, τ) − Z(x − ξ, t − τ; A2(ξ, τ))

справедливы неравенства⃒⃒⃒∂l+kW
∂tl∂xk(x, t; ξ, τ)

⃒⃒⃒
⩽ C̃︀ω0((t − τ)1/2)(t − τ)−(2l+k+1)/2 exp

(︁
−c

(x − ξ)2

t − τ

)︁
, 0 ⩽ 2l + k ⩽ 2, (6)

⃒⃒⃒
∆t
∂W
∂x

(x, t; ξ, τ)
⃒⃒⃒
⩽ C
|∆t|1/2̃︀ω0((t − τ)1/2)

(t − τ)3/2 exp
(︁
−c

(x − ξ)2

t − τ

)︁
, (7)

(x, t; ξ, τ), (x, t + ∆t; ξ, τ) ∈ D*, 0 < ∆t ⩽ t − τ.
Пусть Ω – полуограниченная область следующего вида:

Ω = {(x, t) ∈ D | x > g(t)}, g ∈ C[0,T ],

с боковой границей
Σ = {(x, t) ∈ D | x = g(t)}.

Рассмотрим задачу о нахождении (вектор-) функции u ∈ C(Ω), являющуюся классическим решением урав-
нения

Lu = f , (x, t) ∈ Ω, (8)

удовлетворяющей начальному условию

u(x, 0) = h(x), x ⩾ g(0), (9)
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и граничному условию первого рода
u(g(t), t) = ψ(t), 0 ⩽ t ⩽ T. (10)

Cледуя [8], для φ ∈ C[0,T ] положим

Sφ(x, t) =

t∫︁
0

Y(x, t; g(τ), τ)φ(τ)dτ, (x, t) ∈ Ω, (11)

где

Y(x, t; g(τ), τ) =

+∞∫︁
0

Γ(x, t; g(τ) − r, τ)dr, (x, t) ∈ D, 0 ⩽ τ < t.

Кроме того, для любых непрерывных и ограниченных функций h : R→ Rm и f : D→ Rm положим

Ph(x, t) =

+∞∫︁
−∞

Γ(x, t; ξ, 0)h(ξ)dξ, h = (h1, h2, . . . , hm)⊤, (x, t) ∈ D, (12)

V f (x, t) =

t∫︁
0

dτ

+∞∫︁
−∞

Γ(x, t; ξ, τ) f (ξ, τ)dξ, f = ( f1, f2, . . . , fm)⊤, (x, t) ∈ D. (13)

Основными результатами работы являются следующие три теоремы.
Пусть P0 = (g(0), 0). Через ̂︀C2,1(Ω ∖P0) обозначим пространство (вектор-) функций u, непрерывных вместе со

своей первой производной по x в Ω и имеющих непрерывные в Ω ∖ P0 вторую по x и первую по t производные,
для которых конечно выражение (2).

Теорема 1. Пусть выполнены условия (a), (б) и g ∈ C1[0,T ]. Тогда для любых (вектор-) функций f ∈ Hω(D), где
ω ∈ 𝒟, h ∈ C2(R), ψ ∈ C1[0,T ] с условием согласования

ψ(0) = h(g(0)), (14)

для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливы включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C
(︁
‖ψ; [0,T ]‖(1) + ‖h;R‖(2) + ‖ f ; D‖ω

)︁
. (15)

Если, кроме того, выполнено второе условие согласования

ψ
′(0) = g′(0)h′(g(0)) +

2∑︁
k=0

Ak(g(0), 0)h(k)(g(0)) + f (g(0), 0), (16)

то для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливо включение u ∈ ̂︀C2,1(Ω).
Здесь и далее через C обозначаем положительные постоянные, зависящие от T , δ, m, коэффициентов опе-

ратора L и боковой границы Σ, конкретный вид которых для нас неважен.
Замечание 1. Существование и единственность решения задачи (8)–(10) в классе C1,0(Ω) следует из [3]–[6].
Теорема 2. Пусть выполнены условия теоремы 1. Тогда для любого решения u ∈ C1,0(Ω) задачи (8)–(10) имеет

место интегральное представление

u(x, t) = Sφ(x, t) + Ph(x, t) + V f (x, t), (x, t) ∈ Ω,

где φ : [0,T ] → Rm – единственное в пространстве C[0,T ] решение системы граничных интегральных уравнений
Вольтерра первого рода

t∫︁
0

Y(g(t), t; g(τ), τ)φ(τ)dτ = ψ(t) − Ph(g(t), t) − V f (g(t), t), t ∈ [0,T ]. (17)

Замечание 2. Если m = 1, то утверждения теорем 1, 2 справедливы для любого ограниченного решения задачи
(8)–(10) (см. [19]).

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



28 БАДЕРКО, ФЕДОРОВ

Замечание 3. В случае f ≡ 0, h ≡ 0, при выполнении условий ψ ∈ C1[0,T ], ψ(0) = ψ′(0) = 0, существование

решения задачи (8)–(10) в классе u ∈ ̂︀C
0

2,1
(Ω) доказано в [8]. При этом допускается негладкость боковой границы

Σ при t = 0, а именно, предполагается выполненным условие

g ∈ C[0,T ],
⃒⃒⃒
g′(t)

⃒⃒⃒
⩽
ω(t1/2)

t1/2 , 0 < t ⩽ T, (18)

где ω – некоторый модуль непрерывности.
Далее рассмотрим случай, когда боковая граница Σ области Ω является негладкой, а именно, имеет углы.
Пусть на интервале (0,T ) задано множество точек

{t1, . . . , tN ∈ (0,T ) | 0 < t1 < · · · < tN < T }, N ∈ N. (19)

Через PC1[0,T ] обозначим пространство непрерывных (вектор-) функций ψ ∈ C[0,T ], производные ψ′ которых
кусочно-непрерывны со множеством (19) точек разрыва первого рода, с нормой⃦⃦⃦

ψ; [0,T ]
⃦⃦⃦(1)

N
=

N∑︁
k=0

‖ψ; [tk, tk+1]‖(1), где t0 = 0, tN+1 = T.

Пусть
P = {P0, P1, . . . , PN}, где Pk = (g(tk), tk), k = 1, . . . ,N, N ∈ N.

Через ̂︀C2,1(Ω ∖ P) обозначим пространство (вектор-) функций u, непрерывных вместе со своей первой произ-
водной по x вΩ и имеющих непрерывные вΩ ∖ P вторую по x и первую по t производные, для которых конечно
выражение (2).

Теорема 3. Пусть выполнены условия (a), (б) и g ∈ PC1[0,T ]. Тогда для любых (вектор-) функций f ∈ Hω(D), где
ω ∈ 𝒟, h ∈ C2(R), ψ ∈ PC1[0,T ], с условием согласования (14), для решения u ∈ C1,0(Ω) задачи (8)–(10) справедливы
включение u ∈ ̂︀C2,1(Ω ∖ P) и оценка

‖u;Ω‖(2) ⩽ C
(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
. (20)

Замечание 4. Существование и единственность решения задачи (8)–(10) в классе C1,0(Ω) следует из [3]–[6].

2. О ЗАДАЧЕ КОШИ

Лемма 1. Пусть выполнены условия (a), (б). Тогда для любой (вектор-) функции f ∈ Hω(D), где ω ∈ 𝒟, объемный
потенциал V f принадлежит пространству ̂︀C2,1(D) и справедлива оценка

‖V f ; D‖(2) ⩽ C‖ f ; D‖ω.

Доказательство. Так как потенциал V f удовлетворяет уравнению

Lu = f в D,

то для доказательства включения V f ∈ ̂︀C2,1(D) достаточно установить неравенства⃒⃒⃒∂kV f
∂xk (x, t)

⃒⃒⃒
⩽ C‖ f ; D‖ωt1−k/2, k = 0, 1, (21)

⃒⃒⃒∂2V f
∂x2 (x, t)

⃒⃒⃒
⩽ C

(︁̃︀ω(t1/2) + ̃︀̃︀ω0(t1/2)
)︁
‖ f ; D‖ω, (22)⃒⃒⃒

∆t
∂V f
∂x

(x, t)
⃒⃒⃒
⩽ C‖ f ; D‖ω|∆t|1/2, (23)

(x, t), (x, t + ∆t) ∈ D. Оценки (21), (22) доказываются аналогично методу, изложенному в [20, c. 109–110].
Докажем оценку (23). При 0 < t ⩽ ∆t неравенство (23) следует из оценки (21) при k = 1. В случае 0 < ∆t < t

справедливо представление

∆t
∂V f
∂x

(x, t) =

t+∆t∫︁
t−∆t

dτ

+∞∫︁
−∞

∂Γ

∂x
(x, t + ∆t; ξ, τ) f (ξ, τ)dξ −

t∫︁
t−∆t

dτ

+∞∫︁
−∞

∂Γ

∂x
(x, t; ξ, τ) f (ξ, τ)dξ +

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂Γ

∂x
(x, t; ξ, τ) f (ξ, τ)dξ ≡
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≡ J1(x, t,∆t) + J2(x, t,∆t) + J3(x, t,∆t).

Оценим J1 (интеграл J2 оценивается аналогично). Из неравенства (5) имеем

⃒⃒⃒
J1(x, t,∆t)

⃒⃒⃒
⩽ C‖ f ; D‖ω

t+∆t∫︁
t−∆t

dτ
(t + ∆t − τ)1/2 ⩽ C‖ f ; D‖ω|∆t|1/2.

Оценим J3. Из представления

J3(x, t,∆t) =

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂Z
∂x

(x − ξ, t − τ; A2(ξ, τ)) f (ξ, τ)dξ +

t−∆t∫︁
0

dτ

+∞∫︁
−∞

∆t
∂W
∂x

(x, t; ξ, τ) f (ξ, τ)dξ

и неравенств (3), (7) следует оценка

⃒⃒⃒
J3(x, t,∆t)

⃒⃒⃒
⩽ C|∆t|1/2‖ f ; D‖ω

t−∆t∫︁
0

(︁ |∆t|1/2

(t − τ)3/2 +
̃︀ω0((t − τ)1/2)

t − τ

)︁
dτ ⩽ C‖ f ; D‖ω(1 + ̃︀̃︀ω0(T 1/2))|∆t|1/2.

Отсюда получаем неравенство (23). Лемма 1 доказана.
В [13] доказана следующая
Лемма 2. Пусть выполнены условия (a), (б). Тогда для любой (вектор-) функции h ∈ C2(R) потенциал Пуассона

Ph принадлежит пространству ̂︀C2,1(D) и справедлива оценка:

‖Ph; D‖(2) ⩽ C‖h;R‖(2).

Рассмотрим задачу Коши
Lu = f , (x, t) ∈ D, u(x, 0) = h(x), x ∈ R. (24)

Из лемм 1, 2 следует
Теорема 4. Пусть выполнены условия (a), (б). Тогда для любых f ∈ Hω(D), где ω ∈ 𝒟, и h ∈ C2(R) (вектор-)

функция
u(x, t) = V f (x, t) + Ph(x, t), (x, t) ∈ D,

является единственным в классе C2,1(D) решением задачи (24). Это решение принадлежит пространству ̂︀C2,1(D), и
справедлива оценка

‖u; D‖(2) ⩽ C
(︁
‖h;R‖(2) + ‖ f ; D‖ω

)︁
.

Замечание. Единственность решения задачи (24) в классе C2,1(D) следует из [21].

3. О ЗАДАЧЕ ДЛЯ ОДНОРОДНОЙ СИСТЕМЫ С НУЛЕВЫМ НАЧАЛЬНЫМ УСЛОВИЕМ

Рассмотрим следующую первую начально-краевую задачу:

Lu = 0 в Ω, u
⃒⃒⃒
t=0
= 0, u

⃒⃒⃒
Σ
= ψ. (25)

В этом разделе боковая граница Σ допускает при t = 0 наличие “клюва” (см. (18)).
Лемма 3. Пусть выполнены условия (a), (б) и (18). Тогда для любой (вектор-) функции ψ ∈ C1[0,T ] с условием

ψ(0) = 0 решением задачи (25) является (векторный) параболический потенциал (см. (11))

u(x, t) = Sφ(x, t), (x, t) ∈ Ω, (26)

где φ : [0,T ] → Rm единственное в пространстве C[0,T ] решение системы граничных интегральных уравнений
Вольтерра первого рода

t∫︁
0

Y(g(t), t; g(τ), τ)φ(τ)dτ = ψ(t), t ∈ [0,T ]. (27)

При этом справедливы включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C‖ψ; [0,T ]‖(1). (28)
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Если, кроме того, выполнено условие ψ′(0) = 0, то справедливо включение u ∈ ̂︀C
0

2,1
(Ω).

Доказательство. Ищем решение в виде потенциала (26) с плотностью φ, подлежащей определению. Для лю-
бой φ ∈ C[0,T ] потенциал (26) удовлетворяет уравнению и начальному условию из (25). Подставляя (26) в гра-
ничное условие из (25), для определения неизвестной плотности φ ∈ C[0,T ] получаем интегральное уравнение
Вольтерры первого рода (27). Из леммы 4 работы [8] следует, что это уравнение имеет единственное решение
φ ∈ C[0,T ] и справедлива оценка

‖φ; [0,T ]‖(0) ⩽ C‖ψ; [0,T ]‖(1). (29)

Подставляя решение φ уравнения (27) в выражение (26), получим, что определенная таким образом функция u
является решением задачи (25). При этом из лемм 1–3 работы [8] следует включение u ∈ ̂︀C2,1(Ω ∖ P0) и оценка

‖u;Ω‖(2) ⩽ C‖φ; [0,T ]‖(0).

Отсюда и из (29) получаем неравенство (28).

Если дополнительно выполнено условие ψ′(0) = 0, то из теоремы 1 работы [8] следует включение u ∈ ̂︀C
0

2,1
(Ω).

Лемма 3 доказана.
Замечание. Если модуль непрерывности в (18) дополнительно удовлетворяет условию (1), то однозначная

разрешимость задачи (25) в классе u ∈ C1,0(Ω) следует из результатов работ [3], [6].

4. ДОКАЗАТЕЛЬСТВО ТЕОРЕМ 1, 2

С помощью замены (см. (12), (13))

u(x, t) = v(x, t) + Ph(x, t) + V f (x, t), (30)

поставленная задача (8)–(10) сводится к задаче

Lv = 0 в Ω, (31)

v(x, 0) = 0, x ⩾ g(0), (32)

v(g(t), t) = Ψ(t), 0 ⩽ t ⩽ T, (33)

где
Ψ(t) = ψ(t) − Ph(g(t), t) − V f (g(t), t), 0 ⩽ t ⩽ T.

Из условия согласования (14), неравенства (21) при k = 0, а также из леммы 2 получаем, чтоΨ(0) = 0. Из условия
g ∈ C1[0,T ], включений Ph,V f ∈ ̂︀C2,1(D) (см. леммы 1, 2) и равенства

Ψ′(t) = ψ′(t) − g′(t)
(︁∂Ph
∂x

(g(t), t) +
∂V f
∂x

(g(t), t)
)︁
−
∂Ph
∂t

(g(t), t) −
∂V f
∂t

(g(t), t), 0 ⩽ t ⩽ T,

получаем, что Ψ ∈ C1[0,T ].
Из леммы 3 следует, что решением задачи (31)–(33) является (векторный) параболический потенциал

v(x, t) = Sφ(x, t),

где (вектор-) функция φ единственное в пространстве C[0,T ] решение уравнения (17). При этом v ∈ ̂︀C2,1(Ω ∖ P0)
и справедлива оценка

‖v;Ω‖(2) ⩽ C‖Ψ; [0,T ]‖(1).

Если дополнительно выполнено условие согласования (16), то Ψ′(0) = 0. В этом случае из леммы 3 следует

включение v ∈ ̂︀C
0

2,1
(Ω).

Подставляя полученную функцию v в представление (30) и используя леммы 1, 2, получаем окончательно
утверждения теорем 1 и 2.

Введем вспомогательные функциональные пространства и рассмотрим две леммы, необходимые для даль-
нейшего.

Через C2,1(Ω ∖ P0) обозначим пространство (вектор-) функций u, непрерывных вместе со своей первой про-
изводной по x в Ω и имеющих непрерывные и ограниченные в Ω ∖ P0, вторую по x и первую по t производные,
для которых конечно выражение

‖u;Ω‖2,1 =
∑︁

2r+s⩽2

sup
(x,t)∈Ω

⃒⃒⃒ ∂r+su
∂tr∂xs(x, t)

⃒⃒⃒
.
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Через C2([a,+∞)), a ∈ R, обозначим пространство (вектор-) функций h : [a,+∞) → Rm, непрерывных и
ограниченных вместе со своей первой и второй производными, с нормой

‖h; [a,+∞)‖(2) =

2∑︁
k=0

sup
x∈[a,+∞)

|h(k)(x)|.

Лемма 4. Пусть
u ∈ C2,1(Ω ∖ P0), h(x) = u(x,T ), x ⩾ g(T ).

Тогда справедливы включение
h ∈ C2[g(T ),+∞), (34)

оценка
‖h; [g(T ),+∞)‖(2) ⩽ ‖u,Ω‖2,1 (35)

и предельные соотношения

lim
(x,t)→(xT ,T )

(x,t)∈Ω

∂ku
∂xk(x, t) = h

(k)
(xT ), k = 1, 2, xT ⩾ g(T ). (36)

Доказательство. Сделаем замену переменной

y = x − g(t)

и положим
v(y, t) = u(y + g(t), t), (y, t) ∈ [0,+∞) × [0,T ]. (37)

Тогда
∂kv
∂yk(y, t) =

∂ku
∂xk(x, t)

⃒⃒⃒
x=y+g(t)

, k = 0, 1, 2, (y, t) ∈ [0,+∞) × [0,T ].

Введем обозначение ̂︀h(y) = v(y,T ), y ∈ [0,+∞).

В силу (37) справедливы включение ̂︀h ∈ C[0,+∞) и оценка

sup
y∈[0,+∞)

|̂︀h(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒
u(x, t)

⃒⃒⃒
.

Рассмотрим последовательность функций

hn(y) = v(y,T − 1/n), y ⩾ 0, n ∈ N.

Не ограничивая общности, считаем, что 1/n < T/2. Зафиксируем произвольно M > 0. Имеем hn(y) ∈ C2[0,M],
последовательность функций (hn(y))n∈N сходится к функции ̂︀h(y) на [0,M], последовательность производных

(h′n(y))n∈N сходится равномерно на отрезке [0,M] в силу равномерной непрерывности
∂v
∂y

на [0,M]× [T/2,T ]. Сле-

довательно, существует ̂︀h′ ∈ C[0,M], причем

lim
n→∞

h′n(y) = ̂︀h′(y), y ∈ [0,M],

и

sup
y∈[0,+∞)

|̂︀h′(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒∂u
∂x

(x, t)
⃒⃒⃒
.

Аналогично, получаем, что существует ̂︀h′′ ∈ C[0,M], причем

lim
n→∞

h′′n (y) = ̂︀h′′(y), y ∈ [0,M],

и

sup
y∈[0,+∞)

|̂︀h′′(y)| ⩽ sup
(x,t)∈Ω

⃒⃒⃒∂2u
∂x2(x, t)

⃒⃒⃒
.
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В силу произвольности M > 0, отсюда следует, что имеет место включение ̂︀h ∈ C2[0,+∞) и оценка

‖̂︀h; [0,+∞)‖2 ⩽ ‖u,Ω‖2,1.

Возвращаясь к функции h, получаем включение (34), оценку (35) и предельные соотношения (36). Лемма 4
доказана.

Аналогично доказывается следующая
Лемма 5. Если u ∈ C2,1(Ω ∖ P0) и h(x) = u(x, 0), то справедливы предельные соотношения

lim
(x,t)→(x0,0)

(x,t)∈Ω

∂u
∂x

(x, t) = h′(x0), x0 ⩾ g(0),

lim
(x,t)→(x0,0)

(x,t)∈Ω

∂2u
∂x2(x, t) = h′′(x0), x0 > g(0).

5. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 3

Заметим (см. [22, c. 587–588]), что любую функцию h ∈ C2([a,+∞)) можно продолжить на всю числовую ось
с сохранением класса h* ∈ C2(R), причем

‖h*;R‖(2) ⩽ C‖h; [a,+∞)‖(2). (38)

Перейдем к доказательству теоремы 3. Пусть u ∈ C1,0(Ω) – решение задачи (8)–(10). Положим

hk(x) = u(x, tk), x ⩾ g(tk), k = 0, . . . ,N,

Ωk = {(x, t) ∈ D | x > g(t), tk < t < tk+1}, k = 0, . . . ,N,

где
t0 = 0, tN+1 = T.

Докажем сначала, что
u ∈ ̂︀C2,1(Ωk ∖ Pk), k = 0, . . . ,N, (39)

причем

‖u;Ωk‖
(2) ⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, k = 0, . . . ,N. (40)

В самом деле, для k = 0 включение (39) и оценка (40) сразу следуют из теоремы 1. Предположим, что (39), (40)
выполнены для некоторого k, 0 ⩽ k ⩽ N − 1. В силу леммы 4 справедливы включение

hk+1 ∈ C2[g(tk+1),+∞)

и оценка
‖hk+1; [g(tk+1),+∞)‖(2) ⩽ ‖u,Ωk‖

2,1. (41)

Обозначим продолжение функции hk+1 на всю числовую ось с сохранением класса через h*k+1 ∈ C2(R). Из нера-
венства (38) следует оценка

‖h*k+1;R‖(2) ⩽ C‖hk+1; [g(tk+1),+∞)‖(2). (42)

Рассмотрим u на множестве Ωk+1. Функция u ∈ C1,0(Ωk+1) является решением первой начально-краевой задачи

Lu = f в Ωk+1, (43)

u(x, tk+1) = h*k+1(x), x ⩾ g(tk+1), (44)

u(g(t), t) = ψ(t), tk+1 ⩽ t ⩽ tk+2, (45)

где
ψ ∈ C1[tk+1, tk+2], h*k+1 ∈ C2(R),

причем справедливо условие согласования

ψ(tk+1) = hk+1(g(tk+1)) = h*k+1(g(tk+1)).
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Из теоремы 1 для решения u ∈ C1,0(Ωk+1) задачи (43)–(45) справедливы включение (39) с заменой в нем k на k+1
и оценка

‖u;Ωk+1‖
(2) ⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h*k+1;R‖(2) + ‖ f ; D‖ω

)︁
.

Отсюда, используя неравенства (41), (42), получаем оценку (40) с заменой в ней k на k + 1. Таким образом, (39),
(40) доказаны по индукции.

Заметим, что из включения (39) и неравенства (40) следует оценка⃒⃒⃒
∆t
∂u
∂x

(x, t)
⃒⃒⃒
⩽ C|∆t|1/2, (x, t), (x, t + ∆t) ∈ Ω,

и из результатов работ [3], [4] — неравенства⃒⃒⃒∂su
∂xs(x, t)

⃒⃒⃒
⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω, s = 0, 1. (46)

Далее, учитывая леммы 4, 5, делаем вывод, что

∂2u
∂x2(x, tk) = h′′k (x), x > g(tk), k = 1, . . . ,N,

причем
∂2u
∂x2 непрерывна и ограничена на всем множестве Ω ∖ P, и справедлива оценка

⃒⃒⃒∂2u
∂x2(x, t)

⃒⃒⃒
⩽ C

(︁⃦⃦⃦
ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω ∖ P. (47)

Наконец, из лемм 4, 5 получаем, что

lim
(x,t)→(x,tk−0)

(x,t)∈Ωk−1

∂u
∂t

(x, t) = lim
(x,t)→(x,tk+0)

(x,t)∈Ωk

∂u
∂t

(x, t) =
2∑︁

s=0

As(x, g(tk))h(s)
k (x) + f (x, tk), x > g(tk), k = 1, . . . ,N.

Отсюда и из непрерывности u на Ω следует, что в точках (x, tk), x > g(tk), k = 1, . . . ,N, существует
∂u
∂t

. Учитывая

непрерывность производных
∂su
∂xs, s = 0, 1, 2, и неравенства (46), (47), получаем непрерывность и ограничен-

ность
∂u
∂t

на всем множестве Ω ∖ P, и оценку

⃒⃒⃒∂u
∂t

(x, t)
⃒⃒⃒
⩽ C

(︁⃒⃒⃒
‖ψ; [0,T ]

⃦⃦⃦(1)

N
+‖h;R‖(2) + ‖ f ; D‖ω

)︁
, (x, t) ∈ Ω ∖ P.

Таким образом, справедливы включение u ∈ ̂︀C2,1(Ω ∖ P) и неравенство (20). Теорема 3 доказана.
Замечание. Из доказательства теоремы 3 и из леммы 4 следует, что старшие производные решения

u ∈ ̂︀C2,1(Ω ∖ P) задачи (8)–(10) непрерывны “снизу” в точках множества P ∖ P0, а именно:

lim
(x,t)→(g(tk),tk)

(x,t)∈Ωk−1

∂2u
∂x2(x, t) =

∂2u
∂x2(g(tk), tk), k = 1, . . . ,N,

lim
(x,t)→(g(tk),tk)

(x,t)∈Ωk−1

∂u
∂t

(x, t) =
∂u
∂t

(g(tk), tk), k = 1, . . . ,N.
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Abstract. The first initial boundary value problem for a second-order parabolic system in a semi-bounded
domain on the plane is considered. The coefficients of the system satisfy the double Dini condition.
The function defining the lateral boundary of the domain is continuously differentiable on the closed
interval. When the right-hand side of the boundary condition of the first kind is continuously differentiable
and the initial function is continuous and bounded together with its first and second derivatives, it is
established that the solution of the problem is continuous and bounded in the closure of the domain together
with its higher order derivatives. The corresponding estimates are proved. An integral representation of the
solution is given. If the lateral boundary of the domain has “corners” and the boundary function has a
piecewise continuous derivative, it is proved that, despite the lateral boundary and the boundary function
being non-smooth, the higher order derivatives of the solution are continuous everywhere in the closure of
the domain, except the corner points, and are bounded.

Keywords: parabolic systems, first initial boundary value problem, nonsmooth lateral boundary, boundary
integral equations, Dini condition
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В прямоугольнике Ω = {(x, t) | 0 < x < 1, 0 < t < T } рассматривается начально-краевая задача для сингулярно
возмущенного параболического уравнения

ε
2
(︂

a2 ∂
2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω,

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T.

Предполагается, что в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция F(u) = F(u, k, 0, 0)
имеет вид

F(u) = u3 − u3
0, где u0 = u0(k) < 0.

Для построения асимптотики решения задачи используется нелинейный метод угловых пограничных функ-
ций. Ранее был рассмотрен случай, когда граничное значение φ в угловых точках отделено от точки перегиба
u = 0 условием

u0(k) < φ(k) ≤
u0(k)

2
< 0,

при котором на роль барьерных подошли функции "простейшего" вида, пригодные сразу во всей рассматри-
ваемой области. В настоящей работе рассматривается случай

u0(k)
2
< φ(k) < 0,

при котором область приходится разбивать на части, в каждой подобласти строить свои барьерные функции с
учетом их непрерывной стыковки на общих границах подобластей, а затем проводить сглаживание кусочно-
непрерывных нижних и верхних решений. В результате получается полное асимптотическое разложение ре-
шения при ε→ 0 и обосновывается его равномерность в замкнутом прямоугольнике. Библ. 15.

Ключевые слова: пограничный слой, асимптотическое приближение, сингулярно возмущенное уравнение.

DOI: 10.31857/S0044466925010047, EDN: CDCFNP

ВВЕДЕНИЕ

Сингулярно возмущенные задачи с малым параметром для уравнений с частными производными встре-
чаются в различных задачах математической физики. В их решениях, как правило, возникают пограничные
слои, где происходит резкий переход между разными характерными модами. Типичный пример – это задачи
обтекания тел вязкой жидкостью, когда вблизи поверхности тела скорость потока резко падает до нуля. Дру-
гой пример – это задачи диффузии, когда на границе области поддерживается постоянная концентрация или
постоянный поток. В статье рассматриваются именно такие задачи, когда вблизи угловых точек прямоуголь-
ника возникают пограничные слои, сшивающие решение для начальных и граничных условий. Проводится
подробное описание угловых пограничных слоев при кубических нелинейностях в уравнении.

Такие задачи имеют более чем полувековую историю. Общая теория для линейных параболических урав-
нений была построена В.Ф. Бутузовым в середине 1970-х годов. Для нелинейных эллиптических и параболи-
ческих уравнений с краевыми условиями первого рода разработка теории началась в работах И.В. Денисова в
1990-х годах. В настоящее время достаточно подробно исследованы только задачи с квадратичными нелиней-
ностями. Кубические нелинейности исследованы лишь в частных случаях.
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Нелинейный метод угловых пограничных функций является естественным обобщением (линейного) ме-
тода угловых пограничных функций В.Ф. Бутузова (см. [1], [2]). При построении асимптотических разложе-
ний решений нелинейных дифференциальных уравнений в частных производных с краевыми условиями пер-
вого рода (задача Дирихле) приходится доказывать существование подходящих решений нелинейных урав-
нений. Это делается с помощью барьерных функций, построение которых представляет основную проблему
(см. [3]–[9]). В настоящее время разработаны возможные виды "простейших" гладких барьерных функций
для оценки решений нелинейных задач, определяющих главные члены угловой части асимптотики. Если же
гладкие барьеры не удается построить сразу во всей рассматриваемой области, то предполагается выполнение
следующих шагов:

1) разбиение области на части;
2) построение в каждой подобласти нижних и верхних решений задачи;
3) непрерывная стыковка нижних и верхних решений на общих границах подобластей;
4) последующее сглаживание кусочно-непрерывных нижних и верхних решений.
Для обоснования построенной асимптотики решения применяется универсальный метод дифференциаль-

ных неравенств Н.Н. Нефедова (см. [10]).

1. ПОСТАНОВКА ЗАДАЧИ

Обозначим через Ω прямоугольник {(x, t) | 0 < x < 1, 0 < t < T }. Рассмотрим начально-краевую задачу вида

ε
2
(︂

a2 ∂
2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω, (1)

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, (2)

u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T, (3)

где ε – малый положительный параметр. Предположим, что выполнены следующие условия.
Условие 1. Функции F(u, x, t, ε),ϕ(x),ψ1(t) иψ2(t) являются достаточно гладкими и в угловых точках прямоуголь-

ника Ω выполняются условия согласованности начально-краевых значений

φ(0) = ψ1(0), φ(1) = ψ2(0).

Условие 2. Вырожденное уравнение F(u, x, t, 0) = 0 в замкнутом прямоугольнике Ω имеет решение, которое обо-
значается как u = ū0(x, t).

Заметим, что в силу нелинейности это уравнение может иметь и другие решения.
Условие 3. Производная F′u(ū0 (x, t), x, t, 0) > 0 в замкнутом прямоугольнике Ω.
Условие 4. Начальная задача

dΠ0

dτ
= −F(ū0(x, 0) + Π0, x, 0, 0), Π0(x, 0) = φ(x) − ū0(x, 0),

имеет решение Π0(x, τ) при τ ≥ 0, удовлетворяющее условию Π0(x,∞) = 0 (здесь параметр x ∈ [0, 1]).
Условие 5. Для систем

dz1

dy
= z2, a2 dz2

dy
= F(ū0(k, t) + z1, k, t, 0), (4)

прямые z1 = ψ1+k(t) − ū0(k, t) пересекают сепаратрисы, входящие в точку покоя (z1, z2) = (0, 0) при y → ∞ (здесь t —
параметр, k = 0 или 1).

В силу условий 1–3 точка (z1, z2) = (0, 0) является точкой покоя типа седла систем (4).
При сделанных предположениях нельзя гарантировать существование решения задачи (1)–(3). Кроме этого,

даже если решение задачи существует, его явное представление, как правило, получить не удается. Поэтому
для доказательства существования решения задачи (1)–(3) требуются дополнительные условия, которые будут
сформулированы ниже.

2. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

Решение задачи (1)–(3) ищется в виде асимптотического ряда по параметру ε → 0, состоящего из шести
частей:

u(x, t, ε) = ū + (Π + Q + Q*) + (P + P*). (5)
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Здесь ū – регулярная часть асимптотики, играющая роль внутри прямоугольника Ω, Π, Q и Q* – погранс-
лойные функции, играющие роль вблизи сторон прямоугольникаΩ соответственно t = 0, x = 0 и x = 1, P и P* –
угловые пограничные функции, играющие роль вблизи вершин прямоугольникаΩ соответственно (0, 0) и (1, 0).

Формальная процедура построения регулярной части асимптотики и погранслойных функций хорошо от-
работана и подробно описана в [11]. Однако, для построения угловых пограничных функций требуются обо-
значения, вводимые при построении предыдущих частей асимптотики. В связи с этим процедуру построения
регулярной и погранслойной частей асимптотики всякий раз приходится схематично повторять.

В уравнении (1) функция F заменяется выражением, аналогичным (5):

F(u, x, t, ε) = F̄ + (ΠF + QF + Q*F) + (PF + P*F). (6)

Выражения (5) и (6) подставляются в уравнение (1), которое разделяется на части: регулярную, погранслой-
ные и угловые. Регулярная часть асимптотики строится в виде ряда по степеням ε:

ū(x, t, ε) =
∞∑︁

k=0

ε
k ūk(x, t).

Погранслойная часть асимптотики вводится для устранения невязок регулярной части с начальным и гра-
ничными условиями. Погранслойные функции Π, Q и Q* ищутся в виде рядов

Π(x, τ, ε) =
∞∑︁

k=0

ε
kΠk(x, τ), Q(ξ, t, ε) =

∞∑︁
k=0

ε
kQk(ξ, t), Q*(ξ*, t, ε) =

∞∑︁
k=0

ε
kQ*k(ξ*, t),

где

ξ =
x
ε
, ξ* =

1 − x
ε
, τ =

t
ε2

суть растянутые переменные.
С целью устранения невязок с начальным и граничными условиями вблизи угловых точек (0, 0) и (1, 0) пря-

моугольника Ω вводятся угловые пограничные функции P(ξ, τ, ε) и P*(ξ*, τ, ε), нахождение которых доставляет
основные трудности при решении поставленной задачи. Эти функции ищутся в виде рядов

P(ξ, τ, ε) =
∞∑︁

k=0

ε
kPk(ξ, τ), P*(ξ*, τ, ε) =

∞∑︁
k=0

ε
kP*k(ξ*, τ).

Задача для определения P0(ξ, τ) ставится в первой четверти R2
+ плоскости растянутых переменных (ξ, τ) и

имеет вид

a2 ∂
2P0

∂ξ2 −
∂P0

∂τ
= F (ū0 + Π0 + Q0 + P0) − F (ū0 + Π0) − F (ū0 + Q0) , (7)

P0(0, τ) = −Π0(0, τ), P0(ξ, 0) = −Q0(ξ, 0), (8)

P0(ξ, τ)→ 0 при ξ + τ→ ∞, (9)

где для краткости используются обозначения

F(u) = F(u, 0, 0, 0), ū0 = ū0(0, 0), Πk = Πk(0, τ), Qk = Qk(ξ, 0), Pk = Pk(ξ, τ).

Для функций Pk(ξ, τ), k ≥ 1, в области R2
+ получаются линейные задачи

a2 ∂
2Pk

∂ξ2 −
∂Pk

∂τ
= F′ (ū0 + Π0 + Q0 + P0) Pk + hk, (10)

Pk(0, τ) = −Πk(0, τ), Pk(ξ, 0) = −Qk(ξ, 0), (11)

Pk(ξ, τ)→ 0 при ξ + τ→ ∞, (12)

где неоднородности hk = hk(ξ, τ) удовлетворяют экспоненциальным оценкам убывания вида

|hk(ξ, τ)| ≤ Cexp(−κ(ξ + τ)), (13)

если подобным оценкам удовлетворяют функции P0, . . . , Pk−1. Здесь C и κ – некоторые положительные числа.
Задачи для угловых погранфункций P*k(ξ*, τ), k ≥ 0, ставятся аналогично.
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В дальнейшем для определенности считается, что в каждой угловой точке граничное значение φ больше
корня вырожденного уравнения ū0. (Случай φ < ū0 сводится к предыдущему с помощью замены u на −u.)

Для доказательства существования решения задачи (7)–(9) используется метод верхних и нижних решений
(см. [12]–[14]), который заключается в том, что задача

L(Z) = 0 в области D,

Z = h на границе ∂D

имеет решение Z в границах
Z− ≤ Z ≤ Z+,

если в области D выполняются неравенства

L(Z+) ≤ 0, L(Z−) ≥ 0, Z− ≤ Z+,

а на ее границе
Z− ≤ h ≤ Z+.

При исследовании задачи (7)–(9) будет удобно пользоваться обозначением

L(Z) := a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F (ū0 + Π0 + Q0 + Z) + F (ū0 + Π0) + F (ū0 + Q0) .

Тогда задача (7)–(9) примет вид
L(P0) = 0 в области R2

+, (14)

P0(0, τ) = −Π0(0, τ), P0(ξ, 0) = −Q0(ξ, 0), (15)

P0(ξ, τ)→ 0 при ξ + τ→ ∞. (16)

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Предполагается, что в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция F(u) = F(u, k, 0, 0)
имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

В этом случае функция F(u) при u > ū0 сначала выпукла вверх, в точке u = 0 имеет перегиб и далее становится
выпуклой вниз. В работе [9] задача (1)–(3) рассмотрена при условии, когда граничное значение φ в угловых
точках отделено от точки перегиба u = 0 условием

ū0 < φ ≤
ū0

2
< 0.

При таком условии для задачи (14)–(16) на роль барьерных подходят гладкие функции “простейшего” вида,
пригодные сразу во всей рассматриваемой области. Было доказано следующее утверждение.

Теорема 1. Пусть выполнены условия 1–5 и в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция
F(u) = F(u, k, 0, 0) имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

Если граничные значения φ = φ(k) удовлетворяют условию

ū0 < φ ≤
ū0

2
< 0,

то для достаточно малых ε задача (1)–(3) имеет решение u(x, t, ε), для которого ряд

∞∑︁
k=0

ε
k
(︁

ūk(x, t) + Πk(x, τ) + Qk(ξ, t) + Q*k(ξ*, t) + Pk(ξ, τ) + P*k(ξ*, τ)
)︁

является асимптотическим представлением при ε→ 0 в замкнутом прямоугольнике Ω.
Далее считается, что

ū0

2
< φ < 0. (17)
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Ранее с использованием погранслойных функций, определяемых обыкновенными дифференциальными
уравнениями и необходимыми экспоненциальными оценками, были построены так называемые “простей-
шие” функции

Z1(ξ, τ) ≡ 0, Z2(ξ, τ) = Cexp(−k(ξ + τ)), Z3(ξ, τ) = −2
√︀
Π0(0, τ)Q0(ξ, 0),

Z4(ξ, τ) = −
Π0(0, τ)Q0(ξ, 0)

φ − ū0
.

В отдельных случаях такие функции подходят на роль барьерных во всей области R2
+. При условии (17) эти

функции не подходят на роль барьерных для задачи (14)–(16) во всей области R2
+. Область R2

+ приходится раз-
бивать на части и в каждой из них строить так называемые кусочно-гладкие барьеры, а затем сглаживать их.

Определение. Для задачи

L(Z) = 0 в области D, Z = h на границе ∂D,

функции Z+(ξ, τ) и Z−(ξ, τ) являются кусочно-гладкими верхним и нижним решениями задачи, если
1) Z+(ξ, τ) и Z−(ξ, τ) непрерывны в замкнутой области D̄;
2) существует разбиение области D на конечное число подобластей, на внутренности каждой из которой

выполняются неравенства
L(Z+) ≤ 0, L(Z−) ≥ 0, Z− ≤ Z+;

3) на границе области D выполняются неравенства

Z− ≤ h ≤ Z+.

Лемма 1. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

функция вида
Z0− = −r exp(−κ(ξ + τ)),

где r и κ – некоторые положительные числа, является нижним барьером задачи (14)–(16).
Доказательство. Требуется доказать,что L(Z0−) ≥ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z0−, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z + κZ −
[︀
(λ + Z)3 − ū3

0

]︀
+
[︀
(ū0 + s)3 − ū3

0

]︀
+
[︀
(ū0 + t)3 − ū3

0

]︀
=

= a2
κ

2Z + κZ − λ3 − 3λ2Z − 3λZ2 − Z3 + (ū0 + s)3 + (ū0 + t)3 − ū3
0 =

=
[︀
−λ3 + (ū0 + s)3 + (ū0 + t)3 − ū3

0

]︀
+
(︀
a2
κ

2 + κ − 3λ2)︀Z − 3λZ2 − Z3 =

= −3st(ū0 + λ) + (a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3.

Так как s и t принадлежат промежутку (0,φ − ū0], то при условии (17) первое слагаемое в выражении L(Z)
положительно:

−3st(ū0 + λ) > 0.

Остальная часть L(Z) имеет вид

(a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3 = −Z
[︀
Z2 + 3λZ + (3λ2 − a2

κ
2 − κ)

]︀
.

Выражение L(Z) будет положительным при условии положительности выражения, стоящего в квадратных
скобках:

Z2 + 3λZ + (3λ2 − a2
κ

2 − κ).

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



НЕЛИНЕЙНЫЙ МЕТОД УГЛОВЫХ ПОГРАНИЧНЫХ ФУНКЦИЙ 41

Значения λ = ū0+ s+ t заполняют промежуток (ū0, 2φ− ū0]. Так как ū0 < 0, а 2φ− ū0 > 0, то λможет принимать
нулевое значение, при котором

3λ2 − a2
κ

2 − κ < 0.

Чтобы избежать этого нужно воспользоваться монотонным убыванием и стремлением к нулю значений s =
Π0(0, τ) и t = Q0(ξ, 0) при τ и ξ, стремящихся к ∞. Это позволяет утверждать, что для любого числа β ∈ (ū0, 0)
существует положительное число ρ0 такое, что

ū0 + Π0(0, ρ0) + Q0(ρ0, 0) = β < 0, (18)

и в области
Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

выполняется неравенство
λ = ū0 + s + t < ū0 + Π0(0, ρ0) + Q0(ρ0, 0) = β < 0.

Тогда дискриминант квадратного трехчлена, стоящего в квадратных скобках:

9λ2 − 4(3λ2 − a2
κ

2 − κ) = 4(a2
κ

2 + κ) − 3λ2 < 4(a2
κ

2 + κ) − 3β2 < 0,

если

0 < κ <

√︀
1 + 3a2β2 − 1

2a2 . (19)

При выполнении условий (17)–(19) значения L(Z0−) > 0 и функция вида

Z0− = −r exp(−κ(ξ + τ))

является нижним барьером задачи (14)–(16) в области Ω0. Лемма 1 доказана.
Замечание 1. Лемма 1 не вносит ограничений на величину коэффициента r у функции Z0−.
После выделения из R2

+ подобласти Ω0 оставшуюся часть области R2
+ разобьем на две подобласти:

Ω1 = {(ξ, τ)| ξ ≥ τ, 0 ≤ τ ≤ ρ0} и Ω2 = {(ξ, τ)| 0 ≤ ξ ≤ ρ0, τ ≥ ξ}.

Лемма 2. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) нижним барьером задачи (14)–(16) в области Ω1 является функция вида

Z1−(ξ, τ) = −h(τ) exp(−κξ),

где κ – достаточно малое положительное число, а функция h(τ) на промежутке [0, ρ0] обладает свойствами

h(τ) ≥ Π0(0, τ) > 0, h′(τ) > 0, h′′(τ) < 0. (20)

Доказательство. Требуется доказать,что L(Z1−) ≥ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z1−, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z + h′(τ) exp(−κξ) − 3st(ū0 + λ) − 3λ2Z − 3λZ2 − Z3 =

= −3st(ū0 + λ) +
[︂

a2
κ

2 −
h′(τ)
h(τ)

− 3λ2
]︂

Z − 3λZ2 − Z3.

Как и в лемме 1 значения
−3st(ū0 + λ) > 0.
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Остальная часть L(Z) имеет вид[︂
a2
κ

2 −
h′(τ)
h(τ)

− 3λ2
]︂

Z − 3λZ2 − Z3 = −Z
[︂

Z2 + 3λZ +
(︂

h′(τ)
h(τ)

+ 3λ2 − a2
κ

2
)︂]︂
.

Дискриминант квадратного трехчлена, стоящего в квадратных скобках

D = 9λ2 − 4
(︂

h′(τ)
h(τ)

+ 3λ2 − a2
κ

2
)︂
= −3λ2 − 4

(︂
h′(τ)
h(τ)

− a2
κ

2
)︂
< 0

при условии
h′(τ)
h(τ)

− a2
κ

2 > 0,

что достижимо, если

a2
κ

2 < min
h′(τ)
h(τ)
.

Так как функция h′(τ)/h(τ) убывает на промежутке [0, ρ0], то

min
h′(τ)
h(τ)

=
h′(ρ0)
h(ρ0)

,

и нужно иметь

a2
κ

2 <
h′(ρ0)
h(ρ0)

, 0 < κ <
1
a

√︃
h′(ρ0)
h(ρ0)

.

С учетом (19) корректируем выбор числа κ:

0 < κ < min

(︃
1
a

√︃
h′(ρ0)
h(ρ0)

,

√︀
1 + 3a2β2 − 1

2a2

)︃
. (21)

При условии (21) выполняется неравенство L(Z1−) ≥ 0. Лемма 2 доказана.
В областиΩ2 нижний барьер строится симметрично барьеру из областиΩ1, и справедливо следующее утвер-

ждение.
Лемма 3. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) нижним барьером задачи (14)–(16) в области Ω2 является функция

Z2−(ξ, τ) = Z1−(τ, ξ) = −h(ξ) exp(−κτ),

где Z1−(ξ, τ) – функция из леммы 2.
Лемма 3 завершает построение нижних барьеров для оценки решения задачи (14)–(16) во всех трех областях

Ω0,Ω1 иΩ2, на которые была разделена область R2
+. Эти барьеры можно непрерывно состыковать друг с другом.

Так функции Z1−(ξ, τ) и Z2−(ξ, τ) уже по построению непрерывно стыкуются друг с другом на общей границе об-
ластейΩ1 иΩ2, то есть на отрезке ξ = τ, где τ ∈ [0, ρ0]. На общей границе областейΩ0 иΩ1, которая представляет
собой луч τ = ρ0, ξ ∈ [ρ0,∞), непрерывную стыковку кусков Z0−(ξ, τ) и Z1−(ξ, τ) обеспечивает выбор параметра κ
для функции Z0−(ξ, τ), который остался свободным:

h(ρ0) = r exp(−κρ0).

Это же условие обеспечивает непрерывную стыковку кусков Z0−(ξ, τ) и Z2−(ξ, τ) на общей границе областей
Ω0 и Ω2. Таким образом получается кусочно-гладкое нижнее решение задачи (14)–(16).

Далее методами работы [5] проводится процедура сглаживания кусочно-гладкого нижнего решения до глад-
кого нижнего решения, что приводит к справедливости следующего утверждения.

Теорема 2. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет нижнее решение Z−(ξ, τ), удовлетворяющее экспоненциальной оценке
убывания вида

0 < −Z−(ξ, τ) ≤ Cexp(−κ(ξ + τ)), (22)
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где C и κ – некоторые положительные числа.
Теперь перейдем к построению верхнего решения задачи (14)–(16). На этом пути имеются дополнитель-

ные трудности, связанные с положительностью свободного члена в выражении L(Z) через Z. Тем не менее, эти
трудности удается преодолеть за счет другой техники.

Лемма 4. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

функция вида
Z0+ = r exp(−κ(ξ + τ)),

где r и κ – некоторые положительные числа, является верхним барьером задачи (14)–(16).
Доказательство. Требуется доказать неравенство L(Z0+) ≤ 0. Вводим обозначения, аналогичные принятым

ранее:
s = Π0(0, τ), t = Q0(ξ, 0), Z = Z0+, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= −3st(ū0 + λ) + (a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3.

В выражении для L(Z) первое слагаемое оказывается положительным:

−3st(ū0 + λ) > 0,

поэтому отрицательность L(Z) нужно обеспечить за счет других слагаемых. Воспользуемся оценками

0 < s = Π0(0, τ) ≤ (φ − ū0)exp(−κ1τ),

0 < t = Q0(ξ, 0) ≤ (φ − ū0)exp(−κ2ξ),

где κ1,2 – некоторые положительные числа. В выражении для Z0+ выбираем κ, подчиненное условию

0 < κ < min(κ1, κ2). (23)

Тогда при ξ и τ, стремящихся к бесконечности, знак L(Z) определяется коэффициентом при Z, который
равен

a2
κ

2 + κ − 3λ2.

При ξ и τ, стремящихся к бесконечности, этот коэффициент

a2
κ

2 + κ − 3λ2 → a2
κ

2 + κ − 3ū2
0.

Последнее выражение будет отрицательным:

a2
κ

2 + κ − 3ū2
0 < 0,

при следующем условии на выбор κ:

0 < κ <

√︀
1 + 12ū2

0 − 1
2a2 .

Корректируем это с (23) и получаем

0 < κ < min

(︃
κ1, κ2,

√︀
1 + 12ū2

0 − 1
2a2

)︃
. (24)

При ξ и τ, стремящихся к бесконечности, L(Z) эквивалентно величине

L(Z) ∼ (a2
κ

2 + κ − 3ū2
0)Z < 0,
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поэтому существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

выполняется неравенство L(Z0+) ≤ 0, и, таким образом, функция вида

Z0+ = r exp(−κ(ξ + τ))

является верхним барьером задачи (14)–(16) в области Ω0. Лемма 4 доказана.

Как и ранее оставшуюся часть области R2
+ разбиваем на две подобласти

Ω1 = {(ξ, τ)| ξ ≥ τ, 0 ≤ τ ≤ ρ0} и Ω2 = {(ξ, τ)| 0 ≤ ξ ≤ ρ0, τ ≥ ξ}.

Лемма 5. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) верхним барьером задачи (14)–(16) в области Ω1 является функция вида

Z1+(ξ, τ) = h(τ) exp(−κξ),

где κ – достаточно малое положительное число, а функция h(τ) на промежутке [0, ρ0] обладает свойствами

h(τ) > 0, h′(τ) > 0, h′′(τ) < 0. (25)

Доказательство. Требуется доказать,что L(Z1+) ≤ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z1+, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z − h′(τ) exp(−κξ) − 3st(ū0 + λ) − 3λ2Z − 3λZ2 − Z3 =

=

(︂
a2
κ

2 −
h′(τ)
h(τ)

)︂
Z − 3st(ū0 + λ)

exp(κξ)
h(τ)

Z − 3λ2Z − 3λZ2 − Z3 =

=

(︂
a2
κ

2 −
h′(τ)
h(τ)

− 3st(ū0 + λ)
exp(κξ)

h(τ)
− 3λ2

)︂
Z − 3λZ2 − Z3 =

= −Z
[︂
−

(︂
a2
κ

2 −
h′(τ)
h(τ)

− 3st(ū0 + λ)
exp(κξ)

h(τ)
− 3λ2

)︂
+ 3λZ + Z2

]︂
=

= −Z
[︂

Z2 + 3λZ +
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2
)︂]︂
.

Обозначим выражение, стоящее в квадратных скобках, через H(Z):

H(Z) = Z2 + 3λZ + q,

где q =
h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2.

Требуется доказать, что H(Z) ≥ 0. Сначала добьемся положительности q. Имеем

q ≥
h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
− a2

κ
2 =

1
h(τ)

[︀
h′(τ) + 3st(ū0 + λ) exp(κξ)

]︀
− a2

κ
2.

Чтобы удовлетворить неравенству

h′(τ) + 3st(ū0 + λ) exp(κξ) > 0,
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воспользуемся оценками
0 < s = Π0(0, τ) ≤ (φ − ū0)exp(−κ1τ),

0 < t = Q0(ξ, 0) ≤ (φ − ū0)exp(−κ2ξ),

где κ1,2 – некоторые положительные числа. Считая, что

0 < κ < min(κ1, κ2), (26)

имеем
0 < t exp(κξ) ≤ (φ − ū0)exp(−κ2ξ) exp(κξ) = (φ − ū0)exp(−(κ2 − κ)ξ) < φ − ū0.

Величина
0 < −(ū0 + λ) < −2ū0.

Таким образом,
0 < −3st(ū0 + λ) exp(κξ) < −6ū0(φ − ū0)2,

или
3st(ū0 + λ) exp(κξ) > 6ū0(φ − ū0)2,

поэтому функцию h(τ) подчиняем условию

h′(τ) + 3st(ū0 + λ) exp(κξ) > h′(τ) + 6ū0(φ − ū0)2 > 0.

Учитывая, что h′(τ) убывает на промежутке [0, ρ0] , требуем, чтобы

h′(ρ0) + 6ū0(φ − ū0)2 > 0. (27)

Теперь, чтобы q было положительным, нужно скорректировать выбор κ:

q ≥
1

h(τ)
[︀
h′(τ) + 3st(ū0 + λ) exp(κξ)

]︀
− a2

κ
2 ≥

1
h(ρ0)

[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ − a2

κ
2 ≥ δ > 0

при условии

0 < a2
κ

2 <
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ − δ,

или

0 < κ <
1
a

√︃
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2

]︀
− δ ,

где δ – какое-либо число из промежутка

0 < δ <
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ . (28)

Выбор κ корректируем с условием (26):

0 < κ < min

(︃
κ1, κ2,

1
a

√︃
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2

]︀
− δ

)︃
.

При наложенных выше условиях дискриминант квадратного трехчлена H(Z) равен

D = 9λ2 − 4q = 9λ2 − 4
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2
)︂
=

= −3λ2 − 4
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
− a2

κ
2
)︂
< 0.

Таким образом, H(Z) > 0, а L(Z) < 0. Лемма 5 доказана.
В областиΩ2 верхний барьер строится симметрично барьеру из областиΩ1, и справедливо следующее утвер-

ждение.
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Лемма 6. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) верхним барьером задачи (14)–(16) в области Ω2 является функция

Z2+(ξ, τ) = Z1+(τ, ξ) = h(ξ) exp(−κτ),

где Z1+(ξ, τ) – функция из леммы 5.
Аналогично теореме 2 получается следующее утверждение.
Теорема 3. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет верхнее решение Z+(ξ, τ), удовлетворяющее экспоненциальной оценке
убывания вида

0 < Z+(ξ, τ) ≤ Cexp(−κ(ξ + τ)), (29)

где C и κ – некоторые положительные числа.
Применение метода верхних и нижних решений и учет оценок (22) и (29) позволяют доказать следующее

утверждение.
Теорема 4. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет решение P0(ξ, τ), удовлетворяющее экспоненциальной оценке убывания
вида

|P0(ξ, τ)| ≤ Cexp(−κ(ξ + τ)), (30)

где C и κ – некоторые положительные числа.
Последующие члены угловой части асимптотики Pk(ξ, τ), k ≥ 1, определяются из линейных задач (10)–(12),

рассматриваемых в области R2
+:

a2 ∂
2Pk

∂ξ2 −
∂Pk

∂τ
= F′(ū0 + Π0 + Q0 + P0)Pk + hk,

Pk(0, τ) = −Πk(0, τ), Pk(ξ, 0) = −Qk(ξ, 0),

Pk(ξ, τ)→ 0 при ξ + τ→ ∞,

где неоднородности hk = hk(ξ, τ) удовлетворяют экспоненциальным оценкам вида

|hk(ξ, τ)| ≤ Cexp(−κ(ξ + τ)),

если подобным оценкам удовлетворяют функции P0, . . . , Pk−1. Здесь C и κ – некоторые положительные числа.
В силу оценок для функцийΠ0, Q0 и P0 можно гарантировать существование положительного числаϱ такого,

что при ξ + τ ≥ ϱ значения ū0 + Π0 + Q0 + P0 будут ≤ −δ, где δ – некоторое положительное число. При таких
значениях переменных ξ, τ в силу свойств функции F коэффициент F′(ū0 +Π0 +Q0 + P0) будет положительным
и отграниченным от нуля:

F′(ū0 + Π0 + Q0 + P0) ≥ F′(−δ) > 0.

Это обстоятельство позволяет использовать результаты работы [15] и доказать следующее утверждение.
Теорема 5. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задачи (10)–(12) имеют решения Pk(ξ, τ), которые удовлетворяют экспоненциальным оценкам
убывания вида (30).

Задачи для угловых погранфункций P*k(ξ*, τ), k ≥ 0, ставятся и решаются аналогично. Асимптотический
ряд (5) оказывается полностью построенным. Остается обосновать асимптотическую сходимость этого ряда к
решению задачи (1)–(3).
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Теорема 6. Пусть выполнены условия 1–5 и в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция
F(u) = F(u, k, 0, 0) имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

Если граничные значения φ = φ(k) удовлетворяют условию

ū0

2
< φ < 0,

то для достаточно малых ε задача (1)–(3) имеет решение u(x, t, ε), для которого ряд

∞∑︁
k=0

ε
k
(︁

ūk(x, t) + Πk(x, τ) + Qk(ξ, t) + Q*k(ξ*, t) + Pk(ξ, τ) + P*k(ξ*, τ)
)︁

является асимптотическим представлением при ε→ 0 в замкнутом прямоугольнике Ω.
Доказательство теоремы основано на разрешимости задач для пограничных функцийΠk, Qk, Q*k, Pk и P*k при

k ≥ 1 и повторяет доказательство соответствующей теоремы из работы [3]. При этом используется универсаль-
ный метод дифференциальных неравенств (см. [10]).

Замечание 2. Функция F в различных угловых точках не обязательно должна иметь один и тот же вид. Все
результаты работ [3]–[9] сохраняются, если в каждой угловой точке функция F имеет один из рассмотренных
в этих работах вид.

ЗАКЛЮЧЕНИЕ

В работе получено описание углового пограничного слоя для задач с кубическими нелинейностями при
условии, что граничные значения берутся вплоть до точки перегиба. Основной проблемой было доказательство
разрешимости нелинейных краевых задач. В отличие от предыдущих работ это потребовало конструирования
более сложных барьерных функций.
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Abstract. In the rectangle Ω = {(x, t) | 0 < x < 1, 0 < t < T } the initial boundary value problem for the
singularly perturbed parabolic equation

ε
2
(︂

a2 ∂
2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω,

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T.

is considered. It is assumed that at the angular points (k, 0) of the rectangleΩ, where k = 0 or 1, the function
F(u) = F(u, k, 0, 0) takes the form

F(u) = u3 − u3
0, где u0 = u0(k) < 0.

The nonlinear method of angular boundary functions is used to construct the asymptotics of the solution to
the problem. Earlier, we considered the case when the boundary value of φ at the angular points is separated
from the inflection point u = 0 by the condition

u0(k) < φ(k) ≤
u0(k)

2
< 0,

at which functions of the “simplest” form suitable in the entire domain in question fitted to the role of
barrier functions. In this work, the case

u0(k)
2
< φ(k) < 0

is considered, where the domain has to be divided into parts, the barrier functions have to be constructed
in each subdomain taking into account their continuous junction at the common boundaries of the
subdomains, and then the piecewise continuous lower and upper solutions have to be smoothed. As a result,
a complete asymptotic expansion of the solution when ε → 0 is obtained and its uniformity in the closed
rectangle is justified.

Keywords: boundary layer, asymptotic approximation, singularly perturbed equation
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Исследовано линейное интегродифференциальное уравнение с особым дифференциальным оператором в
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1. ВВЕДЕНИЕ

Данная работа посвящена приближенному решению линейного интегродифференциального уравнения
(ИДУ)

(Ax) (t) ≡ x(q)(t)
l∏︁

j=1

(t − t j)m j +

p∑︁
j=0

1∫︁
−1

K j(t, s)x( j)(s)ds = y(t), (1.1)

в котором t ∈ I ≡ [−1, 1], числа t j ∈ (−1, 1), m j ∈ N, j = 1, l, и q, p ∈ Z+ являются фиксированными; K j, j = 0, p и y –
известные “гладкие” функции, а x – искомая функция. Исследование таких уравнений представляет несомнен-
ный интерес как с точки зрения теории (в частности, ИДУ (1.1) является обобщением ряда классов линейных
интегральных уравнений типа Фредгольма), так и приложений. Очевидно, что задача об отыскании решения
ИДУ (1.1) в классе обычных гладких функций является некорректно поставленной. Следовательно, важен во-
прос о построении основных пространств, обеспечивающих корректность данной задачи. При решении этого
вопроса вполне естественно учитывать то, что в случае q = p = 0 ИДУ (1.1) преобразуется в линейное инте-
гральное уравнение третьего рода (УТР) (т.е. в этом смысле эти уравнения являются “родственными”). Хоро-
шо известно, что УТР широко применяются в различных областях, в частности, они встречаются в ряде задач
теорий переноса нейтронов, упругости, рассеяния частиц (см., например, [1; 2, с. 121–129] и приведенную в
них библиографию), в теории уравнений с частными производными смешанного типа [3], а также в теории
сингулярных интегральных уравнений с вырождающимся символом [4]. При этом, как правило, естествен-
ными классами решений УТР являются специальные пространства обобщенных функций типа D или V. Под
D (соответственно V) понимается пространство обобщенных функций, построенных при помощи функцио-
нала “дельта-функция Дирака” (соответственно функционала “конечная часть интеграла по Адамару”). По-
дробный обзор полученных результатов и обширную библиографию по УТР можно найти в монографии [5,
с. 3–11, 168–173] и в диссертации [6, с. 3–6, 106–114]. На основе упомянутой выше связи между ИДУ (1.1) и
УТР соответствующие идеи и результаты для УТР можно успешно использовать для корректной постановки за-
дачи решения уравнения (1.1), разработки и теоретического обоснования приближенных методов его решения
в пространствах обобщенных функций.

ИДУ (1.1) при l = 1, t1 = 0, p = 0 исследовано в работе [7, с. 25–43], в которой с использованием известных
результатов по УТР построена теория Нётера для такого уравнения в классах гладких и обобщенных функций
типа D. В статье [8] разработана полная теория разрешимости общего ИДУ вида (1.1) при p = 0 в некотором
пространстве типа D обобщенных функций. Следует отметить, что исследуемые ИДУ точно решаются лишь
в очень редких частных случаях. Поэтому особенно актуальна разработка эффективных методов их прибли-
женного решения в пространствах обобщенных функций с соответствующим теоретическим обоснованием.
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Определенные результаты в этом направлении получены для ИДУ (1.1) при p = 0. Именно, в работах [8–11]
предложены и обоснованы прямые проекционные методы его приближенного решения, основанные на при-
менении стандартных и некоторых специальных полиномов, а также сплайнов первого и второго порядков.

В настоящей статье впервые построена полная теория разрешимости ИДУ (1.1) в некотором пространстве
типа D обобщенных функций (фредгольмовость уравнения, условия разрешимости, алгоритм отыскания точ-
ного решения, достаточные условия непрерывной обратимости оператора A). Более того, разработан полино-
миальный прямой проекционный метод, специально приспособленный к приближенному решению ИДУ (1.1)
в классе обобщенных функций, и дано его обоснование в смысле [12; гл. 1, §1–5]. Именно, доказана теорема
существования и единственности решения соответствующего приближенного уравнения, установлены оцен-
ки погрешности этого решения и доказана сходимость последовательности приближенных решений к точному
решению в пространстве обобщенных функций. Исследованы также вопросы устойчивости и обусловленности
аппроксимирующих уравнений.

2. ПРОСТРАНСТВА ОСНОВНЫХ И ОБОБЩЕННЫХ ФУНКЦИЙ

Пусть C ≡ C(I) – банахово пространство всех непрерывных на I функций с обычной max-нормой и m ∈ N.
Обозначим через C {m; 0} ≡ C{m}0 (I) множество всех функций f ∈ C, имеющих в точке t = 0 тейлоровскую про-
изводную f {m}(0) порядка m (см., например, [13]). Назовем его классом точечно-гладких функций (естественно
считаем, что C {0; 0} ≡ C). Векторное пространство C {m; 0} снабдим нормой

‖ f ‖{m} ≡ ‖T f ‖C +
m−1∑︁
i=0

⃒⃒
f {i}(0)

⃒⃒
, (2.1)

где T : C {m; 0} → C – “характеристический” оператор класса C {m; 0}, определяемый следующим образом:

T f ≡ (T m f )(t) ≡

[︃
f (t) −

m−1∑︁
i=0

f {i}(0)ti⧸︀i!

]︃
t−m ≡ F(t) ∈ C, F(0) ≡ lim

t→0
F(t). (2.2)

Справедлива (см., например, [5, с. 12,14])
Лемма 2.1. i. Включение f ∈ C {m; 0} эквивалентно выражению

f (t) = tmF(t) +
m−1∑︁
i=0

αiti, (2.3)

причем T f = F ∈ C с точностью до устранимого разрыва в точке t = 0, а f {i}(0) = αii!, i = 0,m − 1.
ii. Пространство C {m; 0} по норме (2.1) полно и нормально вложено в пространство C.
Далее, введем следующий класс “точечно-гладких” функций:

C {m, q; 0} ≡
{︀

f ∈ C {m; 0} : f {i}(0) = 0, i = 0, q − 1, q ∈ Z+, q < m
}︀
.

Следовательно, с учетом (2.1)–(2.3) (в них имеем i = q,m − 1) по норме (2.1) пространство C {m, q; 0} полно и
нормально вложено в C.

Обозначим через C(q) ≡ C(q)(I) векторное пространство q раз непрерывно дифференцируемых на I функций.
В силу формулы Тейлора с интегральным остатком ясно, что функция f принадлежит классу C(q) тогда и только
тогда, когда она имеет вид

f (t) = (JF) (t) +
q−1∑︁
j=0

b j(t + 1) j, (2.4)

где

JF ≡
(︀

Jq−1F
)︀

(t) ≡ ((q − 1)!)−1

t∫︁
−1

(t − s)q−1F(s)ds, (2.5)

причем Dq f ≡ f (q)(t) = F(t) ∈ C, f ( j)(−1) = b j j!, j = 0, q − 1; при этом J : C → C(q), (JF)( j) = Jq−1− jF, j = 0, q − 1,
DqJF = F.

В векторном пространстве C(q) определим специальную норму

‖ f ‖(q) ≡ ‖D
q f ‖C +

q−1∑︁
j=0

⃒⃒
f ( j)(−1)

⃒⃒
, f ∈ C(q). (2.6)
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Из соотношений (2.4), (2.6) и оценки интеграла (2.5) по max-норме легко следует
Лемма 2.2. Пространство C(q) с нормой (2.6) полно и вложено в пространство C.
Следствие 1. Обычная норма || · ||C(q) в C(q) и (2.6) эквивалентны, т.е. существует постоянная d0 ⩾ 1 такая, что

‖ f ‖(q) ⩽ ‖ f ‖C(q) ⩽ d0‖ f ‖(q), ‖ f ‖C(q) ≡

q∑︁
i=0

⃦⃦
f (i)
⃦⃦

C , f ∈ C(q).

Пусть C(q)
−1 ≡ C(q)

−1(I) ≡
{︀

f ∈ C(q) : f (i)(−1) = 0, i = 0, q − 1
}︀

– банахово пространство гладких функций с нор-
мой ‖ f ‖(q) ≡ ‖Dq f ‖C .

В дальнейших исследованиях нам понадобится еще один класс гладких функций:

C(λ),(q)
−1 ≡ C(λ),(q)

−1 (I) ≡ C(λ) ∩C(q)
−1 , λ ≡ q + p.

В силу (2.4) очевидно, что включение f ∈ C(λ),(q)
−1 равносильно представлению

f (t) =
(︀

Jλ−1 f (λ))︀ (t) +
λ−1∑︁
k=q

f (k)(−1)(t + 1)k⧸︀k!. (2.7)

Следовательно, на основании леммы 2.2 очевидно, что по норме

‖ f ‖(λ) ≡
⃦⃦

Dλ f
⃦⃦

C +

λ−1∑︁
k=q

⃒⃒
f (k)(−1)

⃒⃒
(2.8)

пространство C(λ),(q)
−1 полно и вложено в C. Поэтому обычная норма в C(λ) и (2.8) эквивалентны:

‖ f ‖(λ) ⩽ ‖ f ‖C(λ) ⩽ d1‖ f ‖(λ), f ∈ C(λ),(q)
−1 , d1 ⩾ 1. (2.9)

Лемма 2.3. Для любой функции f ∈ C(λ),(q)
−1 справедливо равенство⃦⃦

f (q)
⃦⃦

(p) = ‖ f ‖(λ). (2.10)

Доказательство. В силу (2.7) имеем

f (q)(t) =
(︀

Jλ−1−q f (λ))︀ (t) +

⎡⎣ λ−1∑︁
k=q

f (k)(−1)(t + 1)k⧸︀k!

⎤⎦(q)

=
(︀

Jp−1 f (λ))︀ (t) +
p−1∑︁
j=0

f (q+ j)(−1)(t + 1) j⧸︀ j!,

откуда в силу (2.4)–(2.6) и (2.8) находим

⃦⃦
f (q)
⃦⃦

(p) =
⃦⃦

Dp f (q)
⃦⃦

C +

p−1∑︁
j=0

⃒⃒
f (q+ j)(−1)

⃒⃒
≡ ‖ f ‖(λ),

что и требовалось.
В дальнейшем при исследовании регулярного интегродифференциального оператора понадобится одно

важное свойство “точечно-гладких” функций. В этой связи введем в рассмотрение следующий класс “гладких”
функций:

C{n},(r)
0 ≡ C{n},(r)

0 (I) ≡
{︀
φ ∈ C {n; 0} : T n

φ ∈ C(r), r = 0, 1, 2, . . .
}︀
,

где T n – “характеристический” оператор класса C {n; 0}, определенный согласно правилу (2.2). Будем исполь-
зовать семейство

Y j ≡ C{m−q−1+ j},( j)
0 , j = 0, p, q < m,

где m, q и p – фиксированные параметры, фигурирующие в ИДУ (1.1) при l = 1.
Лемма 2.4. Для любой функции φ ∈ Y j, j = 0, p имеет место равенство(︀

φ
( j))︀{k}(0) = φ{k+ j}(0), j = 0, p, k = 0,m − q − 1. (2.11)
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Доказательство. При j = 0 свойство очевидно. В силу структуры (2.3) “точечно-гладкой” функции имеем

φ(t) = tm−q−1+ j · Φ j(t) +
m−q−2+ j∑︁

k=0

aktk, (2.12)

где
Φ j ≡ T m−q−1+ j

φ ∈ C( j), φ
{k}(0) = akk!, k = 0,m − q − 2 + j, j = 1, p.

Дифференцируя (2.12) последовательно j раз с применением обычной формулы Лейбница, легко получим
следующее представление:

φ
( j)(t) = tm−q−1 (︀T m−q−1

φ
( j))︀ (t) +

m−q−2∑︁
k=0

τk, jak+ jtk = tm−q−1 [︀
τm−q−1, jΦ j(t) + g j(t)

]︀
+

m−q−2∑︁
k=0

τk, jak+ jtk, (2.13)

в котором g j определенным образом выражается черезΦ j, причем g j(t) = o(1) при t → 0, а τk, j ≡
j∏︀

l=1
(k + l), j = 1, p,

τk,0 ≡ 1.
Согласно (2.13), (2.3), (2.12) и определению тейлоровской производной (см., например, [5, с. 12]) находим

производные соответствующих порядков:(︀
φ

( j))︀{k}(0) = τk, jak+ jk! = ak+ j (k + j)!, k = 0,m − q − 2; (2.14)(︀
φ

( j))︀{m−q−1}
(0) ≡ (m − q − 1)! lim

t→0

(︀
T m−q−1

φ
( j))︀ (t) = (m − q − 1)!τm−q−1, j lim

t→0
Φ j (t) =

= (m − q − 1 + j)! lim
t→0
Φ j (t) ≡ φ{m−q−1+ j}(0), j = 1, p.

(2.15)

С другой стороны, в силу (2.12) и (2.3) имеем

φ
{k+ j}(0) = ak+ j (k + j)!, k = 0,m − q − 2, j = 1, p. (2.16)

Из (2.14)–(2.16) следует (2.11), что и требовалось.
Построим теперь основное в наших исследованиях пространство:

Y ≡ C(p)
{m, q; 0} ≡

{︀
y ∈ C {m, q; 0} : Ty ≡ T my ∈ C(p)}︀ .

Зададим в нем норму

‖y‖Y ≡ ‖Ty‖(p) +

m−1∑︁
i=q

⃒⃒
y{i}(0)

⃒⃒
, y ∈ Y. (2.17)

Лемма 2.5 (см. [14]). i. Включение φ ∈ Y равносильно представлению

φ(t) =
(︀
UJp−1Φ

)︀
(t) + tm

p−1∑︁
j=0

α j(t + 1) j +

m−1∑︁
i=q

βiti, (2.18)

причем DpTφ = Φ ∈ C,
(︀
Tφ
)︀( j)(−1) = α j j!, j = 0, p − 1, φ{i} (0) = βii!, i = q,m − 1; U f ≡ tm f (t), оператор Jp−1

определен согласно (2.5).
ii. Пространство Y относительно нормы (2.17) полно и вложено в пространство C {m, q; 0}.
Критерий компактности множеств в пространстве Y устанавливает
Лемма 2.6 (см. [14]). Множество M ⊂ Y относительно компактно в Y тогда и только тогда, когда: (i) M огра-

ничено; (ii) семейство DpT (M)непрерывных на I функций равностепенно непрерывно.
Далее над пространством Y основных функций построим семейство X ≡ D(λ),(q)

−1 {m; 0} обобщенных функций x(t)
вида

x(t) ≡ z(t) +
m−q−1∑︁

i=0

γiδ
{i}(t), (2.19)

где t ∈ I, z ∈ C(λ),(q)
−1 , λ ≡ q + p, γi ∈ R – произвольные постоянные, а δ и δ{i} – соответственно дельта-функция

Дирака и ее “тейлоровские” производные, действующие на пространстве Y основных функций согласно следующему
правилу: (︀

δ
{i}, y
)︀
≡

1∫︁
−1

δ
{i} (t) y(t)dt ≡ (−1)iy{i}(0), i = 0,m − q − 1. (2.20)
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Очевидно, что векторное пространство X является банаховым относительно нормы

‖x‖X ≡ ‖z‖(λ) +

m−q−1∑︁
i=0

⃒⃒
γi
⃒⃒
. (2.21)

В заключение этого раздела приведем нужное в дальнейшем свойство о “смешанных” производных дельта-
функции.

Лемма 2.7. На пространстве Y j основных функций справедливо равенство(︀
δ
{i} (t)

)︀( j)
= δ{i+ j} (t) , j = 0, p, i = 0,m − q − 1. (2.22)

Доказательство. Заметим, что (см., например, [15, с. 419]) для любой функции φ ∈ Y j имеет место соотно-
шение (︁(︀

δ
{i})︀( j)
,φ
)︁
≡ (−1) j (︀

δ
{i},φ( j))︀ ≡ (−1) j+i(︀

φ
( j))︀{i}(0), j = 0, p, i = 0,m − q − 1. (2.23)

С другой стороны, в силу (2.20) имеем(︀
δ
{i+ j},φ

)︀
≡ (−1)i+ j

φ
{i+ j}(0), j = 0, p, i = 0,m − q − 1. (2.24)

Следовательно, из (2.23), (2.24) и (2.11) следует требуемое равенство (2.22).

3. ФРЕДГОЛЬМОВОСТЬ ИССЛЕДУЕМЫХ ИДУ

Пусть задано ИДУ (1.1). Ради сокращения громоздких выкладок и упрощения формулировок, не ограни-
чивая при этом общности идей, методов и результатов, всюду в дальнейшем будем считать l = 1, t1 = 0, т.е.
рассмотрим ИДУ вида

(Ax) (t) ≡ (V x) (t) + (Kx) (t) = y(t), t ∈ I, (3.1)

V ≡ UDq,Dq f ≡ f (q)(t),Ug ≡ tmg(t),Kx ≡
p∑︁

j=0

1∫︁
−1

K j(t, s)x( j)(s)ds,

где q, p ∈ Z+, m ∈ N, q < m; y ∈ Y ≡ C(p) {m, q; 0}, K j – известные ядра, обладающие следующими свойствами:

K j(t, ·) ∈ Y, K j(·, s) ∈ Y j, φ jk(s) ≡
(︀
K j
)︀{k}

t (0, s) ∈ C,

ψ ji(t) ≡
(︀
K j
)︀{i+ j}

s (t, 0) ∈ Y, j = 0, p, k = q,m − 1, i = 0,m − q − 1;
(3.2)

а x ∈ X – искомый элемент.
Теорема 1. В условиях (3.2) оператор A : X → Y фредгольмов.
Доказательство. Предварительно изучим уравнение

V x ≡ tmx(q)(t) = y(t), y ∈ Y. (3.3)

Покажем, что оператор V : X → Y ограничен. В силу (2.19) и (3.3) имеем

(Dqx) (t) = (Dqz) (t) +
m−q−1∑︁

i=0

γiδ
{i+q}(t) = (Dqz) (t) +

m−1∑︁
k=q

γk−qδ
{k}(t). (3.4)

Тогда, учитывая свойство(︀
tm · δ{k}(t),φ(t)

)︀
≡
(︀
δ
{k}, tm

φ(t)
)︀
≡ (−1)k(︀tm · φ

)︀{k}(0) = 0, k = 0,m − 1, φ ∈ C, (3.5)

получаем V x ≡ UDqx = UDqz, откуда на основании соотношений (2.17), (2.18), (2.21) и (2.10) следует, что

‖V x‖Y = ‖UDqz‖Y ≡ ‖TUDqz‖(p) = ‖D
qz‖(p) = ‖z‖(λ) ⩽ ‖x‖X ,

т.е. ‖V‖ ≡ ‖V‖X→Y ⩽ 1.
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Теперь в пространстве X ≡ D(λ),(q)
−1 {m; 0} найдем решение уравнения (3.3) и индекс оператора V. Из равенств

(3.4) и (3.5) вытекает, что в пространстве X общее решение однородного уравнения V x = 0 имеет вид

x̃(t) ≡
m−q−1∑︁

i=0

γiδ
{i}(t), γi ∈ R;

следовательно, α (V) ≡ dim ker V = m − q. С другой стороны, неоднородное уравнение (3.3) разрешимо в X тогда
и только тогда, когда выполнены дополнительные условия

(︀
δ{i}(t), y

)︀
= 0, i = q,m − 1. При их выполнении общее

решение уравнения (3.3) представляется формулой

x*(t) =
(︀

Jq−1Ty
)︀

(t) +
m−q−1∑︁

i=0

γiδ
{i}(t), γi ∈ R.

Это означает, что β(V) ≡ dim co ker V = m − q. Таким образом, indV ≡ α(V) − β(V) = 0, т.е. оператор V : X → Y
фредгольмов.

Далее обсудим свойства интегродифференциального оператора K. В силу соотношений (3.1), (3.2), (2.19),
(2.22) и (2.20) имеем

(Kx)(t) = (Kz)(t) +
p∑︁

j=0

m−q−1∑︁
i=0

(−1)i+ j
γiψ ji(t). (3.6)

Отсюда с учетом условий (3.2) видим, что Kx ∈ Y, x ∈ X.
Прежде чем перейти к оценке образа (3.6) оператора K примем следующие обозначения:

d2 ≡ max
j=0,p

⃦⃦
Dp

t TtK j
⃦⃦

C , d3 ≡ max
j=0,p

p−1∑︁
l=0

⃦⃦⃦(︀
TtK j

)︀(l)
t (−1, s)

⃦⃦⃦
C
, d4 ≡ max

j=0,p

m−1∑︁
k=q

⃦⃦
φ jk
⃦⃦

C , d5 ≡ max
i=0,m−q−1

p∑︁
j=0

⃦⃦
ψ ji
⃦⃦

Y .

Тогда, используя определение (2.17), оценку (2.9) и определение (2.21), последовательно находим, что

‖Kx‖Y ⩽ ‖Kz‖Y +
p∑︁

j=0

m−q−1∑︁
i=0

⃒⃒
γi
⃒⃒⃦⃦
ψ ji
⃦⃦

Y ≡

⃦⃦⃦⃦
⃦⃦∑︁

j

1∫︁
−1

(︀
Dp

t TtK j
)︀

(t, s)z( j)(s)ds

⃦⃦⃦⃦
⃦⃦

C

+

p−1∑︁
l=0

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

(︀
TtK j

)︀(l)
t (−1, s)z( j)(s)ds

⃒⃒⃒⃒
⃒⃒+

+

m−1∑︁
k=q

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

φ jk(s)z( j)(s)ds

⃒⃒⃒⃒
⃒⃒+∑︁

j

∑︁
i

⃒⃒
γi
⃒⃒⃦⃦
ψ ji
⃦⃦

Y ⩽ 2d2d1‖z‖(λ) + 2d3d1‖z‖(λ) + 2d4d1‖z‖(λ) + d5

∑︁
i

⃒⃒
γi
⃒⃒
⩽ d6‖x‖X ,

d6 ≡ 2d1 (d2 + d3 + d4) + d5.

Следовательно, оператор K действует из X в Y ограниченно, причем ‖K‖ ≡ ‖K‖X→Y ⩽ d6.

Далее, пусть L ≡ {x} ⊂ X – произвольное ограниченное множество. Рассуждая аналогично случаю интеграль-
ных уравнений третьего рода (см. [5, с. 52, 53]), с использованием леммы 2.6 несложно показать, что множество
M ≡ K(L) относительно компактно в Y. Другими словами, оператор K : X → Y вполне непрерывен. Тогда утвер-
ждение теоремы 1 непосредственно следует из того, что возмущение нётерова оператора вполне непрерывным
оператором сохраняет нётеровость и не изменяет его индекса.

4. НЕПРЕРЫВНАЯ ОБРАТИМОСТЬ ИНТЕГРОДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА

Рассмотрим ИДУ (3.1), в котором ядра K j подчинены условиям (3.2), y ∈ Y, а x ∈ X – искомая обобщенная
функция вида (2.19). С учетом соотношений (2.19), (3.4)–(3.6) преобразуем уравнение (3.1) к виду

(Az) (t) = y(t) −
m−q−1∑︁

i=0

ci fi(t), (4.1)

где fi(t) ≡
p∑︀

j=0
(−1) j

ψ ji(t), ci ≡ (−1)i
γi, i = 0,m − q − 1. Наша задача заключается в нахождении функции z ∈ C(λ),(q)

−1 и

произвольных постоянных ci.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



56 ГАББАСОВ

Лемма 4.1. Пусть выполнены следующие требования:

K j(t, ·) ∈ Y, φ jk(s) ≡
(︀
K j
)︀{k}

t (0, s) ∈ C, y ∈ Y, j = 0, p, k = q,m − 1.

Тогда ИДУ (3.1)
(︁

A : C(λ),(q)
−1 → Y

)︁
эквивалентно в пространстве C(λ),(q)

−1 ИДУ

Bx ≡ (Dqx) (t) +
p∑︁

j=0

1∫︁
−1

(︀
TtK j

)︀
(t, s) x( j)(s)ds = (Ty)(t)

и соотношениям
p∑︁

j=0

1∫︁
−1

φ jk(s)x( j)(s)ds = y{k}(0), k = q,m − 1.

Доказательство. В силу выражения (2.3) очевидно, что для любой функции g ∈ Y имеет место эквивалент-
ность:

g = 0⇔ Tg = 0, g{k}(0) = 0, k = q,m − 1. (4.2)

Тогда, взяв в (4.2) g ≡ Ax − y ∈ Y, x ∈ C(λ),(q)
−1 , y ∈ Y, убеждаемся в справедливости утверждения леммы.

Из этой леммы следует, что уравнение (4.1) равносильно ИДУ

(Bz)(t) = (Ty)(t) −
m−q−1∑︁

i=0

ci(T fi)(t) (4.3)

в пространстве C(λ),(q)
−1 и соотношениям

y{k}(0) −
p∑︁

j=0

1∫︁
−1

φ jk(s)z( j)(s)ds −
m−q−1∑︁

i=0

ci f {k}i (0) = 0, k = q,m − 1. (4.4)

Предварительно подробно изучим ИДУ вида (4.3) с оператором B:

(Bz)(t) ≡ z(q)(t) +
p∑︁

j=0

1∫︁
−1

µ j(t, s)z( j)(s)ds = f (t), (4.5)

в котором µ j ≡ TtK j, j = 0, p, f ∈ C(p). Будем использовать подстановку z(q) ≡ u(t) ∈ C(p). В силу (2.4), (2.5) и
определения класса C(q)

−1 имеем
z = Jq−1u, z( j) = Jq−1− ju, j = 0, q − 1. (4.6)

Займемся теперь исследованием оператора

Mz ≡
p∑︁

j=0

1∫︁
−1

µ j(t, s)z( j)(s)ds.

Рассмотрим сначала случай p < q. Изменяя порядок интегрирования в двойном интеграле, находим, что

(Mz) (t) =
∑︁

j

((q − 1 − j)!)−1

1∫︁
−1

µ j(t, s)

⎛⎝ s∫︁
−1

(︀
s − ρ

)︀q−1− ju(ρ)dρ

⎞⎠ ds =

=
∑︁

j

((q − 1 − j)!)−1

1∫︁
−1

u(ρ)

⎛⎝ 1∫︁
ρ

µ j(t, s)(s − ρ)q−1− jds

⎞⎠dρ.

Следовательно, в этом случае ИДУ (4.5) эквивалентно следующему уравнению Фредгольма второго рода в про-
странстве C(p) :

Gu ≡ u(t) +

1∫︁
−1

Gp(t, ρ)u(ρ)dρ = f (t), (4.7)
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где

Gp(t, ρ) ≡
p∑︁

j=0

((q − 1 − j)!)−1

1∫︁
ρ

µ j(t, s)(s − ρ)q−1− jds. (4.8)

При p ⩾ q с учетом (4.8) имеем

(Mz)(t) =

1∫︁
−1

Gq−1(t, ρ)u
(︀
ρ
)︀
dρ +

p∑︁
j=q

1∫︁
−1

µ j(t, s)u( j−q)(s)ds =

=

1∫︁
−1

Gq−1 · u
(︀
ρ
)︀
dρ +

1∫︁
−1

µq(t, ρ)u(ρ)dρ+
p−q∑︁
k=1

1∫︁
−1

µq+k(t, ρ)u(k)(ρ)dρ.

(4.9)

Далее введем в рассмотрение ядра:

gk(t, ρ) ≡

{︃
Gq−1(t, ρ) + µq(t, ρ) при k = 0;
µq+k(t, ρ), если k = 1, p − q.

Тогда с учетом (4.9) ИДУ (4.5) принимает вид

Lu ≡ u(t) +
p−q∑︁
k=0

1∫︁
−1

gk(t, ρ)u(k)(ρ)dρ = f (t), (4.10)

причем gk (t, ·) ∈ C(p).
Итак, при p < q подстановка z(q) ≡ u равносильным образом приводит ИДУ (4.3) к уравнению второго рода

(Gu) (t) = (Ty)(t) −
m−q−1∑︁

i=0

ci (T fi)(t). (4.11)

Пусть ν = −1 не является собственным значением уравнения (4.11) (или ядра Gp) и R – разрешающий опе-
ратор этого уравнения. Тогда функция

u*(t) ≡ (RTy) (t) −
∑︁

i

ci(RT fi) (t)

является единственным гладким решением уравнения (4.11). Следовательно,

z*(t) ≡
(︀

Jq−1u*
)︀

(t) =
(︀

Jq−1RTy
)︀

(t) −
∑︁

i

ci
(︀

Jq−1RT fi
)︀

(t)

есть единственное гладкое решение ИДУ (4.3), которое будет решением и исходного уравнения (4.1), если в
силу (4.4) постоянные {ci} удовлетворяют квадратной системе линейных алгебраических уравнений (СЛАУ)

m−q−1∑︁
i=0

ci(Q fi){k}(0) = (Qy){k}(0), k = q,m − 1, (4.12)

где оператор Q ≡ E − KJq−1RT отображает Y в Y, а E – единичный оператор в Y.
В случае p ⩾ q, с учетом (4.9) и (4.10), ИДУ (4.3) эквивалентно уравнению Фредгольма II рода

(Lu) (t) = (Ty)(t) −
m−q−1∑︁

i=0

ci (T fi)(t) (4.13)

с разрешающим оператором R̃ : C(p) → C(p).
Таким образом, доказана
Теорема 2. Пусть выполнены следующие условия:
а) ядра K j, j = 0, p, удовлетворяют требованиям (3.2), а функция y ∈ Y;
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б) число ν = −1 не является собственным значением уравнения (4.11) при p < q (соответственно, уравнения
(4.13) в случае p ⩾ q);

в) определитель СЛАУ (4.12) отличен от нуля (при p ⩾ q роль оператора R играет R̃).
Тогда для любой правой части y ∈ Y ИДУ (3.1) имеет единственное обобщенное решение x* ∈ X, представ-

ляемое формулой

x*(t) =
(︀

Jq−1S Ty
)︀

(t) −
m−q−1∑︁

i=0

c*i
(︀

Jq−1S T fi
)︀

(t) +
m−q−1∑︁

i=0

(−1)ic*i δ
{i}(t),

где S = R при p < q, S = R̃ в случае p ⩾ q, а
{︀

c*i
}︀

– единственное решение СЛАУ вида (4.12).
Следствие 2. В условиях теоремы 2 интегродифференциальный оператор A : X → Y, определенный равен-

ством (3.1), непрерывно обратим.

5. ОБОБЩЕННЫЙ МЕТОД КОЛЛОКАЦИИ (ОМК)

Пусть задано ИДУ (3.1), в котором ядра K j, j = 0, p, обладают свойствами (3.2), y ∈ Y, а x ∈ X – искомый
элемент. Его приближенное решение будем искать в виде

xn ≡ xn
(︀
t;
{︀

c j
}︀)︀
≡ zn(t) +

m−q−1∑︁
i=0

ci+n+λδ
{i}(t), (5.1)

zn(t) ≡
n+λ−1∑︁

i=q

citi, λ ≡ q + p, n = 2, 3, . . . . (5.2)

Неизвестные параметры c j = c(n)
j , j = q, n + m + p − 1, найдем, согласно ОМК, из квадратной СЛАУ (n+m+ p−q)-

го порядка: (︀
DpTρn

)︀
(νk) = 0, k = 1, n,

(︀
Tρn

)︀( j)(−1) = 0, j = 0, p − 1, ρ
{i}
n (0) = 0, i = q,m − 1, (5.3)

где ρn(t) ≡ ρA
n (t) ≡ (Axn − y)(t) – невязка приближенного решения, а {νk} ⊂ I – система узлов Чебышёва I (или II)

рода.
Для вычислительного алгоритма (3.1), (5.1)–(5.3) справедлива
Теорема 3. Пусть однородное ИДУ Ax = 0 имеет в X лишь нулевое решение (например, в условиях теоремы 2), а

функции h j ≡ Dp
t TtK j (по t), g ji ≡ DpTψ ji, j = 0, p, i = 0,m − q − 1, и DpTy принадлежат классу Дини–Липшица.

Тогда при всех n ∈ N, n ⩾ n0, СЛАУ (5.3) обладает единственным решением
{︀

c*j
}︀

и последовательность приближен-
ных решений x*n ≡ xn

(︀
t;
{︀

c*j
}︀)︀

сходится к точному решению x* = A−1y уравнения (3.1) по норме пространства X со
скоростью

∆x*n =
⃦⃦

x*n − x*
⃦⃦
= O

⎧⎨⎩
⎡⎣ p∑︁

j=0

(︃
Et

n−1(h j) +
m−q−1∑︁

i=0

En−1(g ji)

)︃
+ En−1 (DpTy)

⎤⎦ ln n

⎫⎬⎭ , (5.4)

где El( f ) – наилучшее равномерное приближение функции f ∈ C алгебраическими полиномами степени не выше l, а
через Et

l(·) обозначен функционал El(·), примененный по переменной t.
Доказательство. Очевидно, что ИДУ (3.1) представляется в виде линейного операторного уравнения

Ax ≡ V x + Kx = y, x ∈ X ≡ D(λ),(q)
−1 {m; 0} , y ∈ Y ≡ C(p)

{m, q; 0} , (5.5)

в котором оператор A : X → Y непрерывно обратим. Систему (5.1)–(5.3) запишем также в операторной форме.
С этой целью построим соответствующие конечномерные подпространства. Именно, через Xn ⊂ X обозначим

(n+m+p−q) – мерное подпространство элементов вида (5.1), а за Yn ⊂ Y примем классΠn+m+p−1
q ≡ span

{︀
ti
}︀n+m+p−1

q .
Далее введем линейный оператор Γn ≡ Γn+m+p−q : Y → Yn согласно правилу

Γny ≡ Γn+m+p−q(y; t) ≡ (UJp−1LnDpTy)(t) +
p−1∑︁
j=0

(Ty)( j)(−1)
tm(t + 1) j

j!
+

m−1∑︁
i=q

y{i}(0)
ti

i!
, (5.6)

где Ln : C → Πn−1
0 ≡ Πn−1 ≡ span

{︀
ti
}︀n−1

0 представляет собой интерполяционный оператор Лагранжа по системе
узлов {νk}

n
1. Тогда система (5.1)–(5.3) эквивалентна следующему линейному уравнению:

Anxn ≡ V xn + ΓnKxn = Γny, xn ∈ Xn,Γny ∈ Yn. (5.7)
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В этом нетрудно убедиться, проведя соответствующие рассуждения, приведенные в доказательстве теоре-
мы 3 [8].

Таким образом, для доказательства теоремы 3 достаточно установить существование, единственность и схо-
димость решений уравнений (5.7). В этих целях нам понадобится аппроксимативное свойство оператора Γn.

Лемма 5.1. Для любой функции y ∈ Y справедлива оценка

‖y − Γny‖Y ⩽ d7En−1 (DpTy) ln n, n = 2, 3, . . . (5.8)

(здесь и далее di
(︀
i = 7, 9

)︀
– некоторые константы, значения которых не зависят от числа n).

Справедливость данной леммы легко следует из представления (2.18), определений (5.6), (2.17) и оценки
(см., например, [12, с. 107])

‖ f − Ln f ‖C ⩽ d7En−1 ( f ) ln n, f ∈ C. (5.9)

Обсудим теперь вопрос о “близости” операторов A и An на подпространстве Xn. Используя уравнения (3.1),
(5.7) и оценку (5.8), для произвольного элемента xn ∈ Xn находим, что

‖Axn − Anxn‖Y = ‖Kxn − ΓnKxn‖Y ⩽ d7En−1 (DpT Kxn) ln n. (5.10)

В силу (3.6) и (5.1) имеем

(Kxn)(t) = (Kzn)(t) +
p∑︁

j=0

m−q−1∑︁
i=0

(−1)i+ jci+n+λψ ji(t).

Следовательно,

DpT Kxn =

p∑︁
j=0

1∫︁
−1

h j(t, s)z( j)
n (s)ds+

∑︁
j

∑︁
i

(−1)i+ jci+n+λg ji(t). (5.11)

В целях полиномиального приближения функции DpT Kxn ∈ C построим следующий элемент:

(Pn−1xn) (t) ≡
∑︁

j

1∫︁
−1

h j
n−1(t, s)z( j)

n (s)ds+
∑︁

j

∑︁
i

(−1)i+ jci+n+λg
ji
n−1(t), (5.12)

где h j
n−1 и g ji

n−1 – полиномы степени n − 1 наилучшего равномерного приближения для h j (по t) и g ji соответ-
ственно. Согласно структуре (5.12) ясно, что Pn−1xn ∈ Πn−1.

На основании выражений (5.11) и (5.12), оценки (2.9) и определения (2.21) последовательно выводим про-
межуточную оценку:

En−1 (DpT Kxn) ⩽ ‖DpT Kxn − Pn−1xn‖C ≡

≡ max
t∈I

⃒⃒⃒⃒
⃒⃒∑︁

j

1∫︁
−1

(︁
h j − h j

n−1

)︁
(t, s)z( j)

n (s)ds +
∑︁

j

∑︁
i

(−1)i+ jci+n+λ

(︁
g ji − g ji

n−1

)︁
(t)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽ 2‖zn‖C(λ)

∑︁
j

Et
n−1(h j) +

∑︁
j

∑︁
i

|ci+n+λ|En−1
(︀
g ji
)︀
⩽ 2d1‖zn‖(λ)

∑︁
j

Et
n−1(h j) + ‖xn‖X

∑︁
j

∑︁
i

En−1
(︀
g ji
)︀
⩽

⩽ 2d1‖xn‖X

∑︁
j

Et
n−1(h j) + 2d1‖xn‖X

∑︁
j

∑︁
i

En−1
(︀
g ji
)︀
= d8

⎧⎨⎩∑︁
j

[︃
Et

n−1(h j) +
∑︁

i

En−1(g ji)

]︃⎫⎬⎭ ‖xn‖ , d8 ≡ 2d1.

(5.13)

Из неравенств (5.10) и (5.13) следует искомая оценка “близости” операторов A и An:

εn ≡ ‖A − An‖Xn→Y ⩽ d9

⎧⎨⎩∑︁
j

[︃
Et

n−1(h j) +
∑︁

i

En−1(g ji)

]︃⎫⎬⎭ ln n. (5.14)

Тогда на основании оценок (5.14) и (5.8) из теоремы 7 (см. [12; гл. 1, §4]) получаем утверждение теоремы 3 с
оценкой погрешности (5.4).

Следствие 3. Если функции h j (по t), g ji и DpTy принадлежат классу Hr
α(S ), то в условиях теоремы 3 верна

оценка
∆x*n = O

(︀
n−r−α ln n

)︀
, r + 1 ∈ N,α ∈ (0, 1] ,

где
Hr
α(S ) ≡

{︀
f ∈ C(r)(I) : ω

(︀
f (r);∆

)︀
⩽ S∆α, S ≡ const > 0

}︀
,

а ω ( f ;∆) – модуль непрерывности функции f ∈ C с шагом ∆, 0 < ∆ ⩽ 2.
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6. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

Замечание 1. Согласно определению нормы в пространстве X ≡ D(λ),(q)
−1 {m; 0} нетрудно заметить, что из схо-

димости последовательности (x*n) приближенных решений к точному решению x* = A−1y в метрике X следует
обычная сходимость в пространстве обобщенных функций, т.е. слабая сходимость.

Замечание 2. При численном решении операторных уравнений Ax = y возникает естественный вопрос о
скорости сходимости невязки ρ*n(t) ≡ (Ax*n − y)(t) исследуемого метода. Один из результатов в этом направлении
легко вытекает из основной теоремы 3, а именно: если исходные данные h j, g ji и DpTy уравнения (3.1) принад-
лежат классу Hr

α (0 < α ⩽ 1, r = 0, 1, 2, . . .), то в условиях теоремы 3 справедлива оценка
⃦⃦
ρ*n

⃦⃦
Y = O(n−r−α ln n).

Замечание 3. При q = 0 исследуемое ИДУ (3.1) является ИДУ третьего рода с оператором A : D(p) {m; 0} →
→ C{m},(p)

0 , а прямой проекционный метод (5.1)–(5.3) – специальным для ИДУ третьего рода вариантом ОМК.
Следовательно, теорема 3 содержит в себе известные результаты [16] по обоснованию специального варианта
ОМК при приближенном решении уравнений третьего рода в классе обобщенных функций.

Замечание 4. Так как в условиях теоремы 3 аппроксимирующие операторы An обладают свойством вида⃦⃦
A−1

n

⃦⃦
= O(1), A−1

n : Yn → Xn, n ⩾ n1, то, очевидно (см. [12; гл. 1, §5]), что предложенный в настоящей
работе прямой метод для ИДУ (3.1) устойчив относительно малых возмущений исходных данных. Это позво-
ляет найти численное решение исследуемых уравнений на ЭВМ с любой наперед заданной степенью точности.
Более того, если ИДУ (3.1) хорошо обусловлено, то хорошо обусловленной является также СЛАУ (5.3).
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1. ВВЕДЕНИЕ

При землетрясениях, как обычно, наблюдаются 2 толчка, следующие друг за другом. Первый из них со-
ответствует типу продольных волн, появляющихся в виде колебательных движений с возрастающей ампли-
тудой в плоскости, параллельной поверхности земли. За ним следует второй, одинарно-мгновенный толчок,
по-видимому, соответствующий поверхностным волнам Рэлея, в котором движение направлено вверх, т.е. пер-
пендикулярно поверхности земли.

Нами обнаружено, что при землетрясениях в городе Ленкорань Азербайджанской Республики первого типа
волн в виде колебательных движений почти не наблюдается, даже при землетрясениях с высокими магнитуда-
ми, одно из которых – пятибалльное – произошло совсем недавно в этой местности.

Пытаясь найти причину, мы обратились к факту особенности структуры земной коры этой местности. А от-
личается она тем, что здесь очень много колодцев, и уровень подземных грунтовых вод довольно близок к по-
верхности. Этот уровень колеблется от 3 до 5 метров от поверхности земли.

Учитывая эти особенности и то обстоятельство, что Ленкорань находится между Каспийским морем и Та-
лышскими горами, и, обычно, эпицентры толчков находятся на морском дне, была поставлена задача о неста-
ционарной динамике упругого полубесконечного слоя, нижняя часть которого граничит со сжимаемой иде-
альной жидкостью (фиг. 1). Движение жидкости считается потенциальным, т.е. безвихревым. Ударному воз-
действию подвергается некая или вся часть торца слоя.

Для решения этой задачи были использованы некоторые результаты работы [1], посвященной исследова-
нию динамики прямоугольных призм, с позиции точной трехмерной теории эластодинамики. В частност и, при
выполнении некоторых упрощенных краевых условий, исследуемая трехмерная задача становится двумерной,
т.е. получается решение для слоя. Здесь будем использовать именно эти готовые решения для полубесконечного
упругого слоя, подверженного действию продольного удара по торцевой области этого же слоя. Но в настоя-
щей задаче, существование граничащих между собой разных типов сред, конечно, намного усугубляет процесс
решения; получается задача с пятью неизвестными.

Предложен новый метод определения оригиналов от функций-преобразований, которые в настоящей ра-
боте имеют очень сложный вид; они представлены через детерминанты пятого ранга. В некотором смысле этот
метод является обобщением аналогичного метода, который, с этой же целью, впервые был предложен в [1], а
для осесимметричных случаев – в [2].

Получены точные решения, которые справедливы в начальном коротком времени процесса, но дают до-
вольно широкую возможность видения целого процесса и для последующих времен. Результаты с высокой точ-
ностью подтверждают верность определения причин отсутствия первого типа толчков на поверхности земной
коры при землетрясениях.
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Фиг. 1.

2. ПОСТАНОВКА И МЕТОД РЕШЕНИЯ

Учитывая расположенность города Ленкорань Азербайджанской Республики, рассматриваемая задача мо-
делируется следующим образом.

Упругий полубесконечный слой, толщиной 2a, находится на поверхности идеальной сжимаемой жидкой
области бесконечной глубины. (см. фиг. 1). На границе жидкой области z = 0 принято существование непрони-
цаемой стенки. Предполагается, что удар наносится по торцевой области слоя, и движение жидкости считается
потенциальным. При этих условиях, поставленная задача может быть сформулирована следующей начально-
краевой задачей для данной конструкции, состоящей из двух разных сред.

ρ
∂U

∂t2 =
(︀
λ + µ

)︀
grad divU + µ∆U, U = U (u,w) , (1)

u = w = 0,
∂u
∂t
=
∂w
∂t
= 0,

при t = 0, (2)

σzz = σ0 f (t) , u = 0 при z = 0,
σxx = σxz = 0 при x = 0.

(3)

В дальнейшем будем считать, что f (t) = H (t) ,где H (t) — функция Хевисайда.
На границе жидкой области и слоя имеют место следующие условия:

σxx = −ρж
∂φ

∂t
при x = −2a,

σxz = 0 при x = −2a,

u̇ =
∂φ

∂x
,

(4)

∂φ

∂z
= 0 при z = 0 (5)

и уравнение, описывающее движение жидкой области, следующее:

∂2φ

∂x2 +
∂2φ

∂z2 =
1

a2
ж

∂2φ

∂t2 .

Здесь U = U (u,w) – вектор перемещения упругого слоя, λ и µ коэффициенты Ламе, aж – скорость распро-
странения звуковых волн в жидкой среде, движение которой описывается потенциальной функцией – φ, ρ,
ρж – соответственно, плотности слоя и жидкости, t – время.

Для решения этой системы будет применен аналогичный метод, который разработан и использован в [1].
Благодаря этому методу, система уравнений Ламе, сводится к простейшей системе неоднородных уравнений
Гельмгольца, в правой части которых присутствуют краевые функции ударных нагрузок. Этот метод преду-
сматривает применение двукратных интегральных преобразований, наряду с методом замены отыскиваемых
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функций, что приводит к вышеупомянутому прекрасному результату. Но этот факт еще не избавляет нас от той
сложности, которая связана с переходом от преобразований к оригиналам. И для преодоления этих трудно-
стей, там же предложен наиболее универсальный способ для нахождения аналогичных оригиналов двукратных
интегральных преобразований.

Итак, используя готовые уравнения этой работы для двумерного движения, после несложных выкладок в
отношении уравнения движения жидкой части этой конструкции можно получить следующую алгебраическую
систему линейных уравнений для определения пяти неизвестных постоянных, фигурирующих в составе новых
потенциальных функций: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C01
C02
A01
A02
g0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ {D} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0
Ωq2

0
Ωq2

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , где Ω = −
f (p) σ0(︀
λ + 2µ

)︀
ν2

1q
. (6)

Здесь {D} = {aik} e2aν1 e2aν2 , {D}— матрица 5-го ранга

a11 = 2qν1,

a21 =

(︂
1 +

2µ
λ

)︂
ν

2
1 − q2,

a31 = 2qν1e−2aν1 ,

a41 =

[︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

]︂
e−2aν1 ,

a51 = pν1e−2aν1 ,

a12 = −2qv1e−2aν1 ,

a22 =

[︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

]︂
e−2aν1 ,

a32 = −2qν1,

a42 =

(︂(︂
1 +

2µ
λ

)︂
ν

2
1 − q2

)︂
,

a52 = pν1,

a13 = −
(︀
q2 + ν2

2

)︀
ν2,

a23 =
2µ
λ

qν2
2,

a33 =
(︀
q2 + ν2

2

)︀
ν2 × e−2aν2 ,

a43 =
2µ
λ

qν2
2e−2aν2 ,

a53 = pqν2e−2aν2 ,

a14 =
(︀
q2 + ν2

2

)︀
ν2e−2aν2 ,

a24 = −
2µ
λ

qν2
2e−2aν2 ,

a34 =
(︀
q2 + ν2

2

)︀
ν2,

a44 = −
2µ
λ

qν2
2,

a54 = pqν2,

a15 = 0,
a25 = 0,
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a35 = 0,

a45 = −ρж
p
λ

e−2aνж ,

a55 = νжe−2aνж .

Здесь приняты следующие обозначения:

νk =

√︃(︂
p2

c2
k
+ q2

)︂
, k = 1, 2, и νж =

√︃(︂
p2

c2
ж
+ q2

)︂
, c1 =

√︃
λ + 2µ
ρ
, c2 =

√︂
µ

ρ

являются скоростями распространения продольных и поперечных волн в материале слоя.
Видоизменим {D} следующим образом:

{D} = e−2aνж {D0}.

Тогда в новой матрице {D0} будут фигурировать только минусовые степени e−2aνk (k = 1, 2).
Преобразование продольной скорости на свободной поверхности слоя при x = 0, согласно [1], и при вы-

бранной координатной системе (фиг.1) выражается следующей формулой:

̃̇︀W = − σ0(︀
λ + 2µ

)︀
ν2

1
+C01q +C02q − ν2

2A01 − ν
2
2A02. (7)

Таким образом, в переменных параметрах преобразований решение определено полностью. Но оно выра-
жено через детерминанты 5-го ранга, и, поэтому, нахождение оригиналов обычными способами почти невоз-
можно. В таких случаях уместно применить метод, основанный в [1]. Принцип, на котором базируется данный
метод, становится более актуальным, когда мы имеем дело с очень сложными функциями-преобразованиями.

Прежде всего, согласно вышеупомянутому методу, чтобы определить поведение преобразований в беско-
нечности, когда p→ ∞ , необходимо их разложить в сходящиеся ряды по функциям 1/νn

1. Именно в этом случае,
каждый член этого ряда окажется функцией-преобразованием для оригиналов и по Лапласу, и по Фурье.

Сначала возьмем основной детерминант{D0}и видоизменим его следующим образом: поставим 0 в тех ме-
стах, где фигурирует выражение e−2aνk (k = 1, 2) так как все слагаемые с участием этих членов, образующихся
при раскрытии этого детерминанта, в сумме быстрее приближаются к нулю, чем любая степень ν−n

1 .
В таком случае выражение для {D0} заметно упрощается – у него остается только восемь членов из общей

суммы. Из этих 8-и членов сохраним тот член, который в бесконечности p→ ∞ имеет наибольшую степень:

|D0| ≈ −Ωq2a21a13a34 · (a55a42 − a45a52).

Тем же способом определим главные члены и других детерминантов |Dn| · e−2aνж (n = 1, 2, 3, 4), образующихся
из системы (6), согласно правилу Крамера для определения постоянных C01,C02, A01, A02:

|D1| ≈ −Ωq2 · a13 · a34 · (a55a42 − a45a52) · e2aν1 · e2aν2 ,

|D2| ≈ −Ωq2 · a13 · a34 · a55 · e2aν2 ,

|D3| ≈ −Ωq2 · a11 · a34 · (a55a42 − a45a52) · e2aν1 · e2aν2 ,

|D4| ≈ −Ωq2 · a21 · a13 · a32 · a55 · e2aν1 .

Для коротких промежутков времени, в течение которых действует ударная нагрузка, поведение отноше-
ний Dk

D0
, k = 1, 2.3, 4, в бесконечности, конечно, будет определяться, в основном, из отношений этих же членов

наивысшей степени. Тогда получим

C01 =
Ωq2

a21
, C02 =

Ωq2 · a55 · e−2aν1

(a55 · a42 − a45 · a52)
, A01 =

Ωq2 · a11

a21 · a13
, A02 = −

Ωq2 · a32 · a55 · e−2aν2

a34 · (a55 · a42 − a45 · a52)
. (8)

Поставив значения этих постоянных в формулы (7), получим выражение искомого решения в параметрах
преобразований. Используя существующий аналитический метод [3], легко можно определить двукратные ори-
гиналы этих преобразований.

Отдельно определим оригиналы первого, второго и четвертого члена в сумме правой части (7):

1) −
σ0

(λ + 2µ) · ν2
1
↔ −

σ0 · c1

(λ + 2µ)
H
(︂

t −
z
c1

)︂
; (9)
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2) C01q =
Ωq3

a21
= −

σ0q2

(λ + 2µ)ν2
1

1(︁
1 + 2µ

λ

)︁
ν2

1 − q2
= −

σ0 · c2
1

(λ + 2µ)

⎡⎣H
(︁

t − z√
2c2

)︁
√

2c2
−

H
(︁

t − z
c1

)︁
c1

⎤⎦ , (10)

3) − ν2
2A01 = −ν

2
2 ·
Ωq2 · a11

a21 · a13
=

σ0ν
2
2

(λ + 2µ)ν2
1
·

2q2ν1[︁(︁
1 + 2µ

λ

)︁
ν2

1 − q2
]︁
· [(q2 + ν2

2)ν2]
↔
σ0 · (c2

1 − 2c2
2)

(λ + 2µ)
c1

c2

H
(︁

t − z√
2c2

)︁
√

2c2
. (11)

Заметим, что в последней формуле использовано очевидное приближение

ν2

ν1
≈

c1

c2
при p→ ∞.

Как видно из этих формул, сумма их тождественно равна нулю для соотношения c1 = 2c2, которое справед-
ливо для значения коэффициента Пуассона ν = 1

3 , и что для большинства материалов эта величина имеет как
раз это значение.

Это необыкновенно интересный результат, подтверждающий высокую точность определения причины ис-
следуемого явления, так как основной тон в формировании продольных движений на поверхности слоя задают
именно эти компоненты. Остальные два компонента в (7) представляют дифракционные волны, пришедшие с
низшей стороны, контактирующей с жидкостью. Они незначительны, и не в силах изменить волновую карти-
ну, сложившуюся от выше построенных решений. Тем не менее, внизу приводим готовые решения и графики
распределений для последующих значений времени, продольных скоростей на верхней границе слоя, соответ-
ствующие каждой волне отдельно.

Сперва рассмотрим продольные дифракционные волны, отразившиеся с низшей стороны слоя. Из фор-
мул (7), (8) и из выражений компонентов основного детерминанта (*) можно легко определить математическое
выражение этой волны. Оно следующее:

̃̇︀Wпрод. = C02q =
Ωq3 · a55 · e−2aν1

(a55 · a42 − a45 · a52)
=
σ0 · c1

(λ + 2µ)
c1 · (c2

1 − 2c2
2)q2e−2aν1

ν2
1 ·

(︁
p2
(︁

1 + ρж

ρ
·

aж
c1

)︁
+ 2 · c2

2q2
)︁ . (12)

Пусть ρж

ρ
·

aж
c1
= α, тогда обратное преобразование по Лапласу формулы (12), может представляться в следу-

ющем виде:

̃̇︀Wпрод.
σ0·c1

(λ+2µ)
=

0.5
(1 + α)

t∫︁
2

⎛⎝ τ1∫︁
2

(︁
J0
(︀
q (τ1 − τ)

)︀)︁(︁
J0

(︁
q
√
τ2 − 4

)︁)︁
dτ

⎞⎠ q sin

(︃
0.5

√︂
2

1 − α
1 + α

q (t − τ1)

)︃
dτ1.

Отметим лишь, что для получения этой формулы были использованы теоремы Эфрос, теоремы о свертках
и таблицы, приведенные в [3]. Теперь, совершив обратное преобразование по Фурье-косинус, можно привести
графики продольной скорости на верхней поверхности слоя.

Расчет произведен для ν = 1
3 и для следующих значений времени t = a

c1
n, и для безразмерной продольной

скорости ̃̇︀Wпрод. =
̃̇︀Wпрод.
σ0 ·c1
(λ+2µ)

.
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Первая дифракционная волна пересечет эту поверхность при n = 2.
Теперь вычислим соответствующий безразмерный компонент дифракционной поперечной волны, которая

пересечет верхний слой в моменте n = 4. Тогда получим

Ẇпопер. = −ν
2
2A02 = ν

2
2
Ωq2a32a55e−2aν2

a34(a55a42 − a45 · a52)
=
σ0c1

(λ + 2µ)
(c2

1 − 2c2
2)2q2e−2aν2

c2(p2 + 2c2
2)
(︁

p2
(︁

1 + ρж

ρ
·

aж
c1

)︁
+ 2c2

2q2
)︁ ,

̃̇︀Wпопер. = −
1

2α (1 + α)

t∫︁
4

(︂
cos
(︁q

2
(τ − 4)

)︁
− cos

(︂
q
2

1
√

1 + α
(τ − 4)

)︂)︂
· J0

(︁q
2

√
t2 − τ2

)︁
dτ.

Как видно из этих графиков, их значения достаточно малы; они меньше, чем сотая часть значения каждой
волны (9)–(11), которая образуется на верхней границе слоя. Естественно, они не могут вызвать ощутимых
колебаний. Следует отметить еще один интересный факт: в этих составляющих, движение вдоль направления
удара быстро меняет знак в обратный, как это показывают графики.

3. ЗАКЛЮЧЕНИЕ

Полученный результат позволяет сформулировать следующие интересное заключение: верхний слой объ-
ектов, находящихся на поверхности жидкости, почти не испытывает продольной нагрузки удара.
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Abstract. An interesting phenomenon discovered during earthquakes occurring in one area of the southern
part of Azerbaijan is studied. Taking into account the rare features of this part of the Earth’s crust, the
occurring event was modeled in the form of a mathematical problem of the dynamic theory of elasticity,
which revealed the cause of the phenomenon involved.
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комплекснозначных конечных аддитивных цилиндрических мер на пространстве траекторий. Установлены
условия при которых задача Коши для уравнения первого порядка с переменным оператором генерирует
двухпараметрическое эволюционное семейство операторов. Получено представление решения задачи Коши
с переменным возмущенным генератором с помощью континуального интеграла от определяемого возмуще-
нием функционала на пространстве траекторий по цилиндрической псевдомере, определяемой невозмущен-
ным двухпараметрическим эволюционным семейством операторов. Библ. 13.
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1. ВВЕДЕНИЕ

Решения эволюционных линейных дифференциальных уравнений с независящими от времени коэффи-
циентами представляются C0-полугруппами линейных операторов, а в случае переменных коэффициентов –
эволюционными двухпараметрическими семействами операторов [1, 2]. В работах [3–5] разрабатываются ме-
тоды представления однопараметрических эволюционных полугрупп математическими ожиданиями функци-
оналов от случайных процессов, а в работах [6–8] полугруппы представляются функциональными интеграла-
ми по пространству траекторий процессов. Методы континуального интегрирования в [9] и методы итераций
Фейнмана–Чернова в [10] применяются к постронию аппроксимаций решений эволюционных уравнений и
анализу сходимости таких аппроксимаций.

Конструкция континуального интеграла, описывающего возмущенную полугруппу, была рассмотрена в ра-
боте [11] для случая, когда эволюционное уравнение имеет независящие от времени коэффициенты и эво-
люционные семейства операторов являются однопараметрическими полугруппами. Там же получена формула
Фейнмана–Каца, позволяющая выразить возмущенную полугруппу с помощью континуального интеграла от
зависящего от возмущения функционала на пространстве траекторий по цилиндрической псевдомере, опреде-
ляемой невозмущенной полугруппой. Цилиндрическая псевдомера отличается от цилиндрической меры, за-
данной на классе всех борелевских цилиндров, областью определения, порожденной классом цилиндров с ба-
зой из некоторой (возможно, меньшей, чем борелевская) алгебры подмножеств координатного пространства.
Иногда для краткости такие псевдомеры будем называть мерами.

В рамках изучаемого в настоящей статье метода обобщенный случайный процесс со значениями в неко-
тором измеримом пространстве (E,𝒜) отождествляется с марковской цилиндрической псевдомерой, заданной
на алгебре цилиндрических множеств 𝒜𝒞yl в пространстве отображений временного промежутка T = R+ про-
цесса в измеримое пространство (E,𝒜(ℛ)) его значений (см. [11]). Построено биективное отображение V мно-
жества марковских комплекснозначных конечно-аддитивных мер, заданных на цилиндрической алгебре𝒜𝒞yl,

1)Работа выполнена при частичной финансовой поддержке РНФ. Разделы 2, 3, 4 работы выполнены Ю.Н. Орловым, а разделы 5 и 6 — В.Ж.
Сакбаевым. Исследование В.Ж. Сакбаева выполнено при финансовой поддержке РНФ (проект 24-11-00039 в Математическом институте
им. В.А. Стеклова РАН).
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на множество двухпараметрических эволюционных семейств линейных ограниченных операторов, действую-
щих в гильбертовом пространстве L2(E) функций, квадратично интегрируемых по мере Лебега на пространстве
значений случайного процесса E. Марковское свойство цилиндрической меры (точное определение см. ниже)
состоит в том, что значение меры на всей совокупности цилиндрических множеств (а значит, и на алгебре𝒜𝒞yl)
определяется сужением меры на совокупность цилиндрических множетв с двухвременными цилиндрическими
условиями.

В настоящей работе получено обобщение конструкции континуального интеграла Фейнмана на случай
эволюционных уравнений с переменными операторными коэффициентами, порождающими двухпарамет-
рические эволюционные cемейства операторов (см. [1, 2]). Метод построения формул Фейнмана–Каца для
решения уравнения Шрёдингера с переменным генератором впервые предложен, насколько нам известно,
в [12]. Условия применимости построенного обобщения расширяют возможности аппроксимации формула-
ми Фейнмана–Каца решений эволюционных уравнений с переменными генераторами. Получена формула
Фейнмана–Каца, выражающая возмущенное двухпараметрическое эволюционное семейство операторов с по-
мощью континуального интеграла от зависящего от нестационарного возмущения функционала на простран-
стве траекторий по цилиндрической мере, являющейся образом действия биекции V−1 на невозмущенное эво-
люционное семейство операторов.

2. ОБОЗНАЧЕНИЯ И ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

В настоящей работе будет построено обобщение представления однопараметрических полугрупп с помо-
щью цилиндрических мер на случай двухпараметрических эволюционных семейств операторов, разрешающих
дифференциальные уравнения с зависящими от времени коэффициентами. Для реализации этой цели нам по-
требуется ввести определения, описывающие операторнозначные функции, меры на пространстве траекторий
и свойства этих объектов. Также будет кратко изложена теория, описывающая связь однопараметрических се-
мейств операторов с цилиндрическими мерами на пространстве траекторий.

Пусть E = Rd при некотором d ∈ N – конечномерное евклидово пространство, снабженное мерой Лебега;
H = L2(E) – гильбертово пространство функций на E, квадратично интегрируемых по мере Лебега; и пусть
B(H) – банахово пространство ограниченных линейных операторов, действующих в H.

Пустьℛ есть σ-кольцо ограниченных борелевских множеств пространства E и𝒜R – порожденная этим коль-
цом σ-алгебра. Пусть M(R+, E) – линейное отображение временной полуоси R+ в пространство E, называемое
пространством траеторий, и пусть 𝒜Cyl – алгебра цилиндрических множеств в пространстве траекторий, т.е.
алгебра, порожденная полуалгеброй Cyl (см. [8]) цилиндрических множеств вида

Ct
B = Ct1,...,tn

B1,...,Bn
= {x ∈ M(R+, E) : x(t j) ∈ B j, j = 1, . . . , n}, (1)

n ∈ N, B1, . . . , Bn ∈ 𝒜R, 0 ≤ t1 < . . . < tn < +∞.

Множество t = {t1, . . . , tn} называется набором временных индексов цилиндрического множества (1), а множе-
ство B = {B1, . . . , Bn} – базой цилиндрического множества.

Через 𝒜m(H) обозначим абелеву алгебру операторов умножения на функцию, принадлежащую банахову
пространству L∞(E) измеримых ограниченных функций E → C. Символомℳ(R+, B(H)) обозначим линейное
пространство отображений полуоси R+ в пространство B(H) и положим

ℳm(R+, B(H)) = {F ∈ ℳ(R+, B(H)) : F(0) ∈ 𝒜m(H)}.

Обозначим через a(𝒜Cyl) линейное пространство комплекснозначных аддитивных функций множества
(конечно-аддитивных мер), заданных на алгебре𝒜Cyl.

Определим отображение

Λ :ℳm(R+, B(H))→ a(𝒜Cyl), Λ(F) = µF, ImΛ = aΛ(𝒜Cyl),

удовлетворяющее следующим условиям:

µ
F(Ct

B) = (χBn ,F(tn − tn−1)PBn−1 . . .PB1F(t1 − t0)χB0 ), n ∈ N, Bi ∈ ℛ, ∀ i = 0, . . . , n. (2)

Так как F(0) ∈ 𝒜m, то F(0)(∙) = f (x)(∙), гдe f ∈ L∞(E).Потому для n = 0 и для произвольного t0 ⩾ 0 положим:

µ
F(Ct0

B ) =

⎧⎪⎨⎪⎩
(χB, F(0)χB) =

∫︀
B

f (x) dλ(x), B ∈ ℛ,

M0 −
∫︀

E∖B
f (x) dλ(x), B ∈ 𝒜(ℛ), B /∈ ℛ,

(3)
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где M0 ∈ C – некоторая фиксированная константа и µF(ℳ(R+, E)) = M0 (см. [13]).
Пусть C t

B ∈ 𝒞yl. Пусть m ∈ N – максимальный номер среди тех, которые соответствуют множествам в базе
B = {B1, . . . , Bn}, не лежащим в кольце ℛ. Tогда из условия аддитивности функции µF на алгебре a(𝒜Cyl) следует
равество

µ
F(C t0, ...,

B0, ...,
tm−1,
Bm−1

tm,
, Bm,

tm+1,
Bm+1,

...,

...,
tn
Bn

) =

= µF(C t0, ...,
B0, ...,

tm−1,
Bm−1,

tm+1,
Bm+1,

...,

...,
tn
Bn

) − µF(C t0, ...,
B0, ...,

tm−1,
Bm−1

tm,
, E∖Bm,

tm+1,
Bm+1,

...,

...,
tn
Bn

).
(4)

Условие (4) позволяет продолжить функцию множества µF, заданную равенствами (2)—(3), на всю алгебру
a(𝒜Cyl).

Теорема 1 (см. [8]). Для каждого отображения F ∈ ℳm(R+, B(H)) существует единственная мера Λ(F) ∈
∈ a(𝒜Cyl), удовлетворяющая условиям (2), (3).

Отображение
Λ : ℳm(R+, B(H))→ a(𝒜Cyl)

инъективно.
Определение 1 (см. [8]). Мера µ ∈ a(𝒜Cyl) называется стационарной, если µ(Ct0+s,...,tn+s

B0,...,Bn
) = µ(Ct0,...,tn

B0,...Bn
) ∀ s ≥ 0,

∀ Ct0,...,tn
B0,...,Bn

∈ Cyl.

Каждая цилиндрическая мера µ задает семейство функций

{β
t0,t1,...,tn
µ; B1,...,Bn−1

, B1, . . . , Bn−1 ∈ 𝒜R, 0 ≤ t0 < . . . < tn < +∞},

сопоставляющих каждой упорядоченной паре χB0 , χBn , B0, Bn ∈ ℛ комплексное число с помощью равенства:

β
t0,t1,...,tn
µ; B1,...,Bn−1

(χB0 , χBn ) = µ(Ct
B), Ct

B ∈ Cyl. (5)

Определение 2 (см. [13]). Цилиндрическая мера µ ∈ a(𝒜𝒞yl) называется непрерывной по базе, если она удовле-
творяет следующим условиям:

∀ n ∈ N, ∀ t0 ≤ · · · ≤ tn ∈ R+, ∃M ∈ (0,+∞) : ∀ B1, . . . , Bn−1 ∈ 𝒜(ℛ),

sup
u,v∈S (ℛ): ‖u‖H=‖v‖H=1

|β
t0,t1,...,tn
µ; B1,...,Bn−1

(u, v)| ≤ M‖u‖H‖v‖H . (6)

Пусть aJ(𝒜Cyl) – линейное подпространство пространства мер a(𝒜Cyl), удовлетворяющих условию J, гдe J ∈
∈ {S , Bc}; aS ,Bc(𝒜Cyl) = aS (𝒜Cyl)

⋂︀
aBc(𝒜Cyl).

Лемма 1. Если µ ∈ aBc(𝒜Cyl), то функция (5) допускает единственное продолжение до ограниченной полутора-
линейной формы на пространстве H:

(g, Ut0, ... ,tn
µ; B1, ... ,Bn−1

f ) = βt0, t1, ..., tn
µ; B1, ..., Bn−1

( f , g), f , g ∈ H.

Доказательство. Функция (5) продолжается до полуторалинейной формы на линейной оболочке индикатор-
ных функций кольцаℛ в силу требования полуторалинейности. Полученная полуторалинейная форма является
непрерывной относительно нормы ‖ · ‖L2(E) в силу непрерывности по базе (6) меры µ. Так как span(χB, B ∈ ℛ) –
плотное в пространстве H линейное многообразие, то непрерывная на нем полуторалинейная форма однознач-
но продолжается по непрерывности до непрерывной полуторалинейной формы на пространстве H.

Теорема 2 (см. [8]). На линейном пространстве aS ,Bc(𝒜Cyl) существует линейное отображениеV : aS ,Bc(𝒜Cyl)→
→ℳm(R+, B(H)), определяемое условиями

∀ t > 0 (χB1 , (V(µ))(t)χB0 )H = µ(A 0, t
B0,B1

), ∀ B0, B1 ∈ ℛ; (7)

(χB0 , (V(µ))(0)χB0 )H = µ(A 0
B0

) ∀ B0 ∈ ℛ. (8)

В линейном пространстве aS ,Bc(𝒜cyl) выделим класс мер, сужение на который линейного отображения V
инъективно.

Определение 3 (см. [8]). Мера µ ∈ aBc(𝒜𝒞yl) называется марковской, если

U tm, ..., tn−1, tn
µ; Bm+1, ..., Bn−1

PBm U t0, ... tm−1, tm
µ; B1, ... Bm−1

= U t0, ... tn
µ; B1, ...Bn−1

(9)

∀ t0, . . . tn : 0 ≤ t0 < . . . < tm < . . . tn; ∀ B1, . . . Bn−1 ∈ ℛ.
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Определение 4 (см. [8]). Марковская мера µ ∈ aBc,M(𝒜𝒞yl) называется строго марковской, если

U tm, ..., tn−1, tn
µ; Bm+1, ..., Bn−1

PBm U t0, ... tm−1, tm
µ; B1, ... Bm−1

= U t0, ... tn
µ; B1, ...Bn−1

(10)

∀ t0, . . . tn : 0 ≤ t0 < . . . < tm < . . . tn; ∀ B1, . . . Bn−1 ∈ 𝒜ℛ.

Символом aJ,M(𝒜Cyl) обозначим множество мер, удовлетворяющих условию J и условию (9). Заметим, что
если µ ∈ aBc,M(𝒜Cyl), то мера µ на полуалгебре множеств Cyl может быть восстановлена по своему сужению на
класс множеств Cyl2 = {C

0,t
B0,B, t ≥ 0, B0, B ∈ ℛ}.

Теорема 3 (см. [8]). Образ aΛ(𝒜Cyl) отображения Λ совпадает с множеством aBc,S ,M(𝒜Cyl).
Отображение

V : aBc,S ,M(𝒜Cyl)→ℳm(R+, B(H))

определенное условиями (7), (8), является обратным к биективному отображению

Λ : ℳm(R+, B(H))→ aBc,S ,M(𝒜Cyl).

3. ДВУХПАРАМЕТРИЧЕСКИЕ ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА ОПЕРАТОРОВ И ЗАДАЧА КОШИ
С ПЕРЕМЕННЫМ ОПЕРАТОРОМ

Определение 5 (см. [1, 2]). Двухпараметрическое семейство U(t, s), 0 ≤ s ≤ t < +∞, ограниченных линейных
операторов в гильбертовом пространстве H называется эволюционным, если выполнены следующие условия:

1) U(t, t) = I при всех t ≥ 0,
2) отображение U : R2

≤ → B(H) непрерывно в сильной операторной топологии на множестве R2
≤ = {(s, t) ∈

∈ R2 : 0 ≤ s ≤ t},
3) выполняется эволюционное свойство U(t, τ)U(τ, s) = U(t, s) ∀ s, τ, t : 0 ≤ s ≤ τ ≤ t < ∞.
Нас будут интересовать эволюционные семейства, удовлетаоряющие следующим предположениям.
Предположение 0. Предположим, что существует плотное в пространстве H линейное многообразие D такое,

что существует предел

lim
h→+0

(︂
1
h

(U(t + h, s) −U(t, s))u
)︂
= A(t, s)u (11)

для каждого (s, t) ∈ R2
≤ и каждого u ∈ D.

Согласно свойству 3) эволюционного семействаU(t+h, s)−U(t, s) = (U(t+h, t)−I)U(t, s), поэтому условие (11)
эквивалентно существованию производной

lim
h→+0

(︂
1
h

(U(t + h, t) − I)U(t, s)u
)︂
= A(t)U(t, s)u, t ≥ s ≥ 0.

В частности, d
dtU(t, s)u|s=t = A(t)u ∀ u ∈ D при всех t ≥ 0 и A(t, s) = A(t)U(t, s), (t, s) ∈ R2

≤.
Сформулируем предположения 1–5 об операторнозначной функции A(s), s ≥ 0, достаточные (как будет

показано в теореме 4) для того, чтобы семейство переменных генераторов A(s), s ≥ 0, однозначно определяло
эволюционное семейство, удовлетворяющее условиям 1)–3) и предположению 0.

Предположение 1. Предположим, что существует плотное в пространстве H линейное многообразие D такое,
что при каждом t ≥ 0 линейный оператор A(t)u, u ∈ D имеет самосопряженное замыкание.

Предположение 2. Предположим, что замыкание оператора A(0) имеет обратный (A(0))−1 : H → D.
Из предположений 1, 2 следует, что при всех t > 0 оператор A(t)(A(0))−1 всюду определен, замкнут и, следо-

вательно, ограничен [1]. Замкнутость оператора A(0) позволяет наделить подпространство D нормой графика
оператора A(0), превращающей линейное многообразие D в банахово пространство.

Предположение 3. Пусть общая существенная область определения D генераторов A(s), s ∈ [0,+∞), инва-
риантна относительно полугруппы eA(s)t, t ≥ 0, при каждом s ∈ [0,+∞). Пусть семейство генераторов A(s),
s ∈ [0,+∞), равномерно полуограничено сверху.

Предположение 4. Существует число B ≥ 0 такое, что для любого u ∈ D

e−B|t−s|‖A(s)u‖H ≤ ‖A(t)u‖H ≤ eB|t−s|‖A(s)u‖H ∀ t, s ≥ 0.

Заметим, что из предположений 2, 4 следует, что при каждом t ≥ 0 оператор A(t) ограниченный обратный.
На линейном пространстве D введем семейство эквивалентных в силу предположения 4 норм ‖u‖Dt = ‖Atu‖H,
u ∈ D, t ≥ 0, и положим ‖u‖D0 ≡ ‖u‖D.
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Предположение 5. Пусть оператор-функцияA : [0,+∞)×D→ H является равномерно непрерывной в смысле
выполнения следующего условия (сильно равномерно непрерывна по Гёльдеру на множестве D):

∃ L, a > 0 : ∀ u ∈ D ∀ t, s > 0, ‖(A(t) −A(s))u‖H ≤ L|t − s|a‖u‖Ds . (12)

Примером удовлетворяющей предположениям 1–5 оператор-функции может служить оператор-функция
со значениями в множестве действующих в пространстве L2(R) эллиптических дифференциальных операторов
второго порядка в дивергентной форме с гладко зависящими от временного параметра и пространственных
координат коэффициентами, квадратичные формы которых определены на пространстве Соболева W1

2 (R) и
равномерно ограничены снизу и сверху квадратичной формой скалярного произведния пространства Rd.

Лемма 2. Пусть выполнены предположения 1–4. Тогда существует число M > 0 такое, что при любых t ≥ 0,
s ≥ 0, σ > 0 и любом u ∈ D выпонены неравенствы

‖eA(s)tu‖Ds ≤ eMt‖u‖Ds ; ‖eA(s)tu‖Dσ ≤ eM(t+|s−σ|)‖u‖Dσ . (13)

Доказательство. Пусть s ≥ 0. Так как u ∈ D, то в силу предположения 1 u ∈ D(A(s)). Из равномерной полуо-
граниченности сверху самосопряженных операторов A(s), s ≥ 0, следует существование такой не зависящей от
s постоянной m > 0, что ‖etA(s)u‖H ≤ emt‖u‖H и ‖etA(s)u‖D(A(s)) ≤ emt‖u‖D(A(s)) и первая оценка доказана (D(A(s)) –
гильбертово пространство, предствляющее собой пополнение линейного пространства D по норме ‖ · ‖D(s) гра-
фика самосопряженного замыкания оператора A(s)). Из предположений 1–4 следует, что при каждом σ ≥ 0
etA(s)u ∈ D ⊂ D(A(σ)) и при этом

‖etA(s)u‖D(A(σ)) ≤ eB|s−σ|‖etA(s)u‖D(A(s)) ≤ eB|s−σ|+mt‖u‖D(A(s)) ≤ e2B|s−σ|+mt‖u‖D(A(σ)).

Значит, оценка (13) выполняется с постоянной M = m + 2B.
В частности, из леммы 2 следует, что ‖eA(s)tu‖D ≤ eM(t+s)‖u‖D для любого u ∈ D и любых s, t ≥ 0.
Определение 6. Обобщенным решением задачи Коши

d
dt

u(t) = A(t)u(t), t ∈ (t0,+∞), (14)

u(t0 + 0) = u0, (15)

где 0 ≤ t0 < +∞, c удовлетворяющими предположению 1 переменными генераторами и с начальным условием
u0 ∈ H будем называть такую функцию u(t, t0, u0) ∈ C([t0,+∞),H), что при каждом v ∈ D справедливо равенство

(u(t, t0, u0) − u0, v) =

t∫︁
t0

(u(s, t0, u0),A(s)v)ds, t ∈ [t0,+∞). (16)

Лемма 3. Пусть выполнены предположения 1–5. Если обобщенное решение задачи Коши существует, то оно
единственно.

Доказательство. Предположим, что у задачи Коши существуют два различных обощенных решения
u(·, t0, u0), û(·, t0, u0). Тогда их разность w(·) принадлежит пространству C([t0,+∞),H) и в силу (16) удовлетворяет
равенству

(w(t), v) =

t∫︁
t0

(w(s),A(s)v)ds, t ∈ [t0,+∞),

при произвольном v ∈ D. Фиксируем произвольное v ∈ D. Тогда для неотрицательной функции zv(t) = |(w(t), v)|,

t ∈ [t0,+∞), справедливо условие zv(t0) = 0 и при любом T > 0 выпонено неравенство zv(t) ≤
t∫︀

t0
Azv(s)ds, где

A = sup
t∈[t0,T ]

‖A(t)v‖ < +∞ в силу предположения 4. Поэтому zv(t) = 0, t ∈ [t0,T ], в силу леммы Гронуолла.

Итак, (w(t), v) = 0 ∀ t ∈ [t0,+∞), v ∈ D.

Поскольку в силу условий предположения 1 линейное многообразие D оно плотно в пространстве H, то w(t) =
= 0 ∀ t ∈ [t0,T ).

Теорема 4. Пусть выполнены условия предположений 1–5. Тогда для любого t0 ≥ 0 и для любого u0 ∈ H задача
Коши (14), (15) имеет единственное обобшенное решение

u(t, t0, u0) = UA(t, t0)u0, t ∈ [t0,+∞). (17)
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При этом двухпараметрическое семейство орператоров UA(t, s), t ≥ s ≥ 0, в (17) может быть определено из
условия

∀ u ∈ H, ∀T > t0 lim
|σ([s,t])|→0

sup
t0≤s≤t≤T

‖UA(t, s)u − eA(ξn−1)(ξn−ξn−1) ∘ . . . ∘ eA(ξ0)(ξ1−ξ0)u‖H = 0, (18)

где ξ0, . . . , ξn – точки разбиения σ([s, t]) отрезка [s, t] и |σ([s, t])| = max{|ξ1 − ξ0|, . . . , |ξn − ξn−1|} – мелкость этого
разбиения.

Доказательство. Пусть u ∈ D, тогда esA(t)u ∈ D для всех t ≥ 0, s ≥ 0.
Пусть 0 ≤ t0 ≤ s < ξ < t ≤ T < +∞, тогда

‖eA(ξ)(t−ξ)eA(s)(ξ−s)u − eA(s)(t−s)u‖H = ‖(eA(ξ)(t−ξ) − eA(s)(t−ξ))eA(s)(ξ−s)u‖.

Пусть u, v ∈ D, и 0 ≤ t0 ≤ s < τ < t ≤ T < +∞. Если f (t) = eA(s)(t−t0)v, g(t) = eA(τ)(t−t0)u при всех t ∈ [t0,T ], то

d
dt

(g(t) − f (t)) = A(τ)g(t) −A(s) f (t) = (A(τ) −A(s))g(t) +A(s)(g(t) − f (t)), t ∈ [t0,T ].

Следовательно, при всех t ∈ [t0,T ] имеем

g(t) − f (t) = eA(s)(t−t0)(u − v) +

t∫︁
t0

eA(s)(t−ξ)(A(τ) −A(s))eA(τ)(ξ−t0)udξ.

Поэтому, согласно (12) и (13), для всех t ∈ [t0,T ] имеем

‖g(t) − f (t)‖H ≤ eM(t−t0)‖u − v‖H + L|τ − s|a
t∫︁

t0

eM(t−ξ)‖eA(τ)(ξ−t0)u‖Ds dξ ≤

≤ eM(t−t0)‖u − v‖H + Le2M(t−t0)|t − t0|1+a‖u‖Dt0
. (19)

Пусть τ = {ξ0, . . . , ξN} – разбиение отрезка [t0,T ], т.e. t0 = ξ0 < . . . < ξN = T . Пусть u, v ∈ D. Определим
соответствующее разбиению τ семейство операторов UτA(t0, t), t ∈ [t0,T ], по следующему правилу. Определив
по числу t ≥ t0 величину ξk = max{ξ j ∈ {ξ0, . . . , ξN} : ξ j ≤ t}, а по числу s ∈ [t0, t] величину ξi = max{ξ j ∈ {ξ0, . . . , ξN} :
ξ j ≤ s} положим

UτA(t, s)u ≡ ϕτ(s, t, u) =

{︃
eA(ξk)(t−ξk)eA(ξk−1)(ξk−ξk−1) . . . eA(ξi)(ξi+1−s)u, ξi < ξk,

eA(ξi)(t−s)u, ξi = ξk.

В частности, для любого t ∈ [t0,T ] имеем

UτA(t, t0)u ≡ ϕτ(t0, t, u) =

{︃
eA(ξk)(t−ξk)eA(ξk−1)(ξk−ξk−1) . . . eA(ξ0)(ξ1−ξ0)u, ξ0 < ξk,

eA(ξ0)(t−s)u, ξk = ξ0.
(20)

В силу предположений 1, 3 и леммы 2 при каждом разбиении τ отрезка [t0,T ] двухпараметрическое семейство
операторов UτA(t, s), 0 ≤ s < t < +∞, допускает оценку по норме

‖UτA(t, s)u‖H ≤ eM(t−s)‖u‖H ∀ u ∈ H. (21)

Оценим разность eA(t0)(T−t0)u −Uτ(T, t0)v. Положим wk = eA(ξk−1)(ξk−ξk−1)wk−1, k = 1, . . . ,N, и w0 = v. Тогда

eA(t0)(T−t0)u −Uτ(T, t0)v = eA(ξ0)(ξN−ξ0)(u − v) + [eA(ξ0)(ξN−ξ2)eA(ξ0)(ξ2−ξ1) − eA(ξN−1)(ξN−ξN−1) ∘ . . . ∘ eA(ξ1)(ξ2−ξ1)]w1 =

= eA(ξ0)(ξN−ξ0)(u − v) + eA(ξ0)(ξN−ξ2) (︀eA(ξ0)(ξ2−ξ1) − eA(ξ1)(ξ2−ξ1))︀w1+

+
(︀
eA(ξ0)(ξN−ξ3)eA(ξ0)(ξ3−ξ2) − eA(ξN−1)(ξN−ξN−1) ∘ . . . ∘ eA(ξ2)(ξ3−ξ2))︀w2 = . . . =

= eA(t0)(T−t0)(u − v) +
N−1∑︁
k=1

eA(ξ0)(ξN−ξk+1)[eA(ξ0)(ξk+1−ξk) − eA(ξk)(ξk+1−ξk)]wk.
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Следовательно, согласно (19), (12) и (13), справедливо неравенство

‖eA(t0)(T−t0)u −UτA(T, t0)v‖H ≤ eM(T−t0)‖u − v‖H +
N−1∑︁
k=1

e2M(T−ξk+1)L|ξk − ξ0|
a‖wk‖Dt0

|ξk+1 − ξk |.

Поскольку в силу (13) ‖wk‖Dt0
≤ eM(T−t0)‖v‖Dt0

при k = 1, . . . ,N и так как |ξk − ξ0|
a ≤ |T − t0|a при всех k = 1, . . . ,N, то

‖eA(t0)(T−t0)u −UτA(T, t0)v‖H ≤ e2M(T−t0)[‖u − v‖H + L(T − t0)a+1‖v‖Dt0
]. (22)

Пусть τ′ = {s1, . . . , sN′ } – продолжение разбиения τ отрезка [t0,T ]. Для расширения τ′ разбиения τ однознач-
но определен упорядоченный по возрастанию набор натуральных чисел { ji, i = 1, . . . ,N} такой, что ξi = s ji ,
i = 1, . . . ,N.

Пустьϕτ(t0, t, u0), ϕτ′ (t0, t, u0), t ∈ [t0,T ],– вектор-функции, определенные по разбиениям τ, τ′ соответственно
и по начальному условию u0 с помощью равенства (20). Тогда согласно (22) справедлива следующая оценка:

‖Uτ
′

A(ξ1, t0)u0 −U
τ
A(ξ1, t0)u0‖H ≤ Le2M(ξ1−t0)(ξ1 − t0)a+1‖u0‖Dt0

.

Следовательно, согласно (22),

‖ϕτ′ (t0, ξ2, u0) − ϕτ(t0, ξ2, u0)‖H = ‖Uτ
′

A(ξ2, ξ1,ϕτ′ (t0, ξ1, u0)) − eA(ξ1)(ξ2−ξ1)
ϕτ(t0, ξ1, u0)‖H ≤

≤ e2M(ξ2−ξ1)[‖ϕτ′ (t0, ξ1, u0) − ϕτ(t0, ξ1, u0)‖H + L(ξ2 − ξ1)1+a‖ϕτ′ (t0, t1, u0)‖Dξ1 ] ≤

≤ e2M(ξ2−ξ1)[LeM(ξ1−ξ0)(ξ1 − ξ0)a+1‖u0‖Dξ0 + L(ξ2 − ξ1)1+aeM1(ξ1−ξ0)‖u0‖Dξ0 ] =

= Le2M(ξ2−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a]‖u0‖Dξ0 . (23)

Аналогично, в силу (22), и используя (13), получим

‖ϕτ′ (t0, ξ3, u0) − ϕτ(t0, ξ3, u0)‖H = ‖Uτ
′

A(ξ3, ξ2,ϕτ′ (t0, ξ2, u0)) − eA(ξ2)(ξ3−ξ2)
ϕτ(t0, ξ2, u0)‖H ≤

≤ e2M(ξ3−ξ2)[‖ϕτ′ (t0, ξ2, u0) − ϕτ(t0, ξ2, u0)‖H + L(ξ3 − ξ2)1+a‖ϕτ′ (t0, ξ2, u0)‖Dξ2 ].

С учетом оценки (23) это дает

‖ϕτ′ (t0, ξ3, u0) − ϕτ(t0, ξ3, u0)‖H ≤ e2M(ξ3−ξ2)[Le2M(ξ2−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a]‖u0‖Dξ0+

+L(ξ3 − ξ2)1+a‖ϕτ′ (t0, ξ2, u0)‖Dξ2 ] ≤ Le2M(ξ3−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a + (ξ3 − ξ2)1+a]‖u0‖Dξ0 .

Применяя метод индукции, получаем, что для любых s ∈ [t0,T ] справедлива оценка

‖ϕτ′ (t0, s, u0) − ϕτ(t0, s, u0)‖H ≤ Le2M(T−t0)(
N∑︁

k=1

(ξk − ξk+1)1+a)‖u0‖Dt0
.

Значит, если мелкость |τ| разбиения τ достаточно мала, то для всякого продолжения τ′ разбиения τ справедлива
оценка

sup
t∈[t0,T ]

‖ϕτ′ (t0, t, u0) − ϕτ(t0, t, u0)‖H ≤ Le2M(T−t0)(T − t0)|τ|a‖u0‖Dt0
≤ Le2MT (T − t0)|τ|a‖u0‖D.

Таким образом, при стремлении к нулю мелкости разбиения промежутка [t0,T ] соответствующая последо-
вательность интегральных композиций (20) сходится в сильной операторной топологии равномерно по (t0, t) ∈
∈ [0,T ]× [0,T ]

⋂︀
R2
≤ к пределу U(t, t0)u0, (t0, t) ∈ [0,T ]× [0,T ]

⋂︀
R2
≤, не зависящему от выбора последовательности

разбиений. При этом ‖U(t, t0)‖B(H) ≤ eM(t−t0) ∀ t ≥ t0 в силу (21).
При фиксированном разбиении τ = {ξ0, . . . , ξN} отрезка [t0,T ] оператор-функция UτA(t0, t), t ∈ [t0,T ], опреде-

ленная как композиция полугрупп (20), удовлетворяет интегральному равенству

UτA(t0, t)u0 = u0 +

t∫︁
t0

Aτ(s)UτA(t0, s)u0ds, t ∈ [t0,T ],

гдe

Aτ(s) =
N∑︁

k=1

χ[ξk−1,ξk)(s)A(ξk−1), s ∈ [t0,T ]. (24)
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При этом в силу предположения 3 на любом промежутке [ξk, ξk+1] разбиения τ имеет место оценка

‖UτA(t0, tk+1)u0‖Dξk ≤ em(ξk+1−ξk)‖UτA(t0, tk)u0‖Dξk

и, согласно предположению 4 имеем

‖UτA(t0, tk+1)u0‖Dξk+1
≤ eB(ξk+1−ξk)‖UτA(t0, tk+1)u0‖Dξk .

Следовательно,
‖UA

τ(t, t0)u‖Dt0
≤ eM(t−t0)‖u‖Dt0

∀ u ∈ D, ∀ τ([t0,T ]), ∀ t ∈ [t0,T ]. (25)

Из установленной выше сходимости интегральных композиций операторных семейств с кусочно-
постоянными генераторами следует, что существует не зависящий от выбора римановой последовательности
разбиений предел U(·, t0)u0. Докажем, что если u0 ∈ D, то предел U(·, t0)u0 является решением задачи Коши (14),
(15).

При любом разбиении τ кусочно-полугрупповая операторнозначная функция (20) по построению являет-
ся двухпараметрическим эволюционным семейством операторов. В силу равномерности сходимости UτA при
|τ| → 0 в сильной операторной топологии предельная функция U непрерывна в сильной операторной тополо-
гии на множестве R2

≤ и удовлетворяет эволюционным условиям 1) и 3) определения 5.
Пусть u0 ∈ D и пусть τ – разбиение отрезка [t0,T ] точками ξ0, ξ1, . . . , ξN . Тогда по определению оператор-

функции UτA(t0, t), t ∈ [t0,T ], справедливо равенство

ϕτ(t0, t, u0) = u0 +

t∫︁
t0

Aτ(s)ϕτ(t0, s, u0)ds, t ∈ [t0,T ],

где Aτ – ступенчатая генератор-функция (24). Значит, для каждого v ∈ D справедливо равенство

(ϕτ(t0, t, u0) − u0, v) =

t∫︁
t0

(ϕτ(t0, s, u0),Aτ(s)v)ds, t ∈ [t0,T ]. (26)

Заметим, что
lim
|τ|→0

sup
s∈[t0,T ]

‖Aτ(s)v −A(s)v‖H = 0

в силу предположения 5 о липшицевости функции A. Поэтому переходя к пределу при |τ| → 0 в равенстве (26)
получаем, что функция U(t, s)u0 является обобщенным решением задачи Коши на промежутке [t0,T ]. При этом
поскольку для каждого разбиения τ операторнозначная функция Uτ удовлетворяет оценке роста (25), то той же
оценке удовлетворяет и предельное двухпараметрическое семейство U.

Пусть теперь u0 ∈ H. Тогда если последовательность {u0k} : N → D удовлетворяет условию lim
k→∞
‖u0k −

− u0‖H = 0, то последовательность {U(t0, ·)u0k} сходится равномерно на [t0,T ] к функции U(t0, ·)u0 поскольку
sup

t∈[t0,T ]
‖U(t0, t)‖B(H) ≤ eM(T−t0 ). При этом предельная функция удовлетворяет интегральному равенству (16) и, сле-

довательно, является обобщенным решением задачи Коши, единственность которого доказана в лемме 3. Та-
ким образом, U(t, s) = UA(t, s), (t, s) ∈ R2

≤.

4. ВОЗМУЩЕНИЯ ЭВОЛЮЦИОННЫХ СЕМЕЙСТВ

Рассмотрим задачу Коши для возмущенного уравнения

d
dt

u(t) = A(t)u(t) + f (t), t ∈ (t0,T ), (27)

с начальным условием (15). Решением задачи Коши называется функция u(t, t0, u0) ∈ C([t0,T ),H), которая при
каждом v ∈ D удовлетворяет равенству

(u(t, t0, u0) − u0, v) =

t∫︁
t0

(u(s, t0, u0),A(s)v)ds +

t∫︁
t0

( f (s), v)ds, t ∈ [0,T ). (28)
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Пусть L∞(R+,H) – банахово пространство измеримых по Бохнеру отображений полуоси R+ в гильбертово
пространство H = L2(E), наделенное нормой L∞(R+,H), т.е. пополнение по норме L∞(R+,H) пространства из-
меримых ступенчатых отображений R+ → H.

Лемма 4. Пусть выполнены условия предположений 1–5. Пусть f ∈ L∞(R+,H). Пусть t0 ∈ R+ и u0 ∈ H. Тогда
для всех t ≥ t0 задача Коши для возмущенного уравнения (27) с начальным условием (15) существует, единственно и
задается формулой Дюамеля

u(t) = UA(t, t0)u0 +

t∫︁
t0

UA(t, s) f (s)ds. (29)

Доказательство. Подставив (29) в (28) поменяем порядок интегрировавния в

t∫︁
t0

s∫︁
t0

(UA(s, ξ) f (ξ),A(s)v)dξds

и, учитывая, что
t∫︁
ξ

(UA(s, ξ) f (ξ),A(s)v)ds = UA(t, ξ) f (ξ) − f (ξ) ∀ ξ ∈ [t0, t],

получим, что функция (29) удовлетворяет условию (28).
Исследуем возмущения уравнений для эволюционных семейств добавлением нестационарного возмушения

однопараметрическим семейством V(t), t ≥ 0, ограниченных линейных операторов умножения на измеримую
функцию V(t), t ≥ 0.

Лемма 5. Пусть выполнены условия предположений 1–5. Пусть вещественнозначная функция V ∈ C1(R+, L∞(E))
такова, что ‖V(t)‖L∞(E) < (‖(A(t))−1‖B(H))−1 при всех t ≥ 0 и оператор V(s) умножения на функцию V(s) удовлетво-
ряет условию V(s)D ⊂ D при всех s ≥ 0. Тогда семейство операторов A(s) +V(s), s ≥ 0, удовлетворяет условиям
прелположений 1–5 и порождает эволюционное семейство операторов UA+V(t, s), (t, s) ∈ R2

≤.При этом для эволю-
ционного семейства UA+V имеет место кусочно-полугрупповая аппроксимация (18).

Для доказательства леммы 5 достаточно лишь проверить, что семейство операторов A(s) +V(s), s ≥ 0, удо-
влетворяет условиям предположений 1–5 с тем же плотным в H линейным подпространством D, что и для се-
мейства операторов A(s) +V(s), s ≥ 0.

Рассмотрим задачу Коши для возмущенного уравнения

d
dt

u(t) = A(t)u(t) +V(t)u(t), t ∈ (t0,T ), (30)

с начальным условием (15).
Лемма 6. Пусть двухпараметрическое эволюционное семейство операторов UA(t, s), (t, s) ∈ R2

≤ порождается
задачей Коши (14), (15) c семейством операторов A(s), s ≥ 0, удовлетворяющим условиям предположений 1–5.
Пусть V ∈ L∞(R+, L∞(E)) и V(s), s ≥ 0, – семейство операторов умножения на функцию V(s) ∈ L∞(E), s ≥ 0. Тогда
задача Коши (30), (15) порождает двухпараметрическое эволюционное семейство операторовUA+V(t, s), (t, s) ∈ R2

≤.
Доказательство. Решение задачи (30), (15) будем искать в виде (29), где f – неизвестная функция из про-

странства L∞(R+,H).
Функция (29) является решением задачи Коши (30) тогда и только тогда, когда

f (t) = V(t)UA(t, t0)u0 +V(t)

t∫︁
t0

UA(t, s) f (s)ds, t ∈ [t0,T ]. (31)

Заметим, что если f ∈ L∞(R+,H), то тогда
t∫︀

t0
UA(t, s) f (s)ds ∈ C([t0,T ],H) и

‖

·∫︁
t0

UA(·, s) f (s)ds‖C([t0,T ],H) ≤ (T − t0)eM(T−t0)‖ f ‖L∞([t0,T ],H).

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



78 ОРЛОВ, САКБАЕВ

Значит, функция V(t)
t∫︀

t0
UA(t, s) f (s)ds, t ∈ [t0,T ], принадлежит пространству L∞([t0,T ],H) и

‖V(·)

·∫︁
t0

UA(·, s) f (s)ds‖L∞([t0,T ],H) ≤ (T − t0)eM(T−t0)‖V‖L∞(R+,L∞(E))‖ f ‖L∞([t0,T ],H).

В силу условия V ∈ L∞(R+, L∞(E)) и оценки ‖U(t, t0)‖B(H) ≤ eM(t−t0) существует такое δ > 0, не зависящее от u0 и от
t0, что норма оператора

Kδ : f (t)→ V(t)

t∫︁
t0

UA(t, s) f (s)ds, t ∈ [t0, t0 + δ],

в пространстве L∞([t0, t0 + δ],H) меньше единицы. Поэтому уравнение (31) имеет единственное решение

f (t) = (
∞∑︁
j=0

K j
δ
)(V(t)UA(t, t0)u0), t ∈ [t0, t0 + δ], (32)

на отрезке [t0, t0 +δ] из пространства L∞([t0, t0 +δ],H). Значит, задача Коши (30), (15) имеет единственное реше-
ние, задаваемое равенством (29) c функцией (32).

В точке t0 + δ может быть снова поставлена задача Коши для уравнения (30) с начальным условием
u(t0 + δ), имеющая единственное решение на отрезке [t0 + δ, t0 + 2δ], и так далее. Следовательно, задача Ко-
ши (30), (15) имеет единственное решение и задает двухпараметрическое эволюционное семейство операторов
UA+V(t, s), (t, s) ∈ R2

≤.

5. ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА И ЦИЛИНДРИЧЕСКИЕ МЕРЫ

Отображение Λ, определенное в разделе 2, может быть расширено на множество ℳm(R2
≤, B(H)) двухпара-

метрических функций U(t, s), 0 ≤ s ≤ t < +∞, со значениями в пространстве B(H) и удовлетворяющих условию
U(t, t) ∈ 𝒜m(H), t ≥ 0. Построим биекцию между пространствомℳm(R2

≤, B(H)) и множеством a(𝒜Bc,M
𝒞yl ) марков-

ских непрерывных по базе конечно-аддитивных комплекснозначных мер, заданных на измеримом простран-
стве (ℳ+(E), 𝒜𝒞yl) траекторий в пространстве E:

Λ :ℳm(R2
≤, B(H))𝒜m → a(𝒜𝒞yl), Λ[U] = µU, ImΛ = aBc,M(𝒜𝒞yl).

Как и в формуле (2), всякому двухпараметрическому эволюционному семейству U(t, s), 0 ≤ s ≤ t < +∞,
отображениеΛ сопоставляет цилиндрическую меру µU такую, что для любого цилиндрического множества Ct

B,
обладающего базой, содержащей только множества из кольца ℛ, выполняется равенство

µ
U(Ct

B) = (χBn ,U(tn, tn−1)PBn−1 . . .PB1U(t1, t0)χB0 ), (33)

n ∈ N, Bi ∈ ℛ, ∀ i = 0, . . . , n.

Для n = 0 и произвольного t0 ⩾ 0, принимая во внимание, что U(t0, t0) ∈ 𝒜m имеет вид U(t0, t0)(∙) = ft0 (x)(∙),
где ft0 ∈ L∞(E, ℛ, λ, C), положим

µU(Ct0
B ) =

⎧⎪⎨⎪⎩
(χB, U(t0, t0)χB) =

∫︀
B

ft0 (x) dλ(x), B ∈ ℛ,

M0 −
∫︀

E∖B
ft0 (x) dλ(x), B ∈ 𝒜(ℛ), B /∈ ℛ,

(34)

где константа M0 = µ
U(ℳ(E)), как и ранее в разд. 2, может быть выбрана произвольно.

Также, как и в работе [8], доказывается, что условия (33) и (34) однозначно определяют цилиндрическую
меру µU на алгебре 𝒜Cyl, а отображение Λ : ℳm(R2

≤, B(H)) → a(𝒜𝒞yl) инъективно. Также устанавливается, что
для любого U ∈ ℳm(R2

≤, B(H)) мера µU непрерывна по базе и является марковской.
Как доказано в [11], отображение Λ обратимо и обратное отображение V всякой марковской непрерывной

по базе цилиндрической мере µ ∈ a(𝒜Bc,M
𝒞yl ) сопоставляет двухпараметрическое эволюционное семейство Uµ

посредством равенств
∀ t1 > t0 ≥ 0 (χB1 , (V(µ))(t1, t0)χB0 )H = µ(C

t0, t1
B0,B1

) ∀ B0, B1 ∈ ℛ; (35)
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∀ t0 ≥ 0 (χB0 , (V(µ))(t0)χB0 )H = µ(C
t0
B0

) ∀ B0 ∈ ℛ.

Теорема 5. Двухпараметрическое семейство Uµ(t0, t), 0 ≤ t0 ≤ t < +∞, операторов удовлетворяет эволюционно-
му свойству 3) определения 1

Uµ(t2, t1)Uµ(t1, t0) = Uµ(t2, t0) ∀ t2 ≥ t1 ≥ t0 ≥ 0

тогда и только тогда, когда соответствующая цилиндрическая мера µ ∈ a(𝒜Bc,M
𝒞yl ) удовлетворяет условию сильной

марковости.
Доказательство. Докажем, что если мера µ ∈ a(𝒜Bc,M

𝒞yl ) является строго марковской, то для оператор-функции
Uµ ∈ ℳm(R2

≤, B(H)) выполняется эволюционное свойство 3). Согласно равенству (35) для любых t2 ≥ t0 ≥ 0 и
любых B2, B0 ∈ ℛ имеем (Uµ(t2, t0)χB2 , χB0 ) = µ(Ct0,t2

B0,B2
). Поскольку Ct0,t2

B0,B2
= Ct0,t1,t2

B0,E,B2
при всех t1 ∈ [t0, t2], то

(Uµ(t2, t0)χB2 , χB0 ) = µ(Ct0,t1,t2
B0,E,B2

) ∀ t1 ∈ [t0, t2].

Поскольку мера µ является строго марковской, то Ut1,t2
µ PB1U

t0,t1
µ = Ut0,t1,t2

µ; B1
при любом B1 ∈ 𝒜R. Следовательно,

для любых B0, B2 ∈ ℛ справедлива цепочка равенств

(Uµ(t1, t0)Uµ(t2, t1)χB2 , χB0 ) = (Ut0,t1,t2
µ;E χB2 , χB0 ) = µ(Ct0,t1,t2

B0,E,B2
) = (Uµ(t2, t0)χB2 , χB0 ),

откуда следует выполнение эволюционного условия 3).
Докажем, что если µ ∈ a(𝒜Bc,M

𝒞yl ) и функция Uµ = V(µ) удовлетворяет условию 3), то мера µ является строго
марковской. Так как мера µ марковская, то выполняется условие (9). Следовательно, если при некотором n ∈ N
множества B1, . . . , Bn−1 лежат в кольце ℛ, то для любых tn ≥ tn−1 ≥ . . . ≥ t0 ≥ 0 выполняется равенство

Ut0,t1,...,tn−1,tn
µ; B1,...,Bn−1

= Utn−1,tn
µ PBn−1U

tn−2,tn−1
µ PBn−2 . . .U

t1,t2
µ PB1U

t0,t1
µ .

Следовательно, равенство (10) выполнено при условии, что все множества B1, . . . , Bn−1 лежат в кольце ℛ.
Предположим, что при некотором n ∈ N все множества B1, . . . , Bn−1 лежат в кольцеℛ, за исключением одного

из них, имеющего номер j ∈ 1, . . . , n − 1. Тогда для этого номера j ∈ 1, . . . , n выполняется, что B j ∈ 𝒜R и B j /∈ ℛ.
Потому B⊥j = E∖B j ∈ ℛ и PB j = I −PB⊥j . Следовательно,

U
t0,t1,...,t j,...,tn−1,tn
µ; B1,...,Bbot

j ,...,Bn−1
= Utn−1,tn

µ PBn−1 . . .U
t j+1,t j
µ PB⊥j U

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ .

U
t0,t1,...,t j−1,t j+1...,tn−1,tn
µ; B1,...,B j−1,B j+1,...,Bn−1

= Utn−1,tn
µ PBn−1 . . .U

t j+1,t j+2
µ PB j+1U

t j−1,t j+1
µ PB j−1U

t j−2,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ .

Поскольку функция Uµ удовлетворяет условию эволюционности 3), верно равенство

U
t j−1,t j+1
µ = U

t j,t j+1
µ U

t j−1,t j
µ = U

t j,t j+1
µ (PB j +PB⊥j )Ut j−1,t j

µ . (36)

Значит, для любых B,Bn ∈ ℛ

(U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,B j,...,Bn−1

χBn , B0) = µ(C t0,...,t j,...,tn
B0,...,B j,...,Bn

) = µ(C t0,...,t j,...,tn
B0,...,E∖B⊥j ,...,Bn

) =

= µ(C t0,...,t j,...,tn
B0,...,E,...,Bn

) − µ(C t0,...,t j,...,tn
B0,...,B j,...,Bn

) = (U t0,t1,...,t j−1,t j+1...,tn−1,tn
µ; B1,...,B j−1,B j+1,...,Bn−1

χBn , B0) − (U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,Bbot

j ,...,Bn−1
χBn , B0) =

(Utn−1,tn
µ PBn−1 . . .U

t j+1,t j+2
µ PB j+1U

t j−1,t j+1
µ PB j−1U

t j−2,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0)−

−(Utn−1,tn
µ PBn−1 . . .U

t j+1,t j
µ PB⊥j U

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0)

С учетом равенства (36) получаем, что

(U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,B j,...,Bn−1

χBn , B0) = (Utn−1,tn
µ PBn−1 . . .U

t j+1,t j
µ PB jU

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0),

что в силу произвольности B0, Bn ∈ ℛ означает, что равенство (10) выполнено при условии, что все множе-
ства B1, . . . , Bn−1 за исключением, быть может, одного лежат в кольце ℛ. С помощью математической индукции
несложно установить, что равенство (10) выполняется при произвольных B1, . . . , Bn−1 ∈ 𝒜R.

Двухпараметрическое эволюционное семейство Uµ(t, t0), 0 ≤ t0 ≤ t < +∞, задает операторнозначную функ-
цию Fµ(t) = Uµ(t, 0), t ≥ 0, тогда и только тогда, когда соответствующая цилиндрическая мера µ ∈ a(𝒜Bc,M

𝒞yl )
удовлетворяет условию стационарности. Операторнозначная функция Fµ является однопараметрической по-
лугруппой операторов тогда и только тогда, когда мера µ ∈ a(𝒜Bc,M,S

𝒞yl ) является строго марковоской.
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6. ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА И КОНТИНУАЛЬНЫЕ ИНТЕГРАЛЫ

Корректная разрешимость задачи Коши (14), (15) установлена при условиях предположений 1–5 на се-
мейство переменных генераторов. Корректная разрешимость возмущенной задачи установлена при различных
предположениях о возмущениях источника f (·) и потенциала V(·). В соответствии с теоремой 5 двухпараметри-
ческие эволюционные семейства, порожденные невозмущенной задачей Коши (14), (15), определяют нестаци-
онарную строго марковскую непрерывную по базе цилиндрическую меру на пространстве траекторий со зна-
чениями в евклидовом пространстве. Для того чтобы получить представление двухпараметрического эволюци-
онного семейства, порожденного возмущенной задачей Коши (30), (15), с помощью континуального интеграла
от зависящего от возмущения функционала на траекториях по цилиндрической мере, определяемой невозму-
щенным эволюционным семейством, нам потребуется наложить достаточно ограничительные предположения
относительно оператор-функции, представляющей возмущение, а именно, условия, сформулированные в лем-
ме 5.

Лемма 7. Пусть A – самосопряженный оператор в пространстве H, полуограниченный сверху. Тогда для любого
t > 0 существует самосопряженный оператор Θt такой, что 0 ≤ Θt ≤ I, [Θt,A] = 0 и

etA = I + tAetΘtA. (37)

Доказательство. ПустьE(λ), λ ∈ R, – ортогональное разложение единичного оператора, задающее спектраль-
ное разложение самосопряженного оператора A. Тогда для каждого вектора u ∈ H определена монотонно воз-
растающая от нуля до числа ‖u‖2 функция Eu(λ) = (E(λ)u, u), λ ∈ R. При этом D(A) = {u ∈ H :

∫︀
R

(1 + λ2)dEu(λ) <

< +∞}, где интегрирование ведется в смысле Стилтьесса, (Au, u) =
∫︀
R
λdEu(λ),

(etAu, u) =
∫︁
R

etλdEu(λ)

для всех u ∈ D(A). Согласно теореме Лагранжа для каждого t > 0 существует непрерывная положительная и не
превосходящая единицу функция θt(λ), λ ∈ R, такая, что etλ − 1 = tλeθt(λ)tλ. Следовательно, при каждом t > 0
определен ограниченный неотрицательный самосопряженный оператор Θt =

∫︀
R
θt(λ)dE(λ), не превосходящий

единичного оператора, коммутирующий с оператором A и удовлетворяющий равенству (37).
Лемма 8. Пусть A – ограниченный сверху оператором MI, M > 0, самосопряженный оператор в пространстве

H и пусть u ∈ D(A). Тогда для любого ϵ > 0 существует Cϵ > 0 такое, что

‖(etA − I)Au‖H ≤ ϵ + |t|Cϵ‖Au‖H ∀ t ∈ (−1, 1).

Доказательство. Из условия u ∈ D(A) следует, что для каждого ϵ > 0 существует число rϵ > 0 такое, что∫︀
|λ|>rϵ

λ2dEu(λ) < ϵ
2

4 e−2M. Тогда для каждого t ∈ (−1, 1) имеем

‖(etA − I)Au‖2H =
∫︁
R

(etλ − 1)2
λ

2dEu(λ) ≤
∫︁
|λ|>rϵ

4e2M
λ

2dEu(λ) +
∫︁
|λ|≤rϵ

(etλ − 1)2
λ

2dEu(λ) ≤

≤ ϵ2 +

rϵ∫︁
−rϵ

(etrϵ − 1)2
λ

2dEu(λ) ≤ e2 + t2r2
ϵ e

2rϵ‖Au‖2H .

Отсюда следует утверждение леммы при Cϵ = rϵerϵ .
Из лемм 6, 7 получаем следствие
Следствие 1. Пусть A – ограниченный сверху оператором MI, M > 0, самосопряженный оператор в про-

странстве H и пусть u ∈ D(A). Тогда для любого ϵ > 0 существует Cϵ > 0 такое, что

‖(etA − I − tA)u‖H ≤ ϵ|t| + t2Cϵ‖Au‖H ∀ t ∈ (−1, 1).

Доказательство. Согласно лемме 7 для любого t > 0 существует самосопряженный оператор Θt такой, что
0 ≤ Θt ≤ I, [Θt,A] = 0 и выполняется равенство (37). Следовательно, для каждого t ∈ (−1, 1) имеем

‖(etA − I − tA)u‖H = ‖(etΘtA − I)tAu‖H ≤ ‖(etA − I)tAu‖H .
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Из леммы 8 получаем утверждение следствия.
Лемма 9. Пусть K – компактное в банаховом пространстве D подмножество семейства векторов {A(s)u, s ∈

∈ [t0,T ]}. Тогда для любого ϵ > 0 существует CK,ϵ > 0 такое, что

‖(etA − I − tA)u‖H ≤ ϵ|t| + t2CK,ϵ‖Au‖H ∀ u ∈ K, ∀ t ∈ (−1, 1).

Доказательство. Пусть ϵ > 0 и n ∈ N. Тогда существует конечная ϵ-сеть {v1, . . . , vm}множества K в пространстве
D. Для каждого i ∈ {1, . . . ,m} в силу следствия 1 существует Ci,ϵ > 0 такое, что

‖(etA − I − tA)vi‖H ≤ ϵ|t| + t2Ci,ϵ‖Au‖H ∀ t ∈ (−1, 1).

Пусть теперь u ∈ K и iu ∈ {1, . . . ,m} : ‖u − viu‖D ≤ ϵ. Тогда

‖(etA − I − tA)(viu − u)‖H ≤ ‖etA − I)(viu − u)‖H + ‖tA)(viu − u)‖H ≤ (eM(T−t0) + 1)‖viu − u‖H + t sup
s∈[t0,T ]

‖A(s)(viu − u)‖H =

= (eM(T−t0) + 1)‖viu − u‖H + teBT ‖viu − u‖D ≤
1
n
ϵeB(1 + eM(T−t0)).

Рассмотрим множество отображений отрезка [t0,T ] в пространство D

{{UτA+B(t, t0)u, t0 ≤ t ≤ T }, τ} (38)

при всевозможных разбиениях τ = {ξ0, . . . , ξN} отрезка [t0,T ].
Лемма 10. Пусть выполнены предположения 1–5. Пусть функция V(s), s ≥ 0, удовлетворяет условиям леммы 5.

Пусть u ∈ D. Тогда множество
M = {UτA+V(t, t0)u, t0 ≤ t ≤ T, τ}

компактно в пространстве D.
Доказательство. Так как операторнозначная функция A +V в силу леммы 5 удовлетворяет условиям пред-

положений 1–5, то для нее справедливо утверждение леммы 2 с некоторой константой MV > 0. Следователь-
но, для любого разбиения τ отрезка [t0,T ] векторнозначная функция UτA+V(t, t0)u удовлетворяет оценке (25) с
константой MV вместо M. Значит, в силу эквивалентности норм D и Dt0 , множество (38) является равномерно
ограниченным по норме ‖ · ‖D. Кроме того, оно является равностепенно непрерывным. Ибо всякая функция
из семейства непрерывна на отрезке [t0,T ] и на каждом промежутке разбиения функция представляет собой
орбиту полугруппы с генератором из семейства {A(s), s ∈ [t0,T ], и потому допускает оценку (< eMt). Поэтому
для всякого разбиения τ и любых t1, t2 ∈ [t0,T ], t2 > t1 справедлива оценка

‖(UτA+V(t2, t0) −UτA+V(t1, t0))u‖D = ‖(UτA+V(t2, t1) − I)UτA+V(t1, t0)u‖D.

Поэтому для любого ϵ > 0 существует число Cϵ > 0 такое, что

‖(UτA+V(t2, t0) −UτA+V(t1, t0))u‖D ≤ ϵ +Cϵ(t2 − t1)‖UτA+V(t1, t0)u‖D ≤ ϵ +Cϵ(t2 − t1)eMV T ‖u‖D.

Следовательно, по теореме Асколи–Арцела, семейство отображений (38) компактно в пространстве
C([t0,T ],D), и потому множество значений отображений из семейства (38) компактно в пространстве D.

Лемма 11. Пусть выполнены условия предположений 1–5. Пусть функция V(s), s ≥ 0, удовлетворяет условиям
леммы 5. Пусть 0 ≤ t0 ≤ T < +∞. Тогда существует такое a = a(t0,T ) > 0, что для любого u ∈ D и для любого ϵ > 0
существует число Aϵ > 0 такое, что для любого разбиения τ = {ξ0, ξ1, . . . , ξN} отрезка [t0,T ] с мелкостью |τ| < 1
имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤ aϵ + Aϵ|τ| ∀ t ∈ [t0,T ],

где при всех t ∈ [t0,T ]

UτA,V(t, t0) = e(t−ξk(t))A(ξk(t))e(t−ξk(t))V(ξk(t))e(ξk(t)−ξk(t)−1)A(ξk(t)−1)e(ξk(t)−ξk(t)−1)V(ξk(t)−1) . . . e(ξ1−ξ0)A(ξ0)e(ξ1−ξ0)V(ξ0),

k(t) = max{ j ∈ {1, . . . ,N} : ξ j < t}.
Доказательство. Пусть u ∈ D. Для произвольного t ∈ [t0,T ] имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H = ‖

k(t)∑︁
j=0

UτA,V(t, ξ j+1)[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤
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≤

N−1∑︁
j=0

‖UτA,V(ξN , ξ j+1)[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H . (39)

Следовательно,

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤

N−1∑︁
j=0

eMV (T−ξ j+1)‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H .

В силу условий на операторнозначные функции A(·), V(·) справедливы оценки

‖UτA+V(t, t0)u‖D(A(t)) ≤ eMV (t−t0)‖u‖D(A(t)) ≤ e(MV+B)(t−t0)‖u‖D ∀ t ∈ [t0,T ].

Выберем некоторе ϵ > 0. Тогда в силу компактности множества (38) в пространстве D существует конечный
набор точек σ = {u1, . . . , uM} ⊂ D такой, что для любого j ∈ {0, . . . ,N − 1} найдется i j ∈ {1, . . . ,M} такое, что
‖UτA+B(ξ j, t0)u − ui j‖D < ϵ.

В силу лемм 9 и 10, а также c учетом предположения 4 для выбранного ϵ > 0 найдется Cϵ > 0 такое, что при
каждом j ∈ {0, . . . ,N − 1} справедливы неравенства

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]ui j‖H ≤

≤ (ϵ +Cϵ|τ|)|ξ j+1 − ξ j|‖(A(ξ j) +V(ξ j))ui j‖H ≤ (ϵ +Cϵ|τ|)|t j+1 − t j|eMVξ j‖ui j‖D.

Значит, при каждом j ∈ {1, . . . ,N − 1} справедлива оценка

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤

≤ ‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))](UτA+B(ξ j, t0)u − ui j )‖H+

+‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]ui j‖H . (40)

В силу леммы 7 получим

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))](UτA+V(ξ j, t0)u − ui j )‖H ≤

≤ (ξ j+1 − ξ j)
(︀
‖eΘ1(A(ξ j)+V(ξ j))(ξ j+1−ξ j))(A(ξ j) +V(ξ j))(UτA+V(ξ j, t0)u − ui j )‖H+

+‖eΘ2A(ξ j)(ξ j+1−ξ j)A(ξ j)(UτA+V(ξ j, t0)u − ui j )‖H + ‖e
Θ3V(ξ j)(ξ j+1−ξ j)V(ξ j)(UτA+V(ξ j, t0)u − ui j )‖H

)︀
≤ beMVξ jϵ

при некотором b = b(MV ,V,T, u) > 0. Следовательно, из (40) следует, что для любого ϵ > 0 существует Bϵ > 0
такое, что при всех j ∈ 0, . . . ,N − 1 получим

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤ (bϵ + Bϵ|τ|)(ξ j+1 − ξ j)‖u‖D.

Поэтому, в силу (39) имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤

N−1∑︁
j=0

(bϵ + Bϵ‖τ‖)|ξ j+1 − ξ j|‖u‖D ≤ (bϵ + Bϵ‖τ‖)|T − t0|‖u‖D

и, значит, справедливо утверждение леммы 11.
Лемма 11 позволяет получить аппроксимацию возмущенного эволюционного семейства посредством ите-

раций невозмущенного с эволюционным семейством, порожденным возмущением. В случае независящих от
времени генераторов и возмущений этот результат совпадает с формулой Троттера. Именно для приближения
такими итерациями возмущенного эволюционного семейства нам потребуются наиболее жесткие ограничения
на возмущения, сформулированные в лемме 5.

Теорема 6 (обобщенная формула Троттера). Пусть выполнены условия предположений 1–5. Пусть функция
V(s), s ≥ 0, удовлетворяет условиям леммы 5. Тогда для любого t0 ≥ 0, любого T ∈ (t0,+∞] и для любого u0 ∈ H
имеем

lim
|σ([s,t])|→0

sup
t0≤s≤t≤T

‖UA+V(t, s)u0 − eA(ξn−1)(ξn−ξn−1)eV(ξn−1)(ξn−ξn−1) ∘ . . . ∘ eA(ξ0)(ξ1−ξ0)eV(ξ0)(ξ1−ξ0)u0‖H = 0, (41)

где ξ0, . . . , ξn – точки разбиения σ([s, t]) отрезка [s, t] и |σ([s, t])| = max{|ξ1 − ξ0|, . . . , |ξn − ξn−1|} – мелкость этого
разбиения.
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Доказательство. Пусть u ∈ D, тогда eτA(t)u, eτV(t)u ∈ D для всех t ≥ 0, τ > 0 и множество Mu компактно в D в
силу леммы 10. Выберем некоторое ϵ > 0.Фиксируем некоторое T > 0.

В силу теоремы 4 двухпараметрическое эволюционное семейство UA+V(t, s), (t, s) ∈ R2
≤, определено и для

любого T > 0 выполнено

lim
|τ([0,T ])|→0

(︂
sup

0≤s≤t≤T
‖(UA+V(t, s) −UτA+V(t, s))u‖H

)︂
= 0,

гдеUτA+V(t, s) – кусочно-полугрупповое двухпараметрическое эволюционное семейство, определенное по опе-
раторнозначной функции A+V для каждого разбиения τ = τ([0,T ]) по формуле (20). Поэтому существует такое
δ > 0, что при всех τ : |τ| < δ выполняется оценка

sup
0≤s≤t≤T

‖(UA+V(t, s) −UτA+V(t, s))u‖H <
ϵ

4
.

Поскольку u ∈ D, то в силу леммы 11 существует постоянная Aϵ > 0, такая, что для любых (t, s) : 0 ≤ s ≤ t ≤ T
выполняется неравенство

‖(UτA+V(t, s) −UτA,V(t, s))u‖H ≤
ϵ

4
+ Aϵ|τ|.

Следовательно, найдется такое σ ∈ (0, δ), что для всех разбиений τ : |τ| < σ выполняется неравенство

sup
0≤s≤t≤T

‖(UA,V(t, s) −UτA+V(t, s))u‖H <
3ϵ
4
. (42)

Пусть теперь u ∈ H. Тогда найдется такое u0 ∈ D, что ‖u − u0‖H ≤
ϵ

8 e−T (M+B), поэтому

sup
0≤s≤t≤T

‖(UA,V(t, s)(u − u0)‖H <
ϵ

8
; ‖UτA+V(t, s))(u − u0)‖H <

ϵ

8
.

Фиксировав такое u0 получим, что найдется такое σ ∈ (0, δ), что для всех разбиений τ : |τ| < σ выполняется
неравенство (42). Следовательно, найдется такое σ > 0, что для любого разбиения τ : |τ| < σ справедливо
неравенство

sup
0≤s≤t≤T

‖(UA,V(t, s) −UτA+V(t, s))u‖H < ϵ.

Выразим значение меры µUA+V на произвольном цилиндрическом множестве из 𝒞yl с базой из принадлежа-
щих кольцу ℛ множеств, через значение меры µUA на множествах алгебры𝒜𝒞yl. Положим µUA∘G = Λ(UA ∘G),
где (UA ∘G)(t, s) = UA(t, s)G(t, s), (t, s) ∈ R2

≤ и

G(t, s) = e

t∫︀
s
V(ξ)dξ

, (t, s) ∈ R2
≤.

Фиксируем произвольное цилиндрическое множество Ct
B ∈ 𝒞yl с базой, состоящей из множеств, принадлежа-

щих кольцу ℛ. Тогда согласно (33) имеем

Λ[UA](Ct
B) = µUA (Ct

B) = (χBn ,UA(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)χB0 ), n ∈ N, (43)

µ
UA∘G(Ct

B) = (χBn ,UA(tn, tn−1)G(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)G(t1, t0)χB0 ), (44)

Bi ∈ ℛ, ∀ i = 0, . . . n.

Без ограничения общности можно считать, что t0 = 0. Фиксируем некоторое T > 0 и рассмотрим (t, s) ∈ R2
≤

такие, что 0 ≤ s ≤ t ≤ T . Рассмотрим цилиндрические множества Ct
B с t ⊂ [0,T].

Пусть S∞(E) – пространство простых измеримых относительно сигма-алгебры 𝒜R комплекснозначных
функций на пространстве E, наделенное sup-нормой. Пусть L∞(E) – пополнение пространства S∞(E), явля-
ющееся подпространством банахова пространства L∞(E). Символом L∞(R+,L∞(E)) обозначим пространство,
являющееся пополнением по sup-норме пространства S∞(R+, S∞(E)) простых измеримых отображений полу-
оси R+ в банахово пространство L∞(E) (см. [8]).

Поэтому из условия V ∈ L∞(R+,L∞(E)) следует, что существуют последовательность {τl} разбиений отрезка
[0,T ] набором точек {sl

0, s
l
1, . . . , s

l
Kl
}на конечную совокупность дизъюнктных промежутков {∆l

1, . . . ,∆
l
Kl
}, последо-

вательность {πl} разбиений пространства E на конечную совокупность дизъюнктных подмножеств {Bl
1, . . . , B

l
Ml
}
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из σ-алгебры𝒜R и последовательность наборов комплексных чисел αl = {α
l
k,m, k ∈ 1, . . . ,Kl, m ∈ 1, . . . ,Ml}, l ∈ N,

такие, что
lim
l→∞

(︀
‖ ‖Vl(t) − V(t)‖L∞(E))‖L∞([0,T ])

)︀
= 0, (45)

где {Vl} : N→ S∞(R+,S∞(E)) – последовательность простых функций вида

Vl(s, x) =
Kl∑︁

k=1

Ml∑︁
m=1

α
l
k,mχ∆l

k
(t)χBl

m
(x), x ∈ E.

Следовательно, ‖ ‖Vl(t) −V(t)‖B(H)‖L∞([0,T ]) → 0 при l→ ∞, и потому

lim
l→∞

sup
t,s∈[0,T ]

||G(t, s) −Gl(t, s)||B(H) = 0 (46)

при каждом T > 0, где Gl(t, s) = exp(
t∫︀

s
Vl(ξ)dξ), (t, s) ∈ R2

≤ при каждом l ∈ N.

Тогда согласно (44) для произвольного фиксированного множества Ct
B ∈ Cyl при t ⊂ [0,T] имеет место

следующая поточечная сходимость цилиндрических мер:

Λ[UA ∘G](Ct
B) = lim

l→∞

(︀
Λ[UA ∘Gl](Ct

B)
)︀
. (47)

При каждом l ∈ N получаем

Λ[UA ∘Gl](Ct
B) = (χBn ,UA(tn, tn−1)Gl(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)Gl(t1, t0)χB0 ) =

= (χBn ,UA(tn, tn−1) exp

⎛⎝ tn∫︁
tn−1

Vl(ξ)dξ

⎞⎠PBn−1 . . .PB1UA(t1, t0) exp

⎛⎝ t1∫︁
t0

Vl(ξ)dξ

⎞⎠ χB0 ). (48)

Для фиксированного множества Ct
B на отрезке выбран фиксированный набот точек t = {t0, t1, . . . , tn} ⊂

[0,T]. При каждом l ∈ N функция Vl ∈ S∞(R+,S∞(E)) из удовлетворяющей условию (45) последовательности
{Vl} имеет вид

Vl(s, x) =
Kl∑︁

k=1

Ml∑︁
m=1

α
l
k,mχ∆l

k
(t)χBl

m
(x), x ∈ E, (49)

где {∆l
1, . . . ,∆

l
Kl
} – разбиение отрезка [0,T ] на промежутки набором точками {sl

0, s
l
1, . . . , s

l
Kl
}. Причем при каж-

дом l ∈ N можно, при необходимости, дополнительно разбить промежутки ∆l
1, . . . ,∆

l
Kl

таким образом, что
{t0, t1, . . . , tn} ⊂ {sl

0, s
l
1, . . . , s

l
Kl
}. За счет этого для каждого k ∈ {1, . . . ,Kl} определено единственное j(k) ∈ 1, . . . , n

такое, что int(∆l
k) ⊂ [t j(k)−1, t j(k)). Для каждого промежутка [t j−1, t j) из соответствующего фиксированному набору

временных индексов t разбиения {[t0, t1), . . . , [tn−1, tn)} промежутка [t0, tn) ⊂ [0,T ] положим

Kl
j = {k ∈ {1, . . . ,Kl} : ∆l

k ⊂ [t j−1, t j)}, j = 1, . . . , n.

Тогда для каждого интеграла в показателях экспонент в формуле (48) при всех j ∈ {1, . . . , n} имеем

t j∫︁
t j−1

Vl(ξ, x)dξ =
∑︁
k∈Kl

j

Vl|∆l
k
(x) |∆l

k | =
∑︁
k∈Kl

j

Ml∑︁
m=1

α
l
k,mχBl

m
(x) |∆l

k |, x ∈ E,

значит,
t j∫︁

t j−1

Vl(ξ)dξ =
∑︁
k∈Kl

j

Ml∑︁
m=1

α
l
k,mPBl

m
|∆l

k |,

где PB – ортогональный проектор в пространстве H, действующий как оператор умножения на индикаторную
функцию измеримого множества B ∈ 𝒜R. Поэтому c учетом, что PBl

k
PBl

m
= PBl

k

⋂︀
Bl

m
= PBl

m
δk,m, при всех j ∈

{1, . . . , n} имеем

exp

⎛⎜⎝ t j∫︁
t j−1

V(ξ)dξ

⎞⎟⎠ = exp

⎛⎝∑︁
k∈Kl

j

Ml∑︁
m=1

|∆l
k |α

l
k,mPBl

m

⎞⎠ = Ml∑︁
m=1

exp

⎛⎝∑︁
k∈Kl

j

|∆l
k |α

l
k,m

⎞⎠PBl
m
.
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Поэтому из (48) получаем

Λ[UA ∘Gl](Ct
B) = (χBn ,UA(tn, tn−1)Gl(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)Gl(t1, t0)χB0 ) =

= (χBn ,UA(tn, tn−1)

⎡⎣ Ml∑︁
mn=1

exp

⎛⎝∑︁
k∈Kl

n

|∆l
k |α

l
k,mn

⎞⎠PBl
mn

⎤⎦PBn−1 . . .PB1UA(t1, t0)

⎡⎣ Ml∑︁
m1=1

exp

⎛⎝∑︁
k∈Kl

1

|∆l
k |α

l
k,m1

⎞⎠PBl
m1

⎤⎦ χB0 ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

n∏︁
j=1

exp

⎛⎝∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

⎞⎠ (χBn ,UA(tn, tn−1)PBl
mn∩Bn−1 . . .PBl

m2
∩B1UA(t1, t0)PBl

m1
∩B0χB0 ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp

⎛⎝ n∑︁
j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

⎞⎠ µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂
. (50)

Теорема 7. Пусть UA : R2
≤ → B(H) – двухпараметрическое эволюционное семейство, удовлетворяющее усло-

виям предположений 1–5 и T ∈ (0,+∞). Пусть V ∈ C1(R+,L∞(E)), ‖V(t)‖L∞(E) < (‖(A(t))−1‖B(H))−1 при всех t ≥ 0 и
V(s)D ⊂ D при всех s ≥ 0. Тогда для любых u, v ∈ H имеет место следующая формула Фейнмана–Каца:

(UA+V(T, 0)u, v) =
∫︁

ℳ([0,T ], E)

exp

⎛⎝ T∫︁
0

V(s, γ(s))ds

⎞⎠ u(γ(0))v̄(γ(T ))dΛ(UA)(γ), (51)

где правая часть (51) является символом, обозначающим предел

lim
n→∞

⎛⎜⎝lim
l→∞

⎡⎢⎣ ∫︁
ℳ([0,T ], E)

exp

⎛⎜⎝ n∑︁
j=1

j
n T∫︁

j−1
n T

Vl(s, γ(s))ds

⎞⎟⎠ u(γ(0))v̄(γ(T ))dΛ(UA)(γ)

⎤⎥⎦
⎞⎟⎠ . (52)

Доказательство. Рассмотрим значения (χBn , UA+V(T, 0)χB0 ) для произвольных B0, B ∈ ℛ— этого будет доста-
точно, поскольку пространство S (ℛ) всюду плотно в пространстве H.

Рассмотрим функцию

F(t, s) = UA(t, s) exp

⎛⎝ t∫︁
s

V(ξ)dξ

⎞⎠ = UA(t, s)GV(t, s), (t, s) ∈ R2
≤.

Согласно теореме 6, если {τn} – риманова последовательность разбиений отрезка [0,T ] точками ξn
j =

T
n j,

j = 0, 1, . . . , n, то при любом B0 ∈ ℛ имеет место равенство (41), т.е.

UAV(t, 0)χB0 = lim
n→∞

F(t, ξn
Kn(t))F(ξn

Kn(t), ξ
n
Kn(t)−1) . . .F(ξn

1, ξ
n
0)χB0 = (53)

= lim
n→∞

UA(t, ξn
Kn(t))GV(t, ξn

Kn(t))UA(ξn
Kn(t), ξ

n
Kn(t)−1)GV(ξn

Kn(t), ξ
n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GV(ξn

1, ξ
n
0)χB0 ,

где Kn(t) = max{ j ∈ {0, 1, . . . , n} : ξn
j < t}. Следоватетельно, если {Vl}– последовательность простых, т.е. имеющих

вид (49), функций аппроксимирующих функцию V в смысле условия (45), то в силу (47), при каждом n ∈ N
справедливо равенство

UA(t, ξn
Kn(t))GV(t, ξn

Kn(t))UA(ξn
Kn(t), ξ

n
Kn(t)−1)GV(ξn

Kn(t), ξ
n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GV(ξn

1, ξ
n
0)χB0 =

= lim
l→∞

UA(t, ξn
Kn(t))GVl

(t, ξn
Kn(t))UA(ξn

Kn(t), ξ
n
Kn(t)−1)GVl

(ξn
Kn(t), ξ

n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GVl

(ξn
1, ξ

n
0)χB0 .

При каждом n ∈ N положим Bn = B ∈ ℛ. Тогда при каждом n ∈ N из (53) с помощью (50) получаем

(χB, UA+V(t, 0)χB0 ) = lim
n→∞

[︂
lim
l→∞

(χBn ,UA(t, ξn
Kn(t))GVl

(t, ξn
Kn(t)) . . .UA(ξn

1, ξ
n
0)GVl

(ξn
1, ξ

n
0)χB0 )

]︂
=

= lim
n→∞

⎡⎣lim
l→∞

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp(
n∑︁

j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

)µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂⎤⎦ . (54)
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Поскольку при каждом l ∈ N функция Vl имеет вид (49), то при любых n, l ∈ N функция

Φ(γ) = χBn (γ(T ))χB0 (γ(0)) exp

⎛⎜⎝ n∑︁
j=1

j
n T∫︁

j−1
n T

Vl(s, γ(s))ds

⎞⎟⎠ , γ ∈ ℳ([0,T ], E),

стоящее под знаком предела в (52) при u = χB0 , v = χBn , может принимать лишь конечное множество значений
на пространствеℳ([0,T ], E) и является ступенчатой функцией, измеримой относительно алгебры𝒜Cyl. Следо-
вательно, функция Φ : ℳ([0,T ], E)→ C интегрируема по мере Λ(UA) и справедливо равенство

∫︁
ℳ([0, t], E)

exp

⎛⎜⎝ n∑︁
j=1

j
n t∫︁

j−1
n t

Vl(s, γ(s))ds

⎞⎟⎠ χB0 (γ(0))χBn (γ(t))dΛ(UA)(γ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp(
n∑︁

j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

)µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂
,

что совпадает с выражением (54).
Таким образом, получены аппроксимации двухпараметрического эволюционного семейства UA+V инте-

гралами от линейных комбинаций индикаторных функций по мере Λ(UA).
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ВВЕДЕНИЕ

Вместе с вращением Земли и влиянием на нее внешних факторов мантийная конвекция является ведущей
составляющей термогравитационного механизма динамики геосфер, что подчеркивает ее значимость при рас-
смотрении вопросов строения и динамических свойств оболочек Земли. Самостоятельный интерес представля-
ет изучение динамики границ геосфер, в особенности в зоне непосредственного контактного взаимодействия
двух различных механизмов переноса тепла: конвективного в сравнительно маловязкой астеносфере и кондук-
тивного – в твердой литосфере.

В геодинамике принимается определение субдукции как “процесс погружения океанической литосферной
плиты/слэба в мантию под континент или островную дугу” [1], где основными движущими механизмами дина-
мики Земли выступают: заключенный в ней запас тепловой энергии [2], различие плотностей между холодной
субдуцирующей плитой и окружающей мантией. Согласно положениям тектоники литосферных плит слэбом
именуется выделяемый по данным сейсмотомографии фрагмент океанической литосферной плиты мощно-
стью 80–100 км, погружающийся (субдуцируемый) в мантию при субдукции [3]. Зона субдукции хорошо про-
слеживается на сейсмотомографических профилях вплоть до границы верхней и нижней мантии (670 км) [4].

Математический аппарат для построения современных моделей динамики мантии основан на положениях
механики сплошной среды, которые следуют квазигидродинамическим уравнениям в стоксовском приближе-
нии, уравнениям тепломассопереноса и, в большинстве случаев, принятием приближения Буссинеска (ОБ). За-
писи уравнений моделей разделяются способом представления погружающейся (субдуцированной) плиты как
самостоятельного геодинамического объекта, постановкой граничных условий и принятием начальных рас-
пределений переменных.

Известен ряд способов представлений слэба. Так, в [5, 6] образом слэба выступает тонкая упругая пластина
отрицательной плавучести. Такой подход допустим только для начальных слоев верхней мантии, где выполня-
ются положения Кирхгофа о сохранении нормалей к срединной поверхности деформируемой плиты и сохра-
нении ее толщины [7]. Тем не менее, результат сейсмического зондирования указывает на снижение толщины
плиты [4] и нарушении остальных положений Кирхгофа.

При моделировании под слэбом обычно принимается холодный поток особой квазижидкости, динамика
которой следует тем же уравнениям, что и модель мантийной конвекции [8–11]. Кроме того, не рассматрива-
ется этап его начального погружения в мантию.

Целью этой работы является изучение перестройки структуры мантийной конвекции, которая вызвана суб-
дукцией. В работе слэб представляет самостоятельный модельный объект, динамика которого определяется
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уравнениями Стокса. Учитываются потери слэбом его легких фракций и просочившихся сюда объемов мор-
ской воды. Расчет динамики мантийной конвекции и перестройка ее структуры выполнена в переменных
завихренность-функция тока, а расчет динамики слэба- на основании метода сглаженных частиц (SPH).

1. МОДЕЛЬ ВЕРХНЕМАНТИЙНОЙ КОНВЕКЦИИ

Мантийная конвекция сочетает конкуренцию между диффузией тепла (теплопроводностью), сопротивле-
нию движению (вязкостью) и выталкивающими силами (способностью к тепловому расширению) [12]. Мо-
дельным приближением верхней мантии выступает несжимаемая ньютоновская квазижидкость. Задача рас-
сматривается в двумерной постановке в декартовой системе координат. Вследствие высокой вязкости мантии
конвективные течения определяются уравнениями Стокса, безразмерная запись которых в терминах завихрен-
ность – функция тока принимает вид [13, 14]

∆µξ − 2
[︀
µxxψyy − 2µxyψxy + µyyψxx

]︀
− Raρx = 0, (1)

ψxx + ψyy − ξ = 0, (2)

Tt + (ψyT )x − (ψxT )y = ∆T, (3)

ρt + (ψyρ)x − (ψxρ)y = χρ∆ρ, (4)

где безразмерные переменные принимают такой смысл: x, y — оси декартовой системы координат (x = y = 0 ле-
вый угол), ось y направлена вниз; t — безразмерное время; ∆ = ∂2

∂x2 +
∂2

∂y2 — двумерный оператор Лапласа; µ (T, y),
ξ (x, y, t), ψ (x, y, t), ρ (x, y, t) — динамическая вязкость мантии, завихренность и функция тока мантийных тече-
ний, плотность мантии; U (x, y, t) ≡ ψy, V (x, y, t) ≡ −ψx, T (x, y, t) — латеральная и вертикальная скорости мантий-
ных течений, распределение температуры в мантии; Ra — численный параметр; χρ — коэффициент диффузии
плотности горных пород; нижние индексы переменных указывают на соответствующие одноименные частные
производные.

Если для представления ρx используется приближение Буссинеска, то

Ra = gρ̄βT (Tmax − Tmin)H2/µ̄Ū;

βT = 3.75 · 10−5 [1/℃] — коэффициент линейного расширения вещества верхней мантии. Обезразмеривание
уравнений выполнялось стандартным образом (штрихом отмечены безразмерные переменные):

(x, y) = H · (x, y)′, µ = µ̄ · µ′, T = (Tmax − Tmin)−1T ′, t = Hχ−1t′,

ρ = ρ̄ · ρ, χ = λ/ρ̄CP, Ū = H−1
χ, (U,V) = Ū · (U,V)′,

где µ̄ — масштабный множитель вязкости, а Ū – характерная скорость мантийных течений; H = 6.7 · 105 м –
глубина верхней мантии, xmax = 6.7 · 106 м – латеральная протяженность области вычислений; Tmin, Tmax – пре-
дельные значения мантийных температур; χ— температуропроводность мантии, λ – теплопроводность, а CP –
удельная изобарическая теплоемкость; g = 9.8 м2 · с−1 – ускорение свободного падения. Далее в уравнениях
модели штрихи опускаются. При этих значениях параметров Ra = 5.745 · 105.

Характерные значения параметров среды модели принимают значения:

H = 6.7 · 105 м, µ̄ = 1023 Па · с, χ = 2.88 · 10−7 м2 · с−1,

χρ = 2 · 10−8 м2/с, ρ̄ = 3.64 · 103 кг · м−3, Ū = 10−13 м · с−1.

Расчетная область представляет двумерную прямоугольную область декартовой системы координат. При-
нимается один и тот же характер граничных условий для температуры и плотности: отсутствие потоков тепла и
вещества мантии на боковых границах области; ненулевые потоки на горизонтальных границах

Tx (0, y, t) = Tx (xmax, y, t) = 0, Ty (x, 0, t) = qM , Ty (x, 1, t) = qC ,

ρx (0, y, t) = ρx (xmax, y, t) = 0, ρy (x, 0, t) = QM , ρy (x, 1, t) = QC ,
(5)

где qM, qC, QM, QC – потоки тепла и вещества на верхней и нижней границах мантии. Для скоростей заданы
условия прилипания на боковых границах

ψ (0, y, t) = ψ (xmax, y, t) = 0, ψn (0, y, t) = ψn (xmax, y, t) = 0, (6)
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где ψn — производная по нормали к границам области. На участке верхней мантии, где океаническая плита
движется к месту своего погружения и на всей нижней подошве мантии принимается условие проскальзывания

ψ (x, 0.t) = ψ (x, 1, t) = 0, ∂2
ψ (x ⊆ X, y = 0, t) /∂n2 = 0, (7)

где X – участок верхней границы до участка погружения субдукции слэба.
Для решения эллиптических уравнений (1) и (2) используется метод установления, сущность которого со-

стоит в применении псевдонестационарной трансформации уравнений в их параболические приближения [15].
Для чего вводится фиктивная временная производная, которая выполняет роль параметра контроля квазине-
стационарных итераций.

2. МОДЕЛЬ ДИНАМИКИ СЛЭБА

Анализ профилей сейсмотомографии [4] показывает существенное превышение протяженности слэба над
его толщиной, что допускает представления его модельного образа посредством гибкого тонкого стержня и
допустимость принятия независимости между латеральной и вертикальной скоростями субдукции. Принима-
ется также гидростатичность состояния слэба. Погружение слэба происходит при условии ρ* − ρ > 0 , когда
плотность слэба ρ* превышает плотность мантии. Тогда модель субдукции можно определить такими безраз-
мерными уравнениями: (︀

ηux
)︀

x − RaS yρ*x = 0, (8)(︀
ηvy

)︀
y + RaS g(ρ* − ρ) = 0, (9)

T *t + (uT *)x + (vT *)y = k · ∆T *, (10)

ρ
* = ρ*0

[︀
1 − βT (T *max − T *min) · T * − f (t, y)

]︀
, (11)

где η (T, y) – вязкость слэба (порядка 1021–1023 Н · с ·м−2 [16]); u (x, t), v (y, t), T * (x, y, t), ρ* (x, y, t) – его латеральная
и вертикальная скорости погружения, температура и плотность слэба; y – безразмерная вертикальная коорди-
ната; ū = 1.6 · 10−9 м · с−1 – характерная скорость субдукции; κ – коэффициент температуропроводности слэба;
RaS = gρ̄H2

η̄ū – плотностное число Рэлея для слэба; ρ*0 = 4.6 · 103 кг · м−3 – масштаб изменения плотности слэба;

для численного моделирования принимались следующие характерные значения параметров: η̄ = 1025 Па · с,
k = 4.608 · 10−3 м2 · с−1, RaS = 2.392 · 103; f (t, y) – безразмерная концентрация его легкого вещества, которая
вследствие всплытия легких составляющих вещества слэба характеризует прирост его плотности.

При записи (8)–(11) принимается приближение вещества слэба смесью тяжелой и легкой компонент, дина-
мика последних обусловлена следующим. Морская вода просачивается в океаническую литосферу через тре-
щины и поры, где вступает в реакцию с минералами в земной коре и мантии с образованием водных минералов
(таких как серпентин), которые накапливают воду в своих кристаллических структурах [17]. Объемы этой воды
и флюиды слэба входят в состав его легких компонент. Поэтому различные трансформации таких минералов (в
частности, формирование за счет выжимания воды их более плотных упаковок) можно интерпретировать как
частичный фазовый переход вещества слэба. В дальнейшем локализация этого процесса уже в самой мантии
приводит к аккумуляция таких флюидов, что в последующем может вызвать сейсмичность и плавление внутри
субдуцируемой плиты, а далее и в вышележащем мантийном клине.

Глубинное повышение давления и прирост температуры среды приводит к всплытию легких компонент сл-
эба и, как результату, росту концентрации его тяжелой составляющей и последующему росту плотности слэба.
Механизм этого процесса видится в следующем. На верхних слоях мантии, где вещество слэба перенасыще-
но объемами просочившейся сюда морской воды (и, соответственно, легких компонент слэба), происходит
массовое всплытие и формирование избыточных объемов высокотемпературных и насыщенных газами ком-
понент последующего магматического очага. До момента, когда плотность слэба оказывается близкой плотно-
сти мантии, его погружение снижается и может совсем прекратиться. Происходит так называемая стагнация,
максимальная зафиксированная глубина которой не превышает 700 км [4]. Области стагнации отчетливо про-
слеживаются также по гипоцентрам глубоких землетрясений. Далее по мере роста концентрации тяжелой ком-
поненты происходит прорыв зоны стагнации и последующее затем погружение отдельных его частей вплоть до
ядра земли [18].

Простая запись такого механизма здесь представлена в виде

f (t, y) = a f (t) · y · exp[−b f (t) · y], (12)

где a f (t) , b f (t) — некоторые неотрицательные функции. Максимальное значение этой функции

maxy f (t, y) = y f (t) · exp(−1)
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достигается при y f (t) = a f (t) /b f (t), которое здесь допускает интерпретацию как глубины наибольшего оттока
легких компонент слэба.

Для решения уравнений (8)–(10) требуется вычисление частных производных в достаточно тонкой криво-
линейной области (ее ширина 80–100 км) размещения слэба, что обусловливает применение адекватных бес-
сеточных методов. В этой ситуации уместным видится применение бессеточного лагранжевого метода сгла-
женных частиц (SPH) [19]. Сущность метода состоит в интегральной интерполяции функций, которые пред-
ставлены конечным множеством дискретных частиц. В рамках SPH интерполяционные соотношения для
вычисления некоторой функции Φ (r), ее градиента и лапласиана для p-й частицы с текущей координатой
rp определяются выражениями

Φ
(︀
rp
)︀
=

Q(p)∑︁
q

mq

ρq
ΦqW(|rp − rq|, h), (13)

∇Φ
(︀
rp
)︀
=

Q(p)∑︁
p

mq

ρq
Φq∇W(|rp − rq|, h), (14)

∆Φ
(︀
rp
)︀
=

Q(p)∑︁
q

mq

ρq

(︀
Φp − Φq

)︀ [︂ 1
xpq

dWpq

dxq
+

1
ypq

dWpq

dq

]︂
, (15)

где p, q – порядковые номера частиц, p, q = 1 ÷ N (t); N (t) – текущее суммарное количество частиц метода;
Q(p) – совокупность частиц, которые оказываются соседними к p-й частице (методические вопросы постро-
ения этого набора рассмотрены в [20]); xpq = xp − xq, ypq = yp − yq и Wpq = W

(︀
rp − rq |, h

)︀
– функция ядра, на

основании которой аналитически рассчитываются производные в квадратных скобках; h – радиус сглажива-
ния. Представление лапласиана ∆Φ

(︀
rp
)︀

следует работе [21].
Для момента t + 1 координаты частиц определяются выражениями

xp(t + 1) = xp(t) + dt · up(t) и yp(t + 1) = yp(t) + dt · vp(t), (16)

где dt – временной шаг модели; up (t), vp (t) – латеральная и вертикальная скорости частиц, которые при задан-
ных начальных и граничных условиях определяются методом SPH из уравнений (10) и (11).

3. ЧИСЛЕННЫЙ АЛГОРИТМ

Вычислительная схема строилась на неравномерной по x и равномерной по y расчетных сетках

ωx = {xi = xi−1 + (hx)i, i = 1 ÷ Nx, x0 = 0, xNx = Xmax/H},

ωy = {y j = y j−1 + hy, j = 1 ÷ Ny, y0 = 0, yNy = 1},

где (hx)i, hy – длины соответствующих шагов сетки (hy = const) сетки; Nx, Ny – число узлов вдоль каждого направ-
ления; вдоль направления x сетка сгущается в области ее центральной части; в расчетах принимается постоян-
ный шаг ∆t по времени. Параметры вычислительного процесса определяются значениями: при таких числен-
ных значениях параметров вычислений: Nx = 100, Ny = 50, ∆t = 10−4, ∆τ = 10−6, ∆x = 9.67 · 10−2, ∆y = 5.76 · 10−2.

Здесь является параметром итераций решения уравнений (1), (2), (8) и (9) методом установления. Времен-
ной промежуток H/ū составляет 9.1324 · 107 лет (ū — характерный масштаб скорости погружения слэба). Число
временных слоев Nt = 2000 и временной шаг ∆t = 4.132 · 104 лет.

Сеточные операторы Lx, Lxx, Lxy, Ly, Lyy определяются выражениями

(Lx f )i, j =
fi+1, j − fi−1, j

(hx)i+1 − (hx)i
, (Lxx f )i, j =

1
h̄i

[︂
fi+1, j − fi, j

(hx)i+1
−

fi, j − fi−1, j

(hx)i

]︂
,

(Lxy f )i, j =
1

2hy

fi−1, j−1 − fi+1, j−1 − fi−1, j+1 + fi+1, j+1

(hx)i + (hx)i+1
,

(Ly f )i, j =
fi, j+1 − fi, j−1

2hy
, (Lyy f )i, j =

fi, j−1 − 2 fi, j + fi, j+1

h2
y

,

где i = 2 ÷ Nx − 1, j = 1 ÷ Ny и h̄i =
[︀
(hx)i + (hx)i+1

]︀
/2; i = 1 и i = Nx, отвечают определению граничных условий.
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Выражение для безразмерной вязкости верхней мантии и слэба здесь следует соотношению

µ = exp (−aT T + bYy) ,

где aT = −0.2 и bY = 1.33, см. [10].
Поскольку критерий устойчивости Куранта–Фридрихса–Леви (U/∆x2+V/∆y2)dt решения уравнений систе-

мы здесь существенно меньше 1, то для решения уравнений (1)–(2) и (8)–(9) используются явные разностные
схемы.

Разностная схема для уравнений мантийной конвекции принимает вид

ξ
s+1,n
i j = ξ

s,n
i j + ∆τ

[︀
(Lxx + Lyy)(µξs,n)i j − 2Rs,n

i j − RaLx(ρs,n)i j
]︀
, (1)′

Rs,n
i j = (LxxµLyyψ

s,n)i j − 2(LxyµLxyψ
s,n)i j + (LyyµLxxψ

s,n)i j,

ψ
s+1,n
i j = ψ

s,n
i j + ∆τ

[︀
− ξ

s,n
i j + (Lxx + Lyy)ψs,n

i j

]︀
, (2)′

T n+1
i j = T n

i j + ∆1t
[︀
− Lx(UT )n

i j − Ly(VT )n
i j + (Lxx + Lyy)T n

i j

]︀
, (3)′

ρ
n+1
i j = ρ

n
i j + ∆1t

[︀
− Lx(Uρ)n

i j − Ly(Vρ)n
i j + χρ(Lxx + Lyy)ρn

i j

]︀
, (4)′

U s+1,n
i j = Lyψ

s,n
i j , V s+1,n

i j = −Lxψ
s,n
i j ,

где верхний индекс n указывает текущее время tn расчета; индекс s является параметром итерационного поиска
решений уравнений методом установления; введение в расчеты временного шага ∆1t = 10−4∆t вызвано пробле-
мой синхронизации мантийной конвекции и субдукции (различием масштабов времени мантийной конвекции
H/Ū и субдукции H/ū).

Граничные и начальные условия (5)–(7) записываются подобным образом.
В качестве функции ядра для расчета динамики субдукции использовался сплайн 3-й степени [19]

W
(︀
|r − rq |, h

)︀
=

⎧⎨⎩
15
πh6 (h − |r − rq|)3, 0 < |r − rq| < h;

0, |r − rq| > h.

Вычислительные схемы строились на основании выражений (13)–(15)

us+1,n
p = us,n

p + dτ

[︃Q(p)∑︁
q

mq

(ρ*q)s,n ηpq

(︂
up − uq

xpq

dWpq

dxq

)︂s,n

− Ra(D)
S yq(ρ*q)s,n

x

]︃
,

vs+1,n
p = vs,n

p + dτ

[︃Q(p)∑︁
q

mq

(ρ*q)s,n ηpq

(︂
up − uq

ypq

dWpq

dyq

)︂s,n

− Ra(D)
S ((ρ*q)s,n

− ρi j)

]︃
,

T s+1,n
p = T s,n

p + dt

{︃Q(p)∑︁
q

mq

(ρ*q)s,n λpq

[︂(︀
Tp − Tq

)︀(︂ 1
xba

dWba

dxa
+

1
yba

dWba

dya

)︂]︂s,n
}︃
,

(︀
ρ
*
p

)︀s+1,n
= ρ*0

{︃
1 − βT

(︀
T *max − T *min

)︀ Q(p)∑︁
q

[︃
mq

ρ*q
T *q W(rp − rq|, h)

]︃s,n

− f
(︀
t, yq

)︀}︃
,

где s — параметр итерационного поиска решений уравнений методом установления; ηpq = ηp+ηq и λpq = λp+λq,
λp — температуропроводность слэба; параметры функции f

(︀
t, yq

)︀
из (12) определяются значениями: b f = y−1

2 и
a f = 0.2 exp(1) · b f ; Q(p) — совокупность частиц, которые оказываются соседними к частице с номером p.

Алгоритм расчета Q(p) выполняется следующим образом. На каждой итерации поиска решения уравнений
частицы размещаются в ячейки вычислительной схемы и далее, если частица с номером p попала в (i, j) ячейку,
для нее вычисляется среднее расстояния между ее координатами и координатами частиц из ячеек (i, j), (i ± 1,
j± 1). К соседним частицам причисляются те из них, которые оказываются на расстоянии от рассматриваемой
меньше этого среднего.

Вычислительный алгоритм состоит в следующем. Сначала в области вычислений устанавливается режим
мантийной конвекции, для чего при заданных начальных и граничных условиях (5) на регулярной сетке на-
ходятся решения уравнений (1)–(4). Функция тока на границе мантия-слэб равна нулю, а значение завихрен-
ности на границах следует (6). Решение (8)–(11) выполняется по такой схеме. Для участка поступления слэба
в мантию (ячейка (xA, 1) вычислительной схемы) формируется выборка частиц с фиксированным набором ха-
рактеристик (скорость, температура, плотность). Чтобы избежать скопления частиц на этом участке, следую-
щее формирование такой выборки происходит в момент, когда этот участок свободен от частиц предыдущей
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выборки. Далее динамика частиц следует уравнениям (8)–(16). Воздействие мантийных течений на динами-
ку субдукции здесь учитывается следующим образом. В пограничных для слэба ячейках среды размещаются
выборки частиц с одним и тем же набором среднего для ячейки значением динамических переменных. Коор-
динаты частиц определяются случайным образом.

4. ВЫЧИСЛИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ

При решении задач моделирования геодинамики встает проблема формирования начальных распределений
переменных моделей, которая вызвана трудностями проведения натурных наблюдений. Проведение многооб-
разных численных экспериментов с перебором вариантов значений переменных во многих случаев не дают
полной картины рассматриваемых явлений. Да и указание точных значений переменных мало что дают. Бо-
лее того, выборка начальных распределений уже сама изначально должна быть гетерогенной. Здесь численные
значения атрибутов частиц определяются случайным образом на основании соответствующих диапазонов пе-
ременных модели (8)–(11): скорость 5 ÷ 8 см/год; температура (1000 ÷ 1500) ℃; плотность (3500 ÷ 3600) кг/м3;
концентрация тяжелой компоненты рассчитывалась по формуле (11) подстановкой в ее левую часть значения
плотности. Эти диапазоны были сформированы на основании литературных источников [1, 16, 24–27].

Для проведения вычислительных экспериментов такие начальные распределения для температуры и плот-
ности определялись соотношениям

T (x, y, 1) =
T (L)(x, y)

Tmax − Tmin
+ ξ · 10−2 sin(πy) cos(πx),

ρ(x, y, 1) =
ρ(L)(x, y)

ρ̄
+ ξ · 10−2 sin(πy) cos(πx),

где T (L) (x, y) и ρ(L) (x, y) формировались на базе литературных источников [22, 23]; ξ — равномерно распреде-
ленная на интервале (0, 1) случайная величина, полученная датчиком случайных чисел.

Результаты моделирования мантийной конвекции в зоне субдукции после 1000 и 1500 временных шагов
представлены на фиг. 1, где крупные точки характеризуют координаты участков слэба (для наглядности здесь и
далее масштаб функции тока увеличен в 104 раз). Для понимания особенностей распределений они представ-
лены в непосредственной окрестности слэба.

Анализ показывает плавный характер течений, интенсивность которых растет с течением времени: скорость
в центре конвективной ячейки для случая фиг. 1б почти в два раза выше случая фиг. 1а. Согласно условиям зада-
чи, на границе области выполняется условие прилипания и равенство нулю функции тока. Поскольку граница
между мантией и слэбом является непротекаемой, то на ней функция тока также обращается в нуль, что и при-
водит к плавному обтеканию профилей слэба.

Дальнейшее сопоставление случаев показывает уплотнение распределений значений функции тока и фраг-
ментацию слэба, которая вызвана неравномерным распределением плотности вдоль его длины (она возрастает
вследствие всплытия легкой компоненты и утяжелением с ростом глубины) и воздействием на слэб мантийных
течений.

Погружение плиты в мантию (субдукция) вызывает разбиение исходной конвективной ячейки на ее две
составляющие. В этой ситуации слэб реально выступает вертикальной “перегородкой”.

ЗАКЛЮЧЕНИЕ

В работе рассматривается комплексная модель, составляющими которой выступает модель мантийной
конвекции (уравнения завихренности, функции тока и уравнения тепломассопереноса) и пространственно-
временная модель динамики слэба (уравнения скоростей, уравнения тепломассопереноса, для решения по-
ставленной задачи выполнена адаптация метода SPH). Предлагается модель отделения из состава слэба его
легких компонент, что приводит к росту плотности слэба и допускает интерпретацию как частичного фазового
перехода его вещества.

Воздействие мантийных течений на динамику субдукции здесь учитывается дополнением модельного об-
раза слэба наборами неразличимыми между собой частиц из примыкающих с ним в текущий момент ячеек
мантии.

Воздействие на слэб мантийных течений и неравномерность распределения вдоль него плотности обуслов-
ливает его частичную фрагментацию
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Фиг. 1. Распределения функции тока при t1000 (а), (в) и t1500 (б), (г).
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Abstract. A model of upper mantle convection in the subduction zone of a cold lithospheric plate
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In the present paper, we propose a numerical method for modeling the downstream propagation of optimal disturbances
in compressible boundary layers over three-dimensional aerodynamic configurations. At each integration step, the
method projects the numerical solution of governing equations onto an invariant subspace of physically relevant
eigenmodes; and the numerical integration is performed along the lines of disturbance propagation. The propagation
of optimal disturbances is studied in a wide range of parameters for two configurations: a boundary layer over a swept
wing of finite span, and a boundary layer over a prolate spheroid. It is found that the dependence of the disturbance
energy amplification on the spanwise wavenumber has two local maxima. It is discussed how to combine the developed
method with the modern approaches, which are designed to predict the onset of laminar-turbulent transition using the
eN-method.
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1. INTRODUCTION

One of the possible scenarios of the laminar-turbulent transition is the so-called bypass scenario, which is
accompanied by the development of quasi-stationary disturbances dominated by the streamwise velocity component.
Such disturbances are called streaks or streaky structures. Usually, the bypass scenario takes place at a high degree of the
freestream turbulence.

The streaks develop from streamwise vortices due to the lift-up effect [1]–[3]. The lift-up effect is one of the main
physical mechanisms responsible for a disturbance energy growth at finite time (or space) intervals [4]. Mathematically,
this phenomenon is caused by the non-orthogonality of eigenmodes of the linearized system governing the small-
amplitude disturbance propagation [5]. For some specific disturbances, the transient energy growth might be of significant
magnitude. The disturbance achieving maximum energy amplification at finite time intervals is called an optimal
disturbance [6]–[9]. In particular, the optimal disturbances allow estimating various disturbance characteristics within
the bypass scenario [10].

Spatial, both stationary and traveling, optimal disturbances of incompressible laminar boundary layers were first
computed for the Blasius boundary layer [10, 11]. In these studies, it is taken into account that the main flow is non-
parallel, i.e. the boundary layer thickness increases downstream. The spatial optimal disturbances are found for the
Poiseuille flow in a circular pipe [12] and a plane channel [13], and for the boundary layer over a weakly concave sur-
face [14]. In addition, optimal disturbances are studied for viscous incompressible jets [15,16]. For compressible boundary
layers, the spatial optimal disturbances were first computed in the work [17], with the local-parallel approximation
being applied. For all these main flows with the disturbance parameters ensuring that any individual eigenmode decays
downstream, it is shown that the maximum energy amplification is achieved by stationary vortices either periodic in
spanwise direction or periodic in azimuthal direction (for the circular-pipe flow). The downstream propagation of optimal
disturbances is studied both for the incompressible Falkner–Skan–Cooke boundary layer [18] and the compressible
boundary layer with local self-similarity [19]. In these studies, non-parallel boundary layers are considered as well, and a
variant of PSE method is used for describing the downstream propagation of disturbances. At parameter values ensuring
the main boundary-layer linear instability, it is shown that the energy growth of optimal disturbances might exceed the
growth predicted for modal instabilities by several orders of magnitude. In addition, the maximum energy amplification
is achieved by traveling disturbances.

1) The work is supported by Russian Science Foundation (Grant No. 22–11–00025).
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In the most studies mentioned above, the downstream propagation of small-amplitude disturbances is governed by
equations, where the streamwise viscous dissipation terms as well as the streamwise pressure gradient are regarded as
negligible. The equations thus obtained are parabolic, and the streamwise initial-value problem is well-posed for them.
There is another approach, which does not require neglecting these terms in original equations. Namely, for modeling the
downstream propagation of disturbances, one can project the numerical solution onto a subspace of physically relevant
eigenmodes. This idea [17] is developed [20–22] by the authors, who use the abbreviation OWNS (One-Way spatial
integration of the Navier–Stokes equations) for this class of numerical methods. In the present paper, we use an original
implementation of this approach, where the spectral projector [23] is computed at each integration step to exclude the
contribution of non-physical modes. The non-physical modes are defined as those propagating upstream and growing
downstream at large rates [24]. This method was tested for the downstream propagation of both Tollmien–Schlichting
waves and Goertler vortices in the non-parallel boundary layer over a slightly concave plate [24, 25].

In all the above-mentioned studies, the non-modal stability analysis is performed for canonical main flows, which
depend either on one or two spatial coordinates. The present paper aims at the development of an approach for the
non-modal stability analysis of compressible boundary layers over three-dimensional aerodynamic configurations. This
approach can be served as a basis for predicting the onset of the bypass laminar-turbulent transition in engineering
applications. In addition, the paper discusses how to integrate this approach into a modern technology of the transition
prediction by the eN-method with the example of such a technology proposed in the work [26]. By the developed approach,
we compute the spatial optimal disturbances for two three-dimensional aerodynamic configurations: a boundary layer over
a swept wing of finite span, and a boundary layer over a prolate spheroid. Such a computation is done for the first time.

Over the last ten years, the authors of the present paper have been developing LOTRAN [26, 27], a software package
designed for computing the position of the laminar-turbulent transition for three-dimensional aerodynamic boundary
layers over flow-exposed bodies of small curvature. LOTRAN is widely used both for fundamental scientific research and
for engineering purposes [26, 28–31]. The coupling structure of LOTRAN is presented in Fig. 1.

LOTRAN is designed to work together with any CFD-code that computes a laminar-turbulent flow over a given flow-
exposed body, using some turbulence model (e.g., k-ω SST [32]) and a given intermittency distribution. To compute
the transition position, an iterative process starts. At each iteration, the laminar-turbulent flow is computed by CFD-
code, with zero intermittency being set for the assumed laminar domain (and slightly downstream) and unit intermittency
being set elsewhere. The obtained laminar-turbulent flow data, such as velocity components, pressure, temperature, and
intermittency, are taken as an input for the Main Flow module; this module interpolates the data from the CFD-code

CFD code

laminar-turbulent f low

grid structure  
f low solution

N-factor distribution

LOTRAN

Main Flow

Boundary Layer

Stability Analysis

Transition Analysis

Non-Modal Analysis

Param
eters

Fig. 1. The coupling structure of LOTRAN, the software package used.
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grid to a tetrahedral grid. Next, the Boundary Layer module constructs 2D-slices along disturbance propagation lines in
the domain of interest on the body surface. The procedure for constructing the slices is described in detail in the work
[26]. Then, this module introduces curvilinear orthogonal coordinates along the slices, constructing a computational grid
within these coordinates and interpolating the flow data to that grid from the previous tetrahedral grid. Then, for each slice,
the Stability Analysis module computes the neutral stability curves as well as the growth rates of the most unstable local
modes being harmonic in time and spanwise coordinate. The downstream propagation of small-amplitude disturbances
is governed by the viscous compressible heat-and-mass-transfer equations linearized with respect to the main flow [27].
These equations are briefly described in Section 2 of the present paper. Then, along each slice, the Transition Analysis
module finds the transition onset by the eN-method and evaluates the transition length. These results are given to the
CFD-code to set a new intermittency distribution, and hence compute a new laminar-turbulent flow. Such an iterative
process stops when the transition position converges with an acceptable accuracy.

Section 3 describes a numerical method for computing the spatial optimal disturbances of three-dimensional boundary
layers. A new module, Non-Modal Analysis, implements this method within LOTRAN. The optimal disturbances are
computed along the same slices as for the modal analysis. To this end, we numerically solve streamwise initial-value
problems for the same small-amplitude disturbance propagation equations as within the modal analysis, while the original
method [24,25] is used for the numerical integration. As a result of the numerical integration with different initial values,
we find the matrix of fundamental solutions. This matrix allows computing the spatial optimal disturbances, using the
discrete analogue of the total energy density functional [17, 33].

Each slice consists of a few surface normals with the main flow data. These normals are called main normals. The
distance between the adjacent main normals approximately equals the streamwise size of grid cells, which are used for the
main-flow computation. However, such a distance is usually not small enough to be chosen as the streamwise integration
step for modeling the downstream propagation of disturbances. Therefore, we introduce additional uniform grids between
the main normals assuming that the main flow does not change between the adjacent main normals. The matrix of
fundamental solutions between any two main normals is obtained by the multiplication of those between the adjacent main
normals. This allows us to naturally parallelize the algorithm as well as to reduce the computational cost of parametric
computations. Specifically, if all matrices of fundamental solutions between the adjacent main normals are found, then
the optimal disturbances might be found efficiently for given pair of generation and observation points.

Section 4 shows the results of numerical experiments with the proposed numerical method and the two above-
mentioned configurations. In the range of spanwise wavenumbers favorable for the development of crossflow vortices,
it is shown that the energy amplification has an additional local maximum with the spanwise wavenumber being small.
This phenomenon was previously observed in the laboratory experiments [34] for a swept wing, but was not confirmed
numerically. For a prolate spheroid, this effect has not previously been found either experimentally or numerically.
Section 5 summarizes the results of the present paper.

Throughout the present paper, ‖.‖2 denotes the 2-norm for vectors and matrices, I denotes the identity matrix whose
order is clear from the context, and ′*′ denotes the symbol of conjugate transposition.

2. GOVERNING EQUATIONS

In the Cartesian coordinates (x1, x2, x3), let us consider the non-dimensional governing equations of viscous
compressible media, which represent the conservation law of momentum, energy and mass, and the ideal gas law. Written
with the tensor summation convention, these equations are as follows

ρ

(︂
∂ui

∂t
+ u j
∂ui

∂x j

)︂
= −

1
γM2

∂p
∂xi
+

1
Re
∂σi j

∂x j
,

ρ

(︂
∂T
∂t
+ u j
∂T
∂x j

)︂
= −(γ − 1)ρT

∂u j

∂x j
+
γ

PrRe
∂

∂x j

(︂
κ
∂T
∂x j

)︂
+ γ(γ − 1)

M2

Re
Π,

∂ρ

∂t
+
∂(ρu j)
∂x j

= 0,

p = ρT,

(2.1)

where

σi j = 2µei j + λekkδi j, ei j =
1
2

(︂
∂ui

∂x j
+
∂u j

∂xi

)︂
, Π = σi jei j.

Here u j are the velocity components, ρ is the density, p is the static pressure, T is the temperature, µ and λ are the first
and second viscosity coefficients, κ is the thermal conductivity, and γ is the adiabatic index. The Prandtl number, Mach
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number and Reynolds number are defined as

Pr =
cpµref

κref
, M =

Uref
√
γRTref

, Re =
Uref Lrefρref

µref
, (2.2)

where the specific gas constant is denoted by R, and the specific heat at constant pressure by cp. Here the subscript ref refers
to dimensional scales, with Lref and Uref denoting referential length and velocity scales. We assume that both the dynamic
viscosity µ = µ(T ) and the heat conductivity κ = κ(T ) in (2.1) depend only on temperature, with these dependencies being
given explicitly [27, 35]. For the second viscosity coefficient, the Stokes hypothesis λ = −2µ/3 is assumed.

Suppose the system (2.1) has a stationary solution with the velocity components ūi, temperature T̄ , density ρ̄, pressure
p̄, and the coefficients µ̄ = µ(T̄ ), λ̄ = λ(T̄ ) and κ̄ = κ(T̄ ). In the sequel, such a stationary solution is called the main flow. The
propagation of small-amplitude disturbances against the main flow is governed by the following linearized equations [27]

ρ̄

(︂
∂u′i
∂t
+ ū j
∂u′i
∂x j
+ u′j
∂ūi

∂x j

)︂
+ ρ′ū j

∂ūi

∂x j
= −

1
γM2

∂p′

∂xi
+

1
Re
∂σ′i j

∂x j
,

ρ̄

(︂
∂T ′

∂t
+ ū j
∂T ′

∂x j
+ u′j
∂T̄
∂x j

)︂
+ ρ′ū j

∂T̄
∂x j
=

= −(γ − 1)
(︂
ρ̄

(︂
T̄
∂u′j
∂x j
+ T ′
∂ū j

∂x j

)︂
+ ρ′T̄

∂ū j

∂x j

)︂
+
γ

PrRe
∂

∂x j

(︂
κ̄
∂T ′

∂x j
+ κ̄T T ′

∂T̄
∂x j

)︂
+ γ(γ − 1)

M2

Re
Π′,

∂ρ′

∂t
+
∂ρ̄u′j
∂x j
+
∂ρ′ū j

∂x j
= 0,

p′ = ρ̄T ′ + ρ′T̄ ,

(2.3)

where
σ
′
i j = 2µ̄e′i j + 2µ̄T T ′ēi j +

(︀
λ̄e′kk + λ̄T T ′ēkk

)︀
δi j,

e′i j =
1
2

(︂
∂u′i
∂x j
+
∂u′j
∂xi

)︂
,

Π′ = σ̄i je′i j + 2µ̄e′i jēi j + 2µ̄T T ′ēi jēi j +
(︀
λ̄e′kkēi j + λ̄T T ′ēkkēi j

)︀
δi j.

Here the disturbance velocities are denoted by u′i , the disturbance temperature by T ′, the disturbance density by ρ′, the
disturbance pressure by p′, and f̄T = d f /dT (T̄ ).

Within LOTRAN, the modal stability analysis is performed for laminar boundary layers over surfaces of small
curvature. The disturbance propagation is studied along the boundary-layer slices (see Introduction), where the following
curvilinear orthogonal coordinates are used: y is the distance to the surface along the normal, x is the arc length from the
beginning of the slice to the base of this normal along the slice, and z is the spanwise coordinate. The main flow is assumed
to be computed by a CFD-code. As for the referential dimensional scales in (2.2), we use those of the freestream. The
dimensionless numbers (2.2) thus defined are denoted by Pr∞, M∞ and Re∞.

We assume that the main flow does not depend on z along the slice, and hence only disturbances of the form

Real{ϕei(βz−ωt)}, (2.4)

are considered, where ω is the angular frequency, β is the spanwise wavenumber, and t is the time. Here ϕ is the complex-
valued vector of disturbance amplitudes that consists of the streamwise, normal and spanwise velocities, the pressure, and
the temperature; and these amplitudes depend only on x and y. We also assume that the surface curvature is small, and the
normal velocity of the main flow is negligible. In addition, we apply the local-parallel approximation, i.e. the main-flow
components depend on x, but their derivatives on x are regarded as negligible.

Based on (2.3) but under the above-mentioned assumptions, one can derive [27] the equations governing the
propagation of disturbance amplitudes of the form (2.4). In the present paper, we use these equations, with the disturbance
amplitudes satisfying zero boundary conditions at y = 0 and y = ∞.

Optimal disturbances are computed along the boundary-layer slices, assuming that the disturbances are of the
form (2.4). The downstream propagation of the optimal disturbances is governed by the same equations [27] as for the
modal stability analysis.

3. NON-MODAL ANALYSIS

The governing equations, which are discussed in Section 2, are approximated in the normal direction y by a collocation
method. Then, the disturbance amplitudes become vector functions depending only on x; and we keep the same notation
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for the disturbance amplitudes both before and after the spatial approximation. After the approximation, the disturbance
amplitudes satisfy the system of ordinary differential equations [27]

A
d2ϕ

dx2 + B
dϕ
dx
+ (iωC − D)ϕ = 0. (3.1)

Here A, B, C and D are square x-dependent matrices of order 5ny, where ny is the number of the interior grid nodes in
the normal direction. It is worth noting that A is a diagonal matrix whose last ny diagonal entries are zero, and C is a
nearly-diagonal matrix. Let us introduce four additional variables that represent the derivatives with respect to x of the
disturbance velocity components and temperature. Then, equation (3.1) might be rewritten as the system of first-order
ordinary differential equations

M(x)
dq
dx
= q, (3.2)

where M(x) is an x-dependent matrix of order 9ny, and q = q(x) is a 9ny-component vector function.
Optimal disturbances largely depend on a functional, which is used for the optimization [36]. In the studies [17,19,33]

of optimal disturbances of compressible boundary layers, the functional

ℰ =

+∞∫︁
0

ρ̄
(︀
|u|2 + |v|2 + |w|2

)︀
+

T̄
γM2
∞ρ̄
|ρ|2 +

ρ̄

γ(γ − 1)M2
∞T̄
|T |2 dy (3.3)

of total disturbance energy density is used, where u is the streamwise velocity amplitude, v is the normal velocity amplitude,
w is the spanwise velocity amplitude, ρ is the density amplitude, and T is the temperature amplitude. Note that both
the main-flow density ρ̄ and the main-flow temperature T̄ depend both on y and x, in general. Within LOTRAN, the
disturbance pressure p appears in the governing equations instead of the disturbance density ρ. Using the relation

p = ρ̄T + T̄ρ (3.4)

that comes from the ideal gas law, the discrete analogue of (3.3) might be rewritten as q*Eq, where E = E(x) is an
x-dependent Hermitian matrix of rank 5ny.

3.1. Downstream integration

Each slice consists of a few main normals with the main flow data. We introduce additional uniform grids between
the main normals with the same number of interior grid nodes nx; and it is assumed that the main flow does not change
between the adjacent main normals. The streamwise coordinates of the main normal bases are denoted by x1 < x2 < . . . ,
the subgrid step by h j = (x j+1 − x j)/(nx + 1), and the subgrid nodes by x j,k = x j + (k − 1)h j.

Consider the streamwise initial-value problem for the system (3.2) with the initial node x j, the final node x j+1, and
the initial condition q(x j) = q j. At x j, we compute the system matrix M j = M(x j) and use it at each integration step. The
initial-value problem allows for non-physical solutions growing downstream at large rates and propagating upstream [17].
To exclude such solutions, we use standard numerical schemes combined with the spectral projection such as that for
viscous incompressible flows [24, 25]. We project the numerical solution onto an invariant subspace of M j corresponding
to the physically relevant subset Λ j of its spectrum.

The subset Λ j consists of all eigenvalues λ satisfying the inequality Real (1/λ) ≤ 0.8 |β|, where β is the spanwise
wavenumber [26]. This estimation is based on considering the asymptotic behavior of the branches of continuous spectrum
of the problem [17]. It can be shown analytically that for the part of continuous spectrum in the right half-plane
(corresponding to the upstream traveling disturbances) Imag(1/λ) ⩾ |β|. The coefficient 0.8 is introduced just to be on the
safe side to guarantee that no upstream traveling mode is present in Λ j. Note that in the cases under consideration linear
instability occurs only at quite large values of |β|. Meanwhile, as our tests showed, the leading discrete mode always has
Real (1/λ) ≤ 0.8 |β|. Outside of the linear instability region the inequality can be changed to Real (1/λ) ≤ 0. Numerical
experiments show that the physically relevant eigenvalues thus defined are well separated from the non-physical ones [24].

The spectral projectors at each j are computed using the Schur decomposition [37] of M j. The spectral projector thus
computed appears as P j = X jY j [23], where X j is a rectangular matrix whose columns form the orthonormal basis in the
invariant subspace of M j corresponding to the subset Λ j, and Y j is a rectangular matrix ensuring the following identities

X jY jM j = X jS jY j = M jX jY j, Y jX j = I

being valid, where S j = X*jM jX j is the restriction of M j to the invariant subspace.
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At the first integration step we use the implicit Euler method modified as follows

q̃ j,1 = Y jq j, S j
q̃ j,2 − q̃ j,1

h j
= q̃ j,2,

where q j is the solution at the j-th main normal. At other integration steps, we use the BDF-2 scheme modified as follows

S j
3q̃ j,k − 4q̃ j,k−1 + q̃ j,k−2

2h j
= q̃ j,k.

After the last step done, we put q j+1 = P j+1X jq̃ j,nx+2.
To compute the matrix of fundamental solutions Φ j between normals j and j + 1, we take the columns of the identity

matrix as the initial condition q̃ j,1. Then, the columns ofΦ j are the vectors q̃ j,nx+2, with the matrixΦ j satisfying the equality
q j+1 = P j+1X jΦ jY jq j for any initial condition q j. Thus, one can represent the numerical solution of the streamwise initial-
value problem between the jg-th and jo-th main normals as

q jo = P jo X jo−1Φ jo−1Y jo−1 . . .X jgΦ jg Y jg q jg = X jo F jg, jo Y jg q jg ,

where

F jg, jo = Y jo X jo−1Φ jo−1 . . .Y jg+1X jgΦ jg .

3.2. Computation of optimal disturbances

We say that the optimal disturbance is a disturbance being generated at x = x jg and achieving the maximum energy
amplification at x = x jo . In the sequel, x jg is called the generation point, and x jo is called the observation point. In
addition, we suppose that the optimal disturbance belongs to an invariant subspace of physically relevant eigenmodes of
a given dimension m. This invariant subspace is constructed in two steps. First, we select the subset Λ jg of the spectrum
of M jg , as described above. Next, among the eigenvalues of Λ jg , we select m ones having the largest values of Real (1/λ)
and use the obtained set instead of Λ jg , keeping the same notation. Since the rank of the matrix E(x) is equal to 5ny, then
m should not exceed 5ny. For numerical experiments, we choose m = 2ny, since for a fixed number of grid nodes ny, the
maximum disturbance energy amplification converges with further increase in m.

The optimal disturbance is computed by solving the problem that consist in maximizing the energy amplification of
disturbances from the subspace associated with Λ jg :

max
q jg=P jg q jg ̸=0

q*jo E jo q jo

q*jg E jg q jg
, (3.5)

where E j = E(x j).
By L j denote the lower triangular matrix that forms the factorization E j = L*jL j. Let L jX j = Q jR j be the QR-

decomposition [37] with the unitary rectangular matrix Q j and the upper triangular matrix R j. Let q̃ j = Y jq j and
µ j = R jq̃ j. Then

q*jo E jo q jo

q*jg E jg q jg
=
‖L jo q jo‖

2
2

‖L jg q jg‖
2
2
=
‖L jo X jo q̃ jo‖

2
2

‖L jg X jg q̃ jg‖
2
2
=
‖R jo F jg, jo R−1

jg µ jg‖
2
2

‖µ jg‖
2
2

.

Therefore, the solution of the problem (3.5) is reduced to computing the largest singular value of the matrix
R jo F jg, jo R−1

jg and the corresponding normalized right singular vector µopt
jg . The optimal disturbance in physical variables

is then computed by the formula qopt
jg = X jg R−1

jg µ
opt
jg , and its downstream propagation is governed by the formula

qopt
j = X jF jg, jY jg qopt

jg for j ⩾ jg. At the same time, the value

ℰ j(x jg , x jo ) = (qopt
j )*E jq

opt
j = ‖µ

opt
j ‖

2
2

is the total energy density of the optimal disturbance at a point x = x j. For the point x jo , the maximum N-factor among
disturbances generated at x jg is thus equal to

Nmax(x jg , x jo ) =
1
2

lnℰ j(x jg , x jo ).
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4. RESULTS

This section discusses results of the computation of optimal disturbances for two configurations illustrated in Fig. 2 in
the global Cartesian coordinates (X,Y,Z):

A) the windward surface of swept wing at an angle of attack of −5∘. The wing has the modified NACA 67 1-215
laminarized airfoil with a chord length (normal to the leading edge) of 0.7 m, and 45∘ sweep angle. The freestream
parameters are as follows: the velocity U∞ = 27 m/s, the density ρ∞ = 1.18 kg/m3, and the kinematic viscosity
ν∞ = 1.57 × 10−5 m2/s. Such parameter values correspond to the Reynolds number Re∞ = 1.72 × 106 and the Mach
number M∞ = 0.08. This configuration corresponds to experiments [38, 39] on the laminar-turbulent transition in
boundary layers over the swept wing SW-45 at various angles of attack. Data on the considered laminar boundary layer
are computed [26, 40, 41] by ANSYS Fluent in a digital analogue of the test section of the T-324 wind tunnel of ITAM
SB RAS.

B) prolate spheroid at an angle of attack of +10∘. The spheroid has a length of 2.4 m, and an aspect ratio of 6 : 1 : 1.
The freestream parameters are as follows: the velocity U∞ = 45 m/s, the density ρ∞ = 1.23 kg/m3, and the kinematic
viscosity ν∞ = 1.50 × 10−5 m2/s. Such parameter values correspond to the Reynolds number Re∞ = 7.20 × 106 and the
Mach number M∞ = 0.13. This configuration corresponds to experiments [42, 43] on the laminar-turbulent transition
in boundary layers over bodies of revolution. Data on the considered laminar boundary layer are computed [26] using
ANSYS Fluent.

The boundary layer stability is analyzed along the slices shown in Fig. 2. Profiles of the streamwise and spanwise
velocity components of the main flow near the surface along these slices are shown in the local orthogonal coordinates in
Fig. 3. The zero of the streamwise local coordinate x coincides with the beginning of the slice. The spanwise velocity is large
enough (up to 7% of the streamwise velocity) for the development of vortices of the crossflow instability [44]. In the present
paper, the stability of the boundary layers is studied at zero angular frequency and the values of the spanwise wavenumber
typical to the development of stationary crossflow vortices. In all numerical experiments, we fix the disturbance generation
point x jg = 0 as the beginning of the slice, with the observation point x jo > 0 being varied.

In the (x jo , β)-plane, Fig. 4 shows the level lines of the maximum N-factors, Nmax(0, x jo ), of the optimal disturbances
for both configurations, as well as the points at which a growth of stationary crossflow vortices is observed. It is seen that
for both configurations, the regions of modal and non-modal instability have a significant overlap. At the same time, at
relatively small values of β and sufficiently large values of x jo , only the non-modal instability is observed, although it is
characterized by relatively small maximum N-factors. This is further illustrated in Fig. 5, which shows the dependence
of the maximum N-factors on −β for a fixed x jo . It is seen that, in addition to the global maximum in the spanwise
wavenumber, the dependence has a local maximum associated with the optimal disturbance that has a small spanwise
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Fig. 2. The windward surface of the swept wing (top), the side surface of the prolate spheroid (bottom), and the slices along which the
boundary layer stability is studied. The slices are formed by external normals (black) to the flow-exposed surface (gray) along the line
of disturbance propagation, with the projection of that line onto the surface being shown in red.
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Fig. 5. Dependence of the maximum N-factors, Nmax(0, x jo ), of the optimal disturbances on −β for a fixed observation point, x jo , in the
boundary layer along the slice on the swept wing (left) and the prolate spheroid (right).
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Fig. 6. Dependence on x of the total energy density amplification, ℰ j(x jg , x jo ), of the optimal disturbances corresponding to various
observation points: x jo = 0.09 (red), x jo = 0.30 (green), and x jo = 0.54 (blue) for the swept wing (left) at β = −1500; and x jo = 0.26
(red), x jo = 0.38 (green), x jo = 0.49 (blue) for the prolate spheroid (right) at β = −3000.

wavenumber and does not contain modes growing downstream. For the boundary layer over the swept wing, the obtained
result is in qualitative agreement with the experimental observation [34], while for that over the prolate spheroid this
effect is discovered for the first time. Note that this effect suggests the possibility of bypass transition for the considered
configurations.

Fig. 6 shows the dependence of the total energy density amplification of optimal disturbances on x computed for
various observation points. Fig. 7 shows the absolute values of the disturbance velocity components. It is seen that
at spanwise wavenumbers specific to the development of stationary crossflow vortices, the optimal disturbance weakly
depends on the observation point. In addition, as it is seen from Fig. 8, the shape of the developed optimal disturbance is
close to that of the leading local mode.
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(blue) for the prolate spheroid (bottom) at β = −3000.
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Fig. 8. The absolute values of the velocity components of the developed optimal disturbance (solid) and the leading local mode (dashed)
corresponding to various observation points: x jo = 0.09 (red), x jo = 0.30 (green), and x jo = 0.54 (blue) for the swept wing (top) at
β = −1500; and x jo = 0.26 (red), x jo = 0.38 (green), and x jo = 0.49 (blue) for the prolate spheroid (bottom) at β = −3000.
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5. CONCLUSION

Using an original numerical method, we compute for the first time the downstream propagation of optimal
disturbances for two three-dimensional aerodynamic configurations: a boundary layer over a finite-span swept wing, and a
boundary layer over a prolate spheroid. The basis of this method is the projection of the solution to an initial-value problem,
which governs the propagation of the disturbances, onto an invariant subspace of physically significant eigenmodes at each
step of numerical integration along the selected lines of disturbance propagation.

In this work, the stability of the boundary layers was studied at zero angular frequency. It is shown that there are two
maxima of the disturbance energy amplification in spanwise wavenumbers. One of them corresponds to the development
of stationary vortices of the crossflow instability, and the other one, at lower values of the spanwise wavenumber,
corresponds to the non-modal instability, previously observed in experiments on a swept wing.

Additionally, the presented examples show that the proposed method can serve as a basis for an engineering approach
to the non-modal spatial stability analysis of various boundary layers. In particular, the proposed method is prospective
for predicting the bypass laminar-turbulent transition within the framework of existing engineering approaches based on
the modal stability analysis by the eN-method.
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Abstract. In this work, a numerical method for modeling the downstream propagation of optimal
disturbances in compressible boundary layers over three-dimensional aerodynamic is proposed. At each
integration step, the method projects the numerical solution of governing equations onto an invariant
subspace of physically relevant eigenmodes, and the numerical integration is performed along the lines of
disturbance propagation. The propagation of optimal disturbances is studied in a wide range of parameters
for two configurations, viz a boundary layer over a swept wing of finite span and a boundary layer over a
prolate spheroid. The dependence of the disturbance energy amplification on the spanwise wavenumber is
found to have two local maximums. It is discussed how to combine the developed method with the modern
approaches, which are designed to predict the onset of laminar–turbulent transition using the eN-method.

Keywords: compressible boundary layers, spatial optimal disturbances, bypass transition, boundary layer
over a swept wing, boundary layer over a prolate spheroid, eN-method

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2025, том 65, № 1, с. 110–119

УДК 519.635

ТЕЧЕНИЕ ИДЕАЛЬНОЙ ЖИДКОСТИ СКВОЗЬ
ПРИСТЕНОЧНЫЙ СТАЦИОНАРНЫЙ ЗЕРНИСТЫЙ СЛОЙ

В ФОРМЕ ПОЛУБЕСКОНЕЧНОЙ СТУПЕНИ1)

C 2025 г. О.Б. Гуськов1,*

11125040 Москва, Ленинградский пр-т, 7/1, Институт прикладной механики РАН, Россия
*e-mail: ogskv@mail.ru

Поступила в редакцию 12.12.2023 г.

Переработанный вариант 25.09.2024 г.

Принята к публикации 28.09.2024 г.

Рассматривается задача о течении идеальной жидкости вдоль плоской поверхности при наличии на ней непо-
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шается на основе использования ранее разработанного метода самосогласованного поля, позволяющего изу-
чать эффекты гидродинамического взаимодействия большого числа сферических частиц в потоках идеальной
жидкости, в том числе при наличии внешних границ, и получать усредненные динамические характеристики
таких потоков. В первом приближении по объемной доле гранул в слое получена аналитическая функция,
описывающая усредненное поле скоростей жидкости как внутри, так и вне этого слоя. Библ. 26. Фиг. 6.
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ВВЕДЕНИЕ

Одной из ключевых задач описания динамики дисперсных сред с повышенной концентрацией дисперс-
ной фазы является учет эффектов коллективного гидродинамического взаимодействия большого количества
дисперсных частиц во внешнем потоке несущей сплошной среды. Теоретическое исследование этой проблемы
представляет собой чрезвычайно сложную задачу, поскольку, по сути, она представляет собой разновидность
известной фундаментальной проблемы «многих тел», которая до сих пор не имеет точного решения ни в од-
ной области науки. В связи с этим решение подобных задач долгое время базировалось на построении различ-
ных приближенных феноменологических моделей, первой из которых была так называемая модель единичной
ячейки [1, 2]. На ее основе были получены первые приближенные результаты по динамике дисперсных сред [3].
В дальнейшем многие из этих результатов были уточнены на основе физически более строгих теоретических мо-
делей, непосредственно учитывающих гидродинамическое взаимодействие дисперсных частиц [4–7]. Позднее
был разработан ряд других подходов к решению задач динамики дисперсных сред [8, 9]. Однако в рамках таких
подходов одной из основных проблем является также правильный учет межфазного взаимодействия.

В последнее время широкое распространение получили методы исследования динамики дисперсных сред,
основанные на различных феноменологических моделях межфазного взаимодействия с последующим числен-
ным интегрированием осредненных уравнений движения фаз [10–15]. Такие методы, очевидно, имеют ряд пре-
имуществ по сравнению с чисто теоретическими подходами. К ним относится возможность исследования задач
со сложной геометрией течения и в широком диапазоне значений определяющих гидродинамических крите-
риев (в том числе числа Рейнольдса). Однако они имеют и ряд недостатков. Математически априори довольно
сложно определить степень достоверности результатов численных расчетов, что часто приводит к необходимо-
сти проведения параллельных экспериментальных исследований. В принятых феноменологических моделях
часто используются эмпирические коэффициенты, что также снижает степень математической строгости мо-
дели, а соответственно и степень достоверности полученных результатов. При этом любой расчет производится
для дискретного набора значений определяющих параметров. Поэтому выявление зависимостей физических
характеристик дисперсных потоков от всего комплекса определяющих параметров является чрезвычайно тру-
доемкой задачей. В этом плане аналитические результаты теоретических методов более информативны.

1) Работа выполнена в рамках Государственного задания, номер гос. регистрации темы: AAAA–A19–119012290136–7.
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Ниже рассматривается модель зернистого слоя, образованного бесконечным числом сферических гранул,
расположенных в слое в виде полубесконечной ступеньки конечной толщины на плоской поверхности. В свое
время был разработан метод самосогласованного поля [16, 17] для получения аналитических решений задач
о совместном движении любого конечного числа сфер в идеальной жидкости [18–22], в том числе при нали-
чии плоской границы. Как было показано [20, 21], этот метод применим также к задачам совместного движения
сфер при наличии жестких связей между ними. В рамках принятой модели зернистого слоя это позволяет на ос-
нове использования данного метода решить задачу о течении идеальной жидкости вдоль плоской поверхности
при наличии любого конечного числа N сферических гранул. Последующее применение процедуры усредне-
ния [6, 7] по различным возможным положениям гранул в слое позволяет получить усредненное поле скоростей
жидкости как внутри, так и вне зернистого слоя в явном аналитическом виде.

1. КОНЕЧНАЯ СИСТЕМА НЕПОДВИЖНЫХ ЧАСТИЦ ВО ВНЕШНЕМ ПОТОКЕ ЖИДКОСТИ
ПРИ НАЛИЧИИ ПЛОСКОЙ ГРАНИЦЫ

Рассмотрим систему из N сферических гранул радиуса a, погруженных в идеальную несжимаемую жидкость
вблизи плоской бесконечной поверхности. Будем считать, что гранулы каким-то образом жестко связаны друг
с другом и с заданной поверхностью и, следовательно, не могут перемещаться относительно поверхности. Про-
нумеруем все сферы от 1 до N и обозначим безразмерные координаты центров сферических гранул в декартовой
системе координат Ox1x2x3 как x(i)

γ (i = 1, 2, . . . ,N, γ = 1, 2, 3). Рассмотрим задачу, когда в некоторый момент вре-
мени первоначально покоящаяся на бесконечности жидкость импульсно приводится в состояние движения с
заданной постоянной скоростью U(0)

γ , направленной вдоль плоской поверхности W (см. фиг. 1).

x*3

U (0)

W 0

a

H*

x*1

Фиг. 1. Схема течения жидкости вдоль плоской поверхности W с находящимся на ней зернистым слоем толщиной H* в де-
картовой системе координат. Ось Ox2 перпендикулярна плоскости рисунка. Надстрочный индекс * используется для обо-
значения соответствующих размерных величин.

Классическая постановка этой задачи в предположении потенциальности течения жидкости, как известно,
состоит в решении уравнения Лапласа для потенциала скорости φ и выполнении граничных условий скольже-
ния на границе W и на поверхности всех гранул.

В рамках разработанного ранее метода самосогласованного поля [16–22] краевые задачи динамики N сфер
в потенциальных потоках идеальной жидкости сводятся к формальному решению системы уравнений для тен-
зорных коэффициентов C(i)

γ1···γn
, входящих в полученное точное решение таких задач. Для сформулированной

выше задачи при наличии плоской границы это решение для безразмерного потенциала скорости φ имеет вид
[16, 17]:

φ = φ0 +

N∑︁
i=1

∞∑︁
n=1

nα2n+1

n + 1
C(i)
γ1···γn

X(i)
γ1
· · · X(i)

γn

R2n+1
i

+

N∑︁
i=1

∞∑︁
n=1

nα2n+1

n + 1
Tβ1γ1 · · · TβnγnC

(i)
β1···βn

X̃(i)
γ1
· · · X̃(i)

γn

R̃2n+1
i

, (1.1)

где

φ0 = eγxγ = x1, X(i)
γ = xγ − x(i)

γ , X̃(i)
γ = xγ − Tβγx

(i)
β
, Ri =

√︁
X(i)
γ X(i)
γ , ̃︀Ri =

√︁
X̃(i)
γ X̃(i)
γ ,

Tβγ =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦, α = a/L, eγ = {1, 0, 0} ,
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а тензорные коэффициенты C(i)
γ1···γn

удовлетворяют бесконечной (1 ⩽ n < ∞) системе алгебраических уравнений:

C(i)
γ1···γn

=
1
n!

∂n

∂xγ1 · · · ∂xγn

⎧⎨⎩eβX
(i)
β
+
∑︁

j ̸=i

∞∑︁
k=0

kα2n+1

k + 1
C( j)
β1···βk

X( j)
β1
· · · X( j)

βk

R2k+1
j

+

+
∑︁

j ̸=i

∞∑︁
k=1

kα2n+1

k + 1
Tδ1β1 · · · TδkβkC

( j)
δ1···δk

X̃( j)
β1
· · · X̃( j)

βk

R̃2k+1
j

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒
Ri=0

.

(1.2)

Здесь и далее приняты тензорные обозначения переменных с условием суммирования по повторяющимся
нижним координатным индексам, принимающим значения от 1 до 3. Это условие не распространяется только
на переменные Ri и R̃i. Верхние индексы относятся к частицам, и чтобы отличать их от показателя степени,
они заключены в круглые скобки. Соотношения (1.1) и (1.2) записаны в безразмерном виде. В качестве мас-
штабов соответствующих величин приняты скорость потока U(0), заданная на бесконечности, и характерное
расстояние между центрами соседних гранул L.

Следует подчеркнуть, что решение (1.1) удовлетворяет граничным условиям скольжения на поверхности W
и всех гранул при условии, что тензорные коэффициенты C(i)

γ1···γn
удовлетворяют уравнениям (1.2).

Таким образом, задача определения потенциала скорости (1.1) сводится к нахождению коэффициентов
C(i)
γ1···γn

на основе системы уравнений (1.2). Для приближенного решения этой системы примем предположе-
ние о малости параметра α (α ≪ 1). Заметим, что это не очень строгое ограничение, поскольку параметр α
всегда удовлетворяет условию α ⩽ 1/2 для всех гранулированных сред, состоящих из сферических частиц. При
условии α ≪ 1 все неизвестные функции можно искать в виде рядов по степеням этого параметра:

C(i)
γ1···γn

=

∞∑︁
k=0

α
kC(i)(k)
γ1···γn
, φ =

∞∑︁
k=0

α
k
φ

(k). (1.3)

Подставляя разложения (1.3) в систему (1.2) и приравнивая члены с одинаковыми степенями малого параметра,
получим систему рекуррентных соотношений:

C(i)(k)
γ1···γm

=

N∑︁
j=1

[ k−1
2 ]∑︁

n=1

n
n + 1

C(i)(k−2n−1)
β1···βn

D( j,i)
γ1···γm,β1···βn

, (1.4)

где
C(i)(0)
γ = eγ; C(i)(0)

γ1···γm
= 0, m > 1, D( j,i)

γ1···γm,β1···βn
=
(︀
1 − δ ji

)︀
Q( j,i)
γ1···γm,β1···βn

+ Tδ1β1 · · · TδnβnG
( j,i)
γ1···γm,δ1···δn

,

Q( j,i)
γ1···γm,β1···βn

=
1

m!
∂m

∂xγ1 · · · ∂xγm

(︃
X( j)
β1
· · · X( j)

βn

R2n+1
j

)︃⃒⃒⃒⃒
⃒
Ri=0

, G( j,i)
γ1···γm,β1···βn

=
1

m!
∂m

∂xγ1 · · · ∂xγm

(︃
X̃( j)
β1
· · · X̃( j)

βn

R̃2n+1
j

)︃⃒⃒⃒⃒
⃒
Ri=0

,

δ ji – символ Кронекера, а квадратные скобки над знаком суммы обозначают целую часть числа.
Полученные рекуррентные соотношения (1.4) позволяют определить все тензорные коэффициенты C(i)

γ1···γn

в аналитическом виде в любом заданном приближении по малому параметру α. В настоящей статье они опре-
делены с точностью до O

(︀
α8
)︀
. Подстановка полученных таким образом тензорных коэффициентов C(i)

γ1···γn
в вы-

ражение для потенциала скорости (1.1) с учетом соотношений (1.3) в конечном итоге приводит к следующему
выражению для продольной U1 и поперечной U3 безразмерных составляющих скорости жидкости:

U1 = 1 +
α3

2

N∑︁
i=1

(︂
1

R3
i
+

1
R̃3

i
− 3X(i)

1
2
(︂

1
R5

i
+

1
R̃5

i

)︂)︂
+
α6

32

N∑︁
i=1

1(︁
x(i)

3

)︁3

(︂
1

R3
i
+

1
R̃3

i
− 3X(i)

1
2
(︂

1
R5

i
+

1
R̃5

i

)︂)︂
−

−
α8

16

N∑︁
i=1

1(︁
x(i)

3

)︁4

(︃
X(i)

3

R5
i
−

X̃(i)
3

R̃5
i
− 5X(i)

1
2
(︃

X(i)
3

R7
i
−

X̃(i)
3

R̃7
i

)︃)︃
,

(1.5)

U3 = −
3α3

2

N∑︁
i=1

X(i)
1

(︃
X(i)

3

R5
i
+

X̃(i)
3

R̃5
i

)︃
−

3α6

32

N∑︁
i=1

X(i)
1(︁

x(i)
3

)︁3

(︃
X(i)

3

R5
i
+

X̃(i)
3

R̃5
i

)︃
−
α8

16

N∑︁
i=1

X(i)
1(︁

x(i)
3

)︁4

(︃
1

R5
i
−

1
R̃5

i
− 5

(︃
X(i)

3
2

R7
i
+

X̃(i)
3

2

R̃7
i

)︃)︃
.

Следует отметить, что при решении системы уравнений (1.4) в данной работе учитываются члены, описы-
вающие только парные взаимодействия частиц. Члены, описывающие взаимодействия более высокого поряд-
ка, здесь опущены, поскольку они несущественны при последующем вычислении осредненных характеристик
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в рамках данной работы. Если необходимо получить более точные выражения для тензорных коэффициентов
C(i)(k)
γ1···γm

и, соответственно, для скорости жидкости (1.5), включая слагаемые, описывающие многочастичные вза-
имодействия, достаточно просто учесть соответствующие члены при расчетах по формулам (1.4).

2. ВЫЧИСЛЕНИЕ СРЕДНИХ ХАРАКТЕРИСТИК ПОТОКА

Формулы (1.5) позволяет с высокой точностью определить скорость жидкости при наличии любого конеч-
ного числа N сферических гранул для различных конфигураций их взаимного расположения в пространстве.
Однако для систем, состоящих из очень большого числа частиц, реализация такой процедуры расчета стано-
вится затруднительной и вряд ли имеет смысл. В этом случае удобнее перейти к усреднённому описанию дина-
мики таких структур на основе известной процедуры усреднения [6, 7] для различных возможных конфигура-
ций частиц в пространстве. В рамках такой процедуры суммирование известных функций в соотношении (1.5)
фактически заменяется интегрированием по переменной x(i)

γ , при условии, что частицы не пересекаются друг
с другом, с заданной поверхностью W и с точкой, в которой рассчитывается средняя скорость.

Примем модель зернистого слоя как совокупность бесконечного числа одинаковых сферических гранул ра-
диуса α, центры которых статистически равномерно распределены над плоской поверхностью W в слое, име-
ющем вид полубесконечной ступени конечной толщина x(i)

1 ⩾ α ∩ α ⩽ x(i)
3 ⩽ (H − α). В этом случае все гранулы

расположены в пограничном слое толщиной H = H*/L и не пересекаются с заданной поверхностью W и плос-
костями x3 = H и x1 = 0 (см. фиг. 1). В рамках принятых допущений весовой функцией в процедуре усреднения
будет численная концентрация гранул в приграничном слое, которая является постоянной величиной в объеме
усреднения. Это упрощает расчеты и позволяет получить результаты в аналитическом виде. Если при расчете
средних значений ограничиться первым приближением по объемной доле ϕ гранул в слое, то в выражении для
скорости жидкости вида (1.5) необходимо учитывать только те члены, которые описывают парные взаимодей-
ствия частиц. Взаимодействия более высокого порядка дают вклад только в коэффициенты при более высоких
степенях параметра ϕ. Поэтому в формулах (1.5) они заранее опущены.

Применение процедуры усреднения по ансамблю [6, 7] к первому выражению в правой части равенства (1.5)
в рамках сделанных выше предположений приводит к следующим выражениям для безразмерных компонент
средней скорости жидкости:

Ux (x, z) = U1 = 1 + kx (x, z)ϕ, Uz (x, z) = U3 = 1 + kz (x, z)ϕ. (2.1)

Вне зернистого слоя функции kx (x, z) и kz (x, z) имеют вид

kx (x, z) = qx (x, z) , kz (x, z) = qz (x, z) , (2.2)

где

qx (x, z) =
3

4π

(︂
arctan

(︂
h − z − 1

x − 1

)︂
+ arctan

(︂
h + z − 1

x − 1

)︂
+ arctan

(︂
z − 1
x − 1

)︂
− arctan

(︂
z + 1
x − 1

)︂)︂
,

qz (x, z) =
3

4π
ln

(︃(︀
(x − 1)2 + (z − 1)2)︀ (︀(x − 1)2 + (h + z − 1)2)︀(︀
(x − 1)2 + (z + 1)2)︀ (︀(x − 1)2 + (h − z − 1)2)︀

)︃
.

Внутри зернистого слоя функции kx (x, z) и kz (x, z) имеют вид:

kx (x, z) = qx (x, z) +

⎧⎪⎨⎪⎩
k1 (z) , x ⩾ 2 ∩ 0 ⩽ z < 2,
k2 (z) , x ⩾ 2 ∩ 2 ⩽ z < h − 2,
k3 (z) , x ⩾ 2 ∩ h − 2 ⩽ z < h,

(2.3)

kz (x, z) = qz (x, z) ,

k1 (z) = −
1
4

(︂
1 +

1
8z3 +

z2 (3 − z)
2

−
1 + 2z − 2z2 + 12z3 + 6z4

8z3
√

1 + 4z

)︂
, k2 (z) = −

1
2

(︂
1 +

1
8z3

)︂
,

k3 (z) =
1
8

(h − z − 1)
(︀
(h − z − 1)2 − 3

)︀
−

1
32z3

(︃
1 +

1 + 2z (h − 1)
(︀
1 + 6z2

)︀
− 2z2

(︀
(h − 1)2 − 3z2

)︀
√

1 + 4z (h − 1)

)︃
,

x = x1/α = x*1/a, z = x3/α = x*3/a, h = H/α = H*/a,

где x*1, x*3 и H* – размерные значения соответствующих величин. Итак, процедура усреднения автоматически
приводит к тому, что радиус гранул является характерным линейным масштабом рассматриваемой задачи.
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Усреднение второго и третьего слагаемых в правой части (1.5) приводит к громоздким выражениям. При
этом их суммарный вклад в конечный результат для среднего профиля скорости жидкости, как показывает
сравнение всех полученных функций, не превышает 1%. В связи с этим выражения для этих функций в ко-
нечном результате (2.1)–(2.3) опущены. Следует также отметить, что в настоящей работе выражения для ком-
понент скорости жидкости Ux (x, z) и Uz (x, z) получены для всей области течения, за исключением области
0 < x < 2 ∩ 0 < z < h.

Для иллюстрации полученного результата (2.1)–(2.3) на фиг. 2 и 3 показана зависимость осредненной про-
дольной скорости жидкости Ux (x, z) от координаты z в различных сечениях потока при заданных значениях
объемной доли гранул ϕ и толщины слоя h.

Как и ожидалось, полученный профиль скорости жидкости удовлетворяет граничному условию
lim
z→∞

Ux (x, z) = 1 в любом сечении потока, т.е. при любом заданном значении координаты x. Как видно из

представленных результатов, резкое изменение профиля скорости жидкости происходит вблизи поперечной
границы уступа в области 0 ⩽ x ⩽ 2, т.е. на расстоянии порядка диаметра гранулы. При этом профиль усред-
ненной продольной скорости жидкости Ux внутри слоя обретает характерную неоднородную структуру вблизи
стенки и вблизи верхней свободной границы слоя. В любом сечении слоя максимум скорости достигается на
границах слоя, а затем внутри слоя на расстоянии порядка нескольких размеров зерен от его границ величина
скорости обретает примерно одинаковое значение. Эффект «проскальзывания» жидкости вблизи стенки был

1.0

0.9

0.8

U x

0 10 20 30 40 50 60 70 80
z

x=–100

x=–50

x=–10

x=–6
x=0

  =0.25
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Фиг. 2. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от координаты z = x3/a в различных
сечениях потока перед поперечной границей уступа (x ⩽ 0) при заданном значении объемной доли гранул ϕ = 0.25 и
толщины слоя h = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин.
Пунктирная линия обозначает верхнюю границу зернистого слоя.
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Фиг. 3. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от координаты z = x3/a в различных
сечениях потока за поперечной границей уступа (x ⩾ 0) при заданном значении объемной доли гранул ϕ = 0.25 и толщины
слояh = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин. Пунктир-
ная линия обозначает верхнюю границу зернистого слоя.
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теоретически исследован в работе [22], в которой была рассмотрена похожая задача – о течении идеальной
жидкости вдоль стенки при наличии стационарного зернистого слоя конечной толщины, расположенного
перпендикулярно стенке. В упомянутой работе было показано, что этот эффект является прямым следствием
коллективного гидродинамического взаимодействия частиц слоя, и он имеет место при условии статистически
равномерного распределения частиц в слое, т.е. даже при отсутствии разреженности слоя вблизи стенки.
Как следует из результатов настоящей работы, этот эффект имеет место (см. фиг. 3) также вблизи внешней
свободной границы слоя, и он также является прямым следствием коллективного гидродинамического
взаимодействия частиц.

В частном случае при x→ +∞, т.е. вниз по потоку вдали от поперечной границы уступа, результат для профи-
ля скорости жидкости (2.1)–(2.3) совпадает с полученным ранее [23]. В этой области (x → +∞) течение имеет
следующую характерную особенность – возмущение заданного внешнего течения, обусловленное наличием
гранул, образующих зернистый слой, не выходит за пределы этого слоя. При этом на границах слоя при z = 0
и z = h скорость жидкости достигает значения, равного заданной скорости внешнего потока, с нулевыми про-
изводными. А внутри слоя на расстоянии порядка диаметра гранулы от его границ скорость жидкости имеет
примерно постоянное значение Ux ≈ 1 − ϕ/2 , не зависящее от толщины слоя.

Зависимости скорости жидкости Ux (x, z) от продольной координаты x на стенке (z = 0) и на уровне верхней
границы зернистого слоя (z = h) представлены на фиг. 4. Как видно, функции имеют минимум перед попереч-
ной границей уступа и максимум после него. В частности, минимальное и максимальное значения скорости
жидкости на стенке (z = 0) достигаются в точках xmin = 1 −

√
h − 1 и xmax = 1 +

√
h − 1 соответственно. Зависи-

мость xmin и xmax от параметров задачи при условии z ̸= 0 имеет более сложный вид.

Зависимости усредненной поперечной скорости жидкости Uz (x, z) от координаты z в различных сечениях
потока при заданных значениях объемной доли гранул ϕ и толщины слоя h представлены на фиг. 5.

Как и ожидалось, поперечная скорость жидкости Uz (x, z) на стенке (z = 0) равна нулю при любом значе-
нии переменной x. Максимальные положительные значения поперечной скорости наблюдаются вблизи точки
пересечения продольной и поперечной границ зернистого слоя. Отрицательные значения поперечной скоро-
сти наблюдаются на небольшой области в районе точки пересечения стенки и поперечной границы зернистого
слоя. Линейный размер этой области имеет порядок нескольких диаметров гранул. Как и ожидалось, попереч-
ная скорость жидкости удовлетворяет граничному условию lim

z→∞
Uz (x, z) = 0.

Полученная характерная картина течения жидкости в области вблизи поперечной границы слоя представ-
лена на фиг. 6.

1.2

1.1

0.8

Ux

–30 –20 –10 0 10 20 30

1.0

0.9

x

 =0.25
h=50

z=0
z=h

Фиг. 4. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от продольной координаты x = x1/a
для двух значений координаты z = x3/a (z = 0 и z = h) при заданном значении объемной доли гранул ϕ = 0.25 и толщины
слояh = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин.
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Фиг. 5. Графики зависимости усредненной по ансамблю скорости жидкости Uz = U3 от координаты z = x3/a в различ-
ных поперечных сечениях потока при заданном значении объемной доли гранул ϕ = 0.3 и толщины слояh = H*/a = 10.
Надстрочный индекс * используется для обозначения соответствующих размерных величин. Пунктирная линия обознача-
ет верхнюю границу зернистого слоя.

Фиг. 6. Характерная итоговая картина течения жидкости в области вблизи поперечной границы слоя. Пунктирная линия
обозначает границу гранулированного слоя.

3. ЗАКЛЮЧЕНИЕ

В данной работе теоретически исследована задача о течении жидкости через пристеночный неподвижный
зернистый слой в виде полубесконечной ступеньки. Задача решена с учетом эффектов коллективного гидроди-
намического взаимодействия гранул в заданном внешнем потоке. Получено аналитическое решение для усред-
ненного профиля скорости жидкости как снаружи, так и внутри зернистого слоя с учетом влияния внешней
плоской границы. Задача решалась в рамках модели идеальной (невязкой) жидкости для несущей сплошной
среды в первом приближении по объемной доле гранул в слое при условии их статистически равномерного
распределения в пространстве внутри слоя.
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Следует также отметить, что в рамках предложенного метода решения нет необходимости использовать
какие-либо дополнительные предположения, в том числе феноменологические. Как известно, используемая
в данной работе модель идеальной (невязкой) жидкости для сплошной несущей среды приближенно описы-
вает течение жидкостей и газов при высоких числах Рейнольдса. Кроме того, результат (2.1)–(2.3) получен в
первом приближении по объемной доле гранул ϕ в слое, т.е. для малых значений этого параметра. Однако ре-
альная точность и пределы применимости результата (2.1)–(2.3) по числу Рейнольдса и объемной доле гранул в
слое могут быть установлены только экспериментально. Следует отметить, что в записи решения (1.5) приведе-
ны только те функции, которые при усреднении дают вклад в коэффициент перед первой степенью объемной
доли гранул ϕ в слое в формулах (2.1)–(2.3). Для получения решения вида (2.1)–(2.3) с точностью до более вы-
соких степеней объемной доли ϕ просто необходимо при решении системы (1.4) учесть все функциональные
члены, описывающие взаимодействия частиц соответствующего порядка, а затем применить к ним процедуру
усреднения [6, 7].

Это возможно в рамках разработанного метода [16, 17], что может стать предметом дальнейших исследова-
ний.

В работе для поставленной гидродинамической задачи в рамках модели идеальной жидкости получено ана-
литическое решение одного из классических уравнений, относящегося не только к гидродинамике, но и к ряду
других областей физики. Полученное в работе аналитическое решение гидродинамической задачи может быть
непосредственно использовано, например, для теоретического исследования процессов переноса в дисперс-
ной среде с учетом коллективного взаимодействия дисперсных частиц, поскольку решение таких задач также
основано на решении уравнения Лапласа. Возможность такого подхода обосновал Фельдерхоф (см. [5]) в 1991 г.
В рамках этого подхода Бошенятов [24–26] получил коэффициенты переноса (теплопроводность, электропро-
водность) для дисперсных сред (в том числе, сложно-структурированных) с учетом эффектов коллективного
взаимодействия частиц. В этих работах непосредственно использовались результаты решения соответствую-
щих гидродинамических задач в рамках модели идеальной жидкости.
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Abstract. The problem on the flow of an ideal fluid along a flat surface in the presence of a fixed granular
layer on it in the form of a semi-infinite step of finite thickness consisting of an infinite number of identical
spherical granules statistically uniformly distributed in the layer is considered. The problem is solved based
on using the previously developed method of the self-consistent field, which allows studying the effects of
hydrodynamic interaction of a large number of spherical particles in flows of an ideal fluid, including in the
presence of external boundaries, and obtaining the averaged dynamic characteristics of such flows. In the
first approximation in the volume fraction of granules in a layer, an analytical function is obtained that
describes the averaged velocity field of the fluid both inside and outside this layer.
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В работе рассматривается модель стабильных реберных подмножеств (“матчингов”) в двудольном графе
G = (V, E), в котором предпочтения для вершин одной доли (“фирм”) задаются при помощи функций выбора
со стандартными свойствами консистентности, заменяемости и кардинальной монотонности, а предпочте-
ния для вершин другой доли (“работников”) – при помощи линейных порядков. Для такой модели дается
комбинаторное описание структуры ротаций и предлагается алгоритм построения посета ротаций с оценкой
временно́й сложности O(|E|2) (включая обращения к оракулам, связанных с функциями выбора). Как след-
ствие, можно получить “компактное” аффинное представление стабильных матчингов и эффективно решать
смежные задачи. Библ. 21.
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1. ВВЕДЕНИЕ

Исследования в области стабильных контрактов на двусторонних рынках начались с классической работы
Гейла и Шепли [1] о стабильных марьяжах. В этой модели и ее естественных обобщениях типа “один-много”
(one-to-many) и “много-много” (many-to-many) рассматривается двудольный граф G = (V, E), вершины кото-
рого интерпретируются как “агенты” рынка, а ребра – как возможные “контракты” между парами агентов.
Предпочтения агента v ∈ V на множестве доступных ему контрактов (инцидентных ребер) Ev задаются строгим
линейным порядком, число выбираемых контрактов ограничено заданной квотой q(v). Допустимое по квотам
множество контрактов X ⊆ E считается стабильным, если никакой контракт из дополнения E − X не является
более предпочтительным для обеих сторон по сравнению с некоторыми их тех, что они выбрали.

С тех пор задачи о стабильности на двудольных графах с линейными предпочтениями в вершинах заслужи-
ли широкую популярность; обзоры результатов по этой теме представлены, например, в работах [2, 3]. Здесь
из значительных установленных свойств можно выделить следующие: стабильное множество контрактов су-
ществует при любых квотах; совокупность стабильных множеств образует дистрибутивную решетку при есте-
ственном сравнении; оптимальные стабильные множества для каждой из сторон рынка могут быть построены
эффективным алгоритмом. (Мы называем алгоритм эффективным, если число операций, или время, которое
он затрачивает, ограничено сверху полиномом от |V |, |E|.)

Для определенности в разбиении множества вершин V на две доли (независимые множества, хроматические
классы) будем обозначать эти доли как W и F, называя элементы в них работниками (workers) и фирмами (firms),
соответственно. (В классической модели с единичными квотами, рассматриваемой в [1], вершины разных до-
лей интерпретируются как лица “мужского” и “женского” пола.) Любое подмножество ребер X ⊆ E будем для
краткости именовать матчингом (отходя от стандартного определения последнего в литературе) и будем назы-
вать стабильное множество ребер стабильным матчингом. Подчеркнем, что в этой работе мы рассматриваем
матчинги только в двудольных графах.

Существенно более богатый класс моделей стабильности на двудольных графах возникает при переходе от
линейных предпочтений агентов к предпочтениям, определяемым функциями выбора. Для каждой вершины
v ∈ V функция выбора (ФВ) – это оператор Cv на 2Ev , выбирающий в каждом подмножество ребер Z ⊆ Ev “прием-
лемую” (более предпочтительную) часть Cv(Z) ⊆ Z. Как правило, на функцию выбора Cv накладываются акси-
омы консистентности и заменяемости, что позволяет выстроить теорию стабильных матчингов, обобщающую
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базовые результаты для моделей с линейными предпочтениями. (Отметим, что указанная пара аксиом экви-
валентна свойству независимости от пути, восходящему к Плотту [7].) Первоначальное развитие этой теории
осуществлялось в 1980е годы, главным образом в работах Келсо и Крауфорда [4], Рота [5] и Блэра [6]. В част-
ности, в них показывалось, что множество стабильных матчингов непусто и образует решетку.

К важному последующему вкладу следует отнести работы Алкана [8, 9] начала 2000х годов; в них показано,
что при добавлении третьей аксиомы квотируемости, или более слабой аксиомы кардинальной монотонности,
решетка стабильных матчингов становится дистрибутивной. Это ввиду известной теоремы Биркхофа [10] вле-
чет представимость стабильных матчингов в виде идеалов некоторого посета.

Ранее представление такого рода было продемонстрировано в простейшем случае – для стабильных марья-
жей – Ирвингом и Лейтером в работе [11]. В ней было показано, что: (а) соответствующий посет образован т.н.
ротациями – циклами, связывающими “соседние” стабильные матчинги; (б) число ротаций не превосходит |E|;
и (в) посет ротаций (дающий “компактное представление” множества стабильных марьяжей) может быть по-
строен эффективно. (В то же время, в [11] установлено, что задача определения числа стабильных матчингов
графа является труднорешаемой, #P-трудной.) В последующей работе [12] было объяснено, что с помощью
посета ротаций можно эффективно решать задачу минимизации линейной функции на множестве стабильных
марьяжей; здесь привлекается метод Пикара [13], дающий сведение к классической задаче о минимальном раз-
резе.

В недавней работе [14] Фаэнза и Цанг провели углубленное исследование ротаций, их посетов и приложе-
ний для общих моделей Алкана в [8, 9]. Они рассматривали стабильные матчинги, порождаемые функциями
выбора, в двух ситуациях: 1) ФВ для всех вершин плоттовы (т.е. подчиняются аксиомам консистентности и
заменяемости) плюс кардинально монотонные; 2) ФВ для всех вершин плоттовы, и кроме того, для вершин
одной доли, скажем, F, выполняется аксиома кардинальной монотонности, а для вершин другой доли W – ак-
сиома квотируемости. В первом случае мы будем применять термин “общая булева модель” (ОБМ), а во втором
случае – “специальная булева модель” (СБМ). Здесь термин “булевость” отражает то, что мы имеем дело с под-
множествами в E или, эквивалентно, с 0, 1 функциями на E, в отличие от моделей, где допускаются стабильные
функции с более общими значениями (скажем, вещественными или целочисленными).

В качестве основных результатов в [14], касающихся ОБМ, получены следующие: уточнена структура рота-
ций (которые не обязательно являются простыми циклами графа); показано, что множество ротаций ℛ име-

ет размер O(|F||W |); установлена биекция X
ω
↦−→ I между решеткой (𝒮,≻) стабильных матчингов X и решеткой

(ℐ,⊂) идеалов I посета ротаций; показано, что отображение ω−1 дает целочисленную аффинную представи-
мость стабильных матчингов через идеалы посета. Последнее означает наличие целочисленной E × ℛ матри-
цы A, для которой выполняется x = Au + x0, где x и u – характеристические векторы (в пространствах RE и Rℛ,
соответственно) стабильного матчинга и идеала, связанных отношением ω, а x0 – характеристический вектор
W-оптимального стабильного матчинга. Более того, замечено, что матрица A имеет полный столбцовый ранг,
откуда следует, что многогранник стабильных матчингов аффинно конгруэнтен порядковому многограннику
(order polytope) Стэнли [15].

Эти результаты усиливаются для СБМ. А именно, в [14] показывается, что в этом случае посет ротаций и
матрица A аффинного представления могут быть построены эффективно. Здесь предполагается, что функции
выбора заданы посредством оракулов, причем при обращении к оракулу для Cv (v ∈ V) с произвольным множе-
ством Z ⊆ Ev он выдает значение Cv(Z) за “оракульное время”, полиномиальное от |Z|. Более того, такое время
условно измеряется константой O(1) (как обычно принято в подобных задачах, где оценивается только число
обращений к оракулам, игнорируя сложность их выполнения). При этих предположениях время построения
посета и матрицы оценивается в [14] как O(|F|3|W |3). Аналогично моделям с линейными предпочтениями, это
дает возможность для СБМ эффективно решать задачи линейной оптимизации на множестве стабильных мат-
чингов.

В настоящей работе рассматривается облегченный вариант СБМ. Как и в полной версии, предпочтения в
долях графа G задаются различно. А именно, каждая вершина v доли F снабжена функцией выбора Cv на 2Ev ,
удовлетворяющей аксиомам плоттовости и кардинальной монотонности (подобно ОБМ и СБМ). Как и преж-
де, все эти ФВ задаются оракулами. В свою очередь, для каждой вершины v доли W имеется квота q(v) и пред-
почтения на множестве Ev заданы линейным порядком. Мы условно именуем модель стабильности при таких
условиях комбинированной булевой моделью (сокращенно, КБМ).

Следует отметить, что модель такого рода с единичными квотами вершин в W возникает в результате редук-
ции задачи с т.н. последовательным выбором (sequential choice) в вершинах одной доли, описанной в работе [16].

Основная цель нашей работы состоит в разработке для КБМ относительно прозрачных методов построения
ротаций и их посета, а также доказательства биекции между решетками стабильных матчингов и идеалов посета.
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При этом наши алгоритмы имеют невысокую временную сложность; в частности, посет ротаций строится за
время O(|E|2) (для сравнения аналогичная задача для СБМ решается в [14] за время O(|F|3|W |3) ≈ O(|E|3)).

Работа организована следующим образом.
Раздел 2 содержит базовые определения и постановки, касающиеся КБМ. В разд. 3 излагаются утверждения

и средства, приводящие к определению ротаций. В разд. 4 объясняется конструкция посета ротаций и доказы-
вается теорема об изоморфизме решеток стабильных матчингов и идеалов посета. Раздел 5 в основном посвя-
щен алгоритмическим аспектам. Здесь показывается, что посет ротаций может быть построен за время O(|E|2),
а начальный стабильный матчинг (оптимальный для W) – за время O(|V ||E|). Основываясь на конструкции по-
сета ротаций, в разд. 6 мы демонстрируем аффинную представимость решетки стабильных матчингов и даем
описание структурных элементов многогранника стабильных матчингов. Следует заметить, что в разд. 3–6 мы
для упрощения изложения рассматриваем случай единичных квот для вершин доли W. В разд. 7 дается обобще-
ние на случай произвольных квот при линейных предпочтениях в доле W (что не вызывает больших усилий).
В заключительном разд. 8, следуя [16], дается описание вышеупомянутой модели с последовательными функ-
циями выбора и ее редукция к КБМ. Затем мы указываем следствия для этой модели из полученных результатов
для КБМ.

2. НАЧАЛЬНЫЕ ОПРЕДЕЛЕНИЯ И ПОСТАНОВКИ

В рассматриваемой модели нам даны: конечный двудольный граф G = (V, E) с разбиением множества вер-
шин V на два независимых подмножества (доли) F и W, называемых множествами фирм и работников, соот-
ветственно. Без ограничения общности, можно считать, что граф G не имеет кратных ребер (см. замечание 1 в
конце раздела); также можно считать, что G связен. В частности, |V | − 1 ≤ |E| ≤

(︀
|V |
2

)︀
. Ребро в G, соединяющее

вершины w ∈ W и f ∈ F, может обозначаться w f .
Для вершины v ∈ V обозначим через Ev множество ее инцидентных ребер. На этом множестве задаются

предпочтения вершины (“агента”) v. Предпочтения в долях F и W имеют существенные различия.

∙ (линейные предпочтения) Для вершин w ∈ W предпочтения заданы при помощи линейного порядка >w на Ew.
Если для e, e′ ∈ Ev выполняется e >w e′, мы говорим, что ребро e предпочтительнее для w, чем e′. Это аналогично
предпочтениям в классической задаче о стабильных марьяжах Гейла и Шепли [1].

∙ (функции выбора) Для f ∈ F предпочтения на E f заданы при помощи функции выбора (ФВ) C = C f :
2E f → 2E f . Она удовлетворяет нескольким стандартным условиям (аксиомам). Всегда предполагается, что это
сжимающий оператор, т.е. для любого Z ⊆ E f выполняется C(Z) ⊆ Z. Две аксиомы, касающиеся пар Z,Z′ ⊆ E f ,
выглядят так:

(A1) если Z ⊇ Z′ ⊇ C(Z), то C(Z′) = C(Z);

(A2) если Z ⊇ Z′, то C(Z) ∩ Z′ ⊆ C(Z′).

Из (A1), в частности, следует, что для любого Z ⊆ E f справедливо C(C(Z)) = C(Z). В литературе свойство (A1)
называют консистентностью, а свойство (A2) – заменяемостью, или персистентностью (последний термин
встречается, например, в [17]). Как показано в [18], выполнение (A1) и (A2) эквивалентно свойству незави-
симости от пути, или плоттовости (восходящее к работе [7]); в нашем случае это выглядит так:

для любых Z,Z′ ⊆ E f справедливо C(Z ∪ Z′) = C(C(Z) ∪ Z′). (2.1)

Еще одна аксиома известна под названием кардинальной монотонности:

(A3) если Z ⊇ Z′, то |C(Z)| ≥ |C(Z′)|.

Важный частный случай (A3) – условие квотируемости; оно накладывается, когда задано число (квота)
q( f ) ∈ Z>0, и выгладит так:

(A4) для любого Z ⊆ E f справедливо |C(Z)| = min{|Z|, q( f )}.

Легко проверить, что указанные аксиомы выполняются для вершин w ∈ W; в этом случае задается квота
q(w) ∈ Z>0, и оператор Cw действует в соответствии с порядком >w, а именно: в множестве Z ⊆ Ew выбираются
min{q(w), |Z|} старших элементов.

В нашем изложении, вплоть до разд. 7, мы для простоты будем как правило рассматривать КБМ с единич-
ными квотами для всех w ∈ W, в то же время функции C f , f ∈ F, будут произвольными при условиях (A1)–(A3).
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∙ (стабильность) Для удобства изложения всякое подмножество ребер X ⊆ E будем называть матчингом. Для
v ∈ V ограничение X ⊆ E на подмножество Ev будем обозначать через Xv; иными словами, Xv = X ∩ Ev. Подмно-
жество Z ⊆ Ev назовем приемлемым, если Cv(Z) = Z; совокупность таких подмножеств обозначим 𝒜v. Это по-
нятие распространяется на подмножества во всем E; а именно, скажем, что X ⊆ E приемлемое, если таковыми
являются все его ограничения Xv, v ∈ V. Совокупность приемлемых множеств (матчингов) в E обозначается𝒜.

Для всякого v ∈ V функция выбора Cv позволяет сравнивать приемлемые множества в Ev. А именно, для
различных Z,Z′ ∈ 𝒜v скажем, что Z предпочтительнее Z′, и обозначим это как Z ≻v Z′, если

Cv(Z ∪ Z′) = Z.

Легко видеть, что отношение ≻w транзитивное.
Исходя из сравнения приемлемых подмножеств в множествах Ev, можно сравнивать приемлемые матчинги

во всем E. А именно, выбирая одну из долей в G, скажем, F, для различных X,Y ∈ 𝒜 будем писать X ≻F Y и
говорить, что X предпочтительнее Y относительно “фирм”, если для всех f ∈ F выполняется X f ⪰ f Y f . Порядок
≻W в𝒜 относительно “работников” определяется аналогично.

Определение 1. Для v ∈ V и Z ∈ 𝒜v, скажем, что ребро e ∈ Ev−Z интересное относительно Z, если e ∈ Cv(Z∪{e}).
Это понятие распространяется на приемлемые матчинги в E. А именно, при матчинге X ∈ 𝒜 ребро e = w f ∈ E−X
называется интересным для вершины (“агента”) v ∈ {w, f }, если e ∈ Cv(Xv ∪ {e}). Если ребро e = w f ∈ E − X
интересное для обеих вершин w и f , то говорят, что e блокирует X. Матчинг X ∈ 𝒜 называется стабильным,
если он не блокируется никаким ребром в E − X. Множество стабильных матчингов для рассматриваемых G =
(F ⊔W, E), >w, q(w) (w ∈ W), C f ( f ∈ F) обозначим через 𝒮 = 𝒮(G, >, q,C).

Заметим, что для v ∈ V, Z ∈ 𝒜v, e ∈ Ev − Z и Z′ := Cv(Z ∪ {e}):

(i) ребро e интересное относительно Z тогда и только тогда, когда Z′ равно либо
(a) Z ∪ {e}, либо (б) (Z − {e′}) ∪ {e} для некоторого e′ ∈ Z;

(ii) если e интересное относительно Z, то Z′ ≻v Z, и наоборот.

(2.2)

Здесь (i) следует из соотношений Cv(Z) = Z и Z′ ⊆ Z∪{e} и неравенства |Cv(Z∪{e})| ≥ |Cv(Z)| (в силу кардинальной
монотонности (A3)). Свойство (ii) следует из Cv(Z′ ∪ Z) = Cv(Z ∪ {e}) = Z′ ̸= Z.

∙ Для v ∈ V множество𝒜v, снабженное отношением предпочтения ≻v, обращается в решетку; в ней, в соот-
ветствии с изложенным в [9], для Z,Z′ ∈ 𝒜v точная верхняя грань Z ⋎ Z′ выражается как Cv(Z ∪ Z′) (в то время
как точная нижняя грань Z ⋏Z′ выражается с использованием понятия замыкания; мы это здесь не приводим).

“Прямое произведение” решеток (𝒜 f ,≻ f ) для f ∈ F дает решетку (𝒜,≻F) (в ней для X, X′ ∈ 𝒜 операции
X ⋎F X′ (join) и X ⋏F X′ (meet) относительно доли F определяются естественным образом через ограничения
X f ⋎ X′f и X f ⋏ X′f ). Аналогично определяется решетка (𝒜,≻W ) относительно доли W.

∙ Теперь мы можем сформулировать важные для дальнейшего свойства множества стабильных матчингов
𝒮; они непосредственно вытекают из соответствующих общих результатов в работе [9] (см. в ней Теорему 10).
А именно,

(a) 𝒮 непусто, и (𝒮,≻F) является дистрибутивной решеткой;

(б) (свойство полярности): порядки ≻F и ≻W противоположны, а именно: для
X,Y ∈ 𝒮, если X ≻F Y, то Y ≻W X, и наоборот;

(в) (свойство инвариантности размеров): для любой фиксированной вершины
v ∈ V число |Xv| одинаково при всех X ∈ 𝒮.

(2.3)

Мы будем обозначать минимальный и максимальный элементы в решетке (𝒮,≻F) как Xmin и Xmax, соответ-
ственно (тогда первый – наилучший, а второй – наихудший для доли W, в силу свойства полярности (2.3)(б)).

Отметим, что в случае выполнения квот (что, в частности, верно для доли W) свойство (в) в (2.3) имеет
важное усиление (ср. [17, Corollary 3]):

для вершины v ∈ V, если ФВ Cv подчиняется аксиоме квотируемости (A4) с квотой
q(v), и если для некоторого (или, что эквивалентно, любого) стабильного матчинга
X выполняется |Xv| < q(v), то множество Xv одинаково при всех X ∈ 𝒮.

(2.4)
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Замечание 1. Иногда в литературе о стабильных матчингах на графах (не обязательно двудольных) допус-
кается наличие кратных ребер, т.е. рассматриваемый граф G может быть “мультиграфом”. (Такое обобщение
может иметь разумные экономические интерпретации.) Однако достаточно простая конструкция позволяет
преобразовать G в граф G′ без кратных ребер, получая эквивалентную задачу о стабильном матчинге для G′.
Такая конструкция указана в [19] для случая линейных порядков на всех вершинах; она применима и к нашей
модели КБМ. (В силу этого мы в дальнейшем можем ограничиться обыкновенными графами, что упрощает
изложение, не ограничивая общности; в частности, ребро может обозначаться парой его концевых вершин.)
Кратко опишем данную конструкцию. В ней (каждое или желаемое) ребро e между вершинами u и v в графе G
заменяется подграфом Ke, порождаемым 6-циклом Oe с последовательностью (новых) вершин v1, . . . , v6 и двумя
дополнительными ребрами uv1 и vv4. Предпочтения в вершинах определены по кругу: ребро vi−1vi лучше vivi+1
(полагая v6 = v0); кроме того, ребро uv1 (vv4) полагается средним в тройке для v1 (соответственно, v4). Квоты
для всех новых вершин vi равны 1.

Легко проверить, что в стабильном матчинге X′ для модели с G′ все вершины vi должны быть покрыты X′.
Отсюда следует, что ребра uv1 и vv4 одновременно либо принадлежат, либо не принадлежат X′. Это естественно
порождает матчинг X для G (единственным образом), который стабилен для модели с G. Обратно, стабильный
матчинг X для G может быть преобразован в стабильный матчинг X′ для G′; здесь оба ребра uv1 и vv4 принадле-
жат X′ тогда и только тогда, когда ребро e принадлежит X. На подграфе Ke матчинг X′ определяется единствен-
ным образом за исключением случая, когда e /∈ X, и при этом ребро e – не интересное при X ни для вершины
u, ни для вершины v; пометим это как случай (*). При нем X′ может быть назначен внутри Ke двумя способами:
либо v1v2, v3v4, v5v6 ∈ X′, либо v2v3, v4v5, v6v1 ∈ X′. О связи ротаций в G′ и G будет сказано в замечании 2 в разд. 5.

3. АКТИВНЫЙ ГРАФ И РОТАЦИИ

Зафиксируем стабильный матчинг X ∈ 𝒮, отличный от Xmax. Нас интересует множество 𝒮X стабильных
матчингов X′, удовлетворяющих X′ ≻F X и при этом близких к X. Последнее означает, что X непосредствен-
но предшествует X′ в решетке (𝒮,≻F); иначе говоря, нет Y ∈ 𝒮, лежащего между X и X′, т.е. удовлетворяющего
X′ ≻F Y ≻F X. Для нахождения 𝒮X мы будет строить т.н. активный граф, в котором будет выделяться семейство
специальных циклов, называемых ротациями. Наш метод определения ротаций существенно проще и эффек-
тивнее, чем метод в [14], разработанный для более общей модели.

Определение 2. Вершину w ∈ W назовем дефицитной, если |Xw| < q(w). Иначе (при |Xw| = q(w)) будем имено-
вать вершину w полновесной; множество таких вершин обозначим через W=.

(Согласно свойству (2.3)(в), множество W= не зависит от X ∈ 𝒮. Кроме того, ввиду (2.4) для дефицитной вер-
шины w множество Xw = X ∩ Ew не зависит от X ∈ 𝒮.)

В дальнейшем, когда не возникает двусмысленности, мы для краткости будем писать ≻ вместо ≻F . Для про-
стоты изложения мы далее будем рассматривать случай единичных квот q(w) = 1 для всех w ∈ W; общий случай
квот q на W будет рассматриваться в разд. 7.

3.1. Активный граф

Для полновесной вершины w ∈ W= единственное ребро (зафиксированного) матчинга X, инцидентное w,
обозначим через xw, т.е. Xw = {xw}. Рассмотрим множество ребер e = f w ∈ Ew, удовлетворяющих следующим
свойствам:

(a) e <w xw, и (б) e интересное для f при X, т.е. e ∈ C f (X f ∪ {e}). (3.1)

Если это множество непустое, то самое лучшее ребро в нем относительно порядка >w назовем W-
допустимым для X и обозначим aw = aw(X).

Рассмотрим такое ребро aw = f w. Согласно (2.2)(i), возможны два варианта для X f и aw. Если C f (X f ∪ {aw})
выражается как (X f − {e′}) ∪ {aw} для некоторого e′ ∈ X f (вариант (б)), то ребро e′ назовем F-допустимым и
обозначим bw

f = bw
f (X). Также скажем, что bw

f ассоциировано с aw, и что пара (aw, bw
f ) образует связку, проходящую

через вершину f .
(В случае C f (X f ∪{aw}) = X f ∪{aw} ребро aw не порождает связку. Заметим также, что некоторые F-допустимые

ребра могут быть ассоциированы с двумя и более W-допустимыми ребрами, т.е. возможны различные связки
(aw, bw

f ) и (aw′ , bw′
f ), для которых bw

f = bw′
f .) Из определения допустимых ребер непосредственно следует, что

для любой связки (a, b), проходящей через вершину f ∈ F, справедливо a /∈ X f ,
b ∈ X f , и C f (X f ∪ {a}) = (X f ∪ {a}) − {b}.

(3.2)
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Пусть D = D(X) = (V, ED) – ориентированный граф, ребрами которого являются W-допустимые ребра, ори-
ентированные от W к F, и F-допустимые ребра, ориентированные от F к W; мы применяем обозначение вида
(w, f ) для первых, и ( f ,w) для вторых (где w ∈ W и f ∈ F). Применим к D следующую процедуру.

Процедура очистки. Если в текущем графе D обнаруживается вершина w ∈ W, имеющая исходящее W-
допустимое ребро aw = (w, f ), но не имеющая входящего F-допустимого ребра (вида ( f ′,w)), то удаляем
aw из D. Одновременно, если такое aw имеет ассоциированное ребро bw

f , и это ребро не участвует в других
связках, проходящих через f в текущем D, то также удаляем bw

f из D. Кроме того, удаляем из D изолирован-
ные вершины, когда они появляются. Повторяем процедуру с новым D, и т.д., пока D не стабилизируется.

Пусть Γ = Γ(X) = (VΓ, EΓ) обозначает граф D, полученный по завершении этой процедуры. Мы называем Γ
активным графом для X, и его ребра – активными ребрами. Положим WΓ := W ∩VΓ и FΓ := F ∩VΓ. Для вершины
v ∈ VΓ обозначим через δout(v) = δout

Γ (v) и δin(v) = δin
Γ (v) множества ребер в Γ, выходящих из v и входящих в v,

соответственно. Граф Γ обладает следующими свойствами:

(a) каждая вершина w ∈ WΓ удовлетворяет |δout(w)| = |δin(w)| = 1;
(б) для каждой вершины f ∈ FΓ справедливо |δout( f )| = |δin( f )|, и связки (aw, bw

f ), про-
ходящие через f , попарно не пересекаются по ребрам и дают разбиение множества
δout( f ) ∪ δin( f ) (где aw ∈ δ

in( f ) и bw
f ∈ δ

out( f )).

(3.3)

Действительно, из определения W- и F-допустимых ребер следует, что |δin(w)|, |δout(w)| ≤ 1 для всех w ∈ WΓ,
и |δin( f )| ≥ |δout( f )| для всех f ∈ FΓ. В результате поцедуры очистки неравенства в первом выражении (для w)
обращаются в 1 = |δin(w)| ≥ |δout(w)|, а вид второго выражения (неравенства для f ) сохраняется. Теперь требуемые
равенства следуют из очевидных балансовых соотношений (поскольку ребра в Γ, выходящие из W, и ребра,
входящие в F, – одни и те же, и аналогично для ребер, выходящих из F, и ребер, входящих в W).

3.2. Ротации

Из (3.3) следует, что активный граф Γ = Γ(X) декомпозируется в множество попарно непересекающихся по
ребрам ориентированных циклов, где каждый цикл L = (v0, e1, v1, . . . , ek, vk = v0) однозначно строится естествен-
ным образом, а именно: для i = 1, . . . , k, если vi ∈ WΓ, то {ei} = δ

in(vi) и {ei+1} = δ
out(vi), а если vi ∈ FΓ, то пара

(ei, ei+1) образует связку, проходящую через vi. Заметим, что все ребра в L различные, но L может самопересе-
каться в вершинах доли F. В зависимости от контекста мы также можем рассматривать цикл L как подграф в Γ
и применять обозначение L = (VL, EL).

Пусть ℒ = ℒ(X) обозначает множество указанных циклов в Γ. Для каждого цикла L определим разбиение
(L+, L−) множества его ребер, где L+ образовано ребрами, идущими от W к F, а L− – ребрами, идущими от F к W
(называемыми, соответственно, W-активными и F-активными ребрами). Циклы L ∈ ℒ мы и называем ротаци-
ями, ассоциированными с матчингом X. Ключевые свойства ротаций приводятся в следующих двух утвержде-
ниях.

Предложение 3.1. Для каждого L ∈ ℒ(X) матчинг X′ := (X − L−) ∪ L+ является стабильным и удовлетворяет
X′ ≻ X.

Скажем, что такой матчинг X′ получен из X применением ротации L, и обозначим через 𝒮X множество таких
матчингов по всем L ∈ ℒ(X).

Предложение 3.2. Пусть Y ∈ 𝒮 и X ≺ Y. Тогда существует X′ ∈ 𝒮X, удовлетворяющий X′ ⪯ Y.

Доказательства этих предложений существенно используют следующую лемму. Для упрощения обозначе-
ний здесь и далее для множества ребер Z и элементов a /∈ Z и b ∈ Z мы можем писать Z + a вместо Z ∪ {a} и Z − b
вместо Z − {b}.

Лемма 3.1. Пусть (a(1), b(1)), . . . , (a(k), b(k)) – различные (непересекающиеся по ребрам) связки в Γ, проходящие
через вешину f ∈ F. Тогда для любого множества I ⊆ {1, . . . , k} =: [k] справедливо

C f (X f + a(1) + · · · + a(k) − {b(i) : i ∈ I}) = X f + a(1) + · · · + a(k) − b(1) − · · · − b(k).

Доказательство. Обозначим X f + a(1) + · · · + a(k) − {b(i) : i ∈ I} через ZI . Надо показать, что C f (ZI) = Z[k] для
любого I ⊆ [k].

Сперва установим это для I = ∅. Для этого сравним действие C f на Z∅ = X f + a(1)+ · · ·+ a(k) и на Yi := X f + a(i)
при произвольном i ∈ [k]. Из определения связки (a(i), b(i)) следует C f (Yi) = X f + a(i) − b(i). Применяя аксиому
(A2) к паре Z∅ ⊃ Yi, имеем

C f (Z∅) ∩ Yi ⊆ C(Yi) = X f + a(i) − b(i).
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Поскольку Yi содержит bi, получаем bi /∈ C f (Z∅).
Таким образом, C f (Z∅) ⊆ Z∅−b(1)−· · ·−b(k) = Z[k]. В этом выражении включение выполняется как равенство,

что следует из кардинальной монотонности, примененной к паре Z∅ ⊇ X f , в силу которой

|C(Z∅)| ≥ |C(X f )| = |X f | = |Z[k]|.

Теперь покажем требуемое равенство для произвольного I ̸= ∅, предполагая это выполненным по индукции
для всякого I′ ⊂ I. Возьмем i ∈ I, положим I′ := I− i и рассмотрим пару ZI′ ⊃ ZI . По индукции имеем C(ZI′ ) = Z[k].
Тогда в силу кардинальной монотонности получим

|C f (ZI)| ≤ |C f (ZI′ )| = |Z[k]| = |X f |.

С другой стороны, применяя (A2), имеем C f (ZI′ )∩ZI ⊆ C f (ZI). Отсюда следует, что C f (ZI) содержит Z[k] (ввиду
очевидного ZI ⊇ Z[k]). Тогда C f (ZI) = Z[k].

Лемма 3.1 доказана.

Из этой леммы следует, что

множество Z := X f + a(1) + · · · + a(k) − b(1) − · · · − b(k) – приемлемое для f и удовле-
творяет Z ≻ f X f . (3.4)

(Поскольку, применяя лемму 3.1 к I = ∅, имеем C f (Z ∪ X f ) = C f (X f + a(1) + · · · + a(k)) = Z.)

Доказательство предложения 3.1. Прежде всего заметим, что множество X′v приемлемое для всех v ∈ V. Это
следует из приемлемости Xv, если v /∈ VL. Для w ∈ W ∩ VL множество X′w состоит из одного ребра, и Cw(X′w) = X′w
очевидно. А для f ∈ F ∩ VL приемлемость X′f следует из (3.4) при L+ ∩ E f = {a1, . . . , ak} и L− ∩ E f = {b(1, . . . , b(k)}.
Таким образом, X′ ∈ 𝒜.

Теперь, рассуждая от противного, предположим, что X′ не стабильное и рассмотрим блокирующее ребро
e = w f для X′, т.е. e интересное для w при X′w и интересное для f при X′f . Заметим, что e /∈ X. (Иначе из e ∈ X
и e /∈ X′ следовало бы e ∈ L− ∩ E f =: B f , и, применяя лемму 3.1 к A f := L+ ∩ E f и B′ := B f − e, мы имели бы
C f (X′f + e) = C f ((X f − B′) ∪ A f ) = X′f , вопреки тому, что e интересное для f при X′f .)

Предположим, что указанное ребро e не интересное для f при X. Тогда C f (X f + e) = X f , откуда (применяя
плоттовость (2.1)) получаем

C f (X′f ∪ X f + e) = C f (X′f ∪C f (X f + e)) = C f (X′f ∪ X f ) = X′f .

С другой стороны, полагая Z′ := C f (X′f + e), имеем

C f (X′f ∪ X f + e) = C f (C f (X′f ∪ X f ) + e) = C f (X′f + e) = Z′.

Следовательно, Z′ = X′f . Но согласно (2.2)(ii), из интересности e относительно X′f должно следовать Z′ ≻ f X′f ;
противоречие.

Таким образом, e интересное для f при X.
Теперь, чтобы прийти к финальному противоречию, сравним e с активным ребром aw и ребром e′ ∈ X, инци-

дентным w; тогда {aw} = X′w и {e′} = Xw. Так как e интересное для w при X′, то выполняется e >w aw. В то же время,
так как ребро e интересное для f при X, то e не может быть интересным для w при X (ввиду стабильности X);
поэтому e′ >w e. Таким образом, e удовлетворяет свойству (3.1) и при этом является более предпочтительным,
чем W-активное ребро aw; противоречие.

Итак, X′ не допускает блокирующих ребер, т.е. является стабильным. Свойство X′ ≻F X следует из xw >w aw,
w ∈ WL (ввиду (2.3)(б)).

Предложение 3.1 доказано.

Доказательство предложения 3.2. Чтобы построить ротацию L ∈ ℒ(X), определяющую требуемый матчинг
X′, прежде всего заметим, что согласно (2.3)(в), размеры ограничений X и Y одинаковы для каждой вершины
v ∈ V, т.е. |Xv| = |Yv|. Поскольку X ̸= Y, найдется вершина w ∈ W, для которой Xw ̸= Yw. Тогда Xw состоит из
одного ребра xw, и Yw состоит из одного ребра yw, и выполняется xw >w yw (так как X ≺ Y влечет X ≻W Y, ввиду
полярности (2.3)(б)).

Ребро yw = w f должно быть интересным для вершины f при X. Действительно, ввиду Y f ⪰ f X f , имеем
C(Y f ∪ X f ) = Y f , где C := C f . Тогда, используя плоттовость, имеем

Y f = C(Y f ∪ X f ) = C((Y f − yw) ∪ (X f + yw)) = C((Y f − yw) ∪C(X f + yw)).
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Из yw /∈ (Y f − yw) следует yw ∈ C(X f + yw), поэтому yw интересное для f при X.
Следовательно, имеется активное ребро aw = wg, для которого xw >w aw ≥w yw. Рассмотрим вершину g и

множества Xg и Yg. Ребро aw является интересным для g при X, но не при Y (иначе мы имели бы aw ̸= yw и
aw >w yw, и тогда ребро aw было бы интересным при Y для обеих вершин w и g, вопреки стабильности Y). Итак,
Cg(Yg + aw) = Yg.

Факт. Cg(Xg + aw) = Xg + aw − b для некоторого b ∈ Xg; при этом b не принадлежит Y, и для Z := Xg + aw − b
выполняется Xg ≺g Z ⪯g Yg.

Доказательство. Ввиду интересности aw относительно Xg, возможны два случая (ср. (2.2)(i)): (a) C(Xg + aw) =
= Xg + aw, или (б) C(Xg + aw) = Xg + aw − b для некоторого b ∈ Xg, где C := Cg. В случае (a), если aw ∈ Y, имеем

|C(Xg + aw)| = |Xg| + 1 > |Yg| = |C(Yg ∪ Xg)|,

и в то же время Xg + aw ⊆ Yg ∪ Xg, что противоречит кардинальной монотонности. Если же aw /∈ Y, то

C(Yg ∪ Xg + aw) = C(C(Yg ∪ Xg) + aw) = C(Yg + aw),

а также |C(Yg + aw)| ≥ |C(Xg + aw)| = |Xg| + 1 (используя кардинальную монотонность для вложения
Yg ∪ Xg + aw ⊃ Xg + aw). Тогда C(Yg + aw) ̸= Yg, и, следовательно, ребро aw является блокирующим для Y (учи-
тывая aw ̸= yw); противоречие.

Таким образом, имеет место случай (б). Предположим теперь, что b ∈ Y. Тогда C(Yg ∪ Xg + aw) = C(Yg + aw), и
в то же время

C(Yg ∪ Xg + aw) = C((Yg − b) ∪ Xg + aw) = C((Yg − b) ∪C(Xg + aw)) = C((Yg − b) ∪ (Xg + aw − b)).

Поскольку оба операнда в последнем объединении не содержат b, получаем b /∈ C(Yg +aw). Но тогда C(Yg +aw) ⊆
⊆ Yg + aw − b ̸= Yg, что дает противоречие как в случае aw ∈ Y, так и в случае aw /∈ Y (где можно видеть, что
aw блокирует Y). Таким образом, b /∈ Y. Указанные сравнения для Xg, Z = Xg + aw − b и Yg легко следуют. Факт
доказан.

Пусть b = w′g. Из факта следует, что ребро b ассоциировано (образует связку) с aw, и что вершина w′ ин-
цидентна ребру yw′ ∈ Y, отличному от b = xw′ ∈ X. Тогда выполняется xw′ >w′ yw′ (ввиду X ≻W Y), и мы можем
применить к паре (xw′ , yw′ ) те же самые рассуждения, что применялись ранее к паре (xw, yw).

Продолжая данный процесс и далее, мы получаем “неограниченный” путь из чередующихся W-активных
и F-активных ребер для X. В нем каждая пара соседних ребер, инцидентных вершине f в F, скажем, e, e′ ∈ E f ,
образует связку, для которой выполняется e /∈ X f ∋ e′, и множество Z := X f + e − e′ удовлетворяет Y f ⪰ f Z.
Выделяя в этом пути участок между двумя попаданиями в одну и ту же вершину в W, мы получаем цикл, явля-
ющийся ротацией L, определяющей искомый матчинг X′ := (X−L−)∪L+ (где L+ и L− – множества W-активных и
F-активных ребер в L, соответственно). Здесь все вершины в W∩VL различные, и из построения следует, что для
каждой такой вершины w выполняется xw >w x′w ≥w yw. (Что касается вершин в F ∩ VL, каждая такая вершина f
может быть пройдена циклом L несколько раз, что порождает непересекающиеся по ребрам связки; используя
лемму 3.1 и факт выше, можно видеть, что X f ≺ f X′f ⪯ f Y f .)

Предложение 3.2 доказано.

4. ПОСЕТ РОТАЦИЙ

В этом разд. устанавливаются важные дополнительные свойства ротаций, которые приводят к построению
посета ротаций.

Пусть 𝒯 – последовательность матчингов X0, X1, . . . , XN, где X0 стабильное, и каждое Xi получается из Xi−1
применением (или сдвигом вдоль) ротации Li ∈ ℒ(Xi−1), т.е. Xi = (Xi−1 − L−i ) ∪ L+i . Тогда, в силу предложения 3.1,
все матчинги Xi являются стабильными, и справедливо X0 ≺ X1 ≺ · · · ≺ XN (где≺=≺F). Такую последовательность
𝒯 мы называем трассой, идущей из X0 в XN . Множество ротаций {L1, . . . , LN} обозначим ℛ(𝒯 ). Можно видеть,
что

(i) число матчингов в любой трассе 𝒯 не превышает |E|;

(ii) для каждого стабильного матчинга X найдется трасса, идущая из минимального
матчинга Xmin (наихудшего для F и наилучшего для W) в максимальный матчинг
Xmax и проходщая через X.

(4.1)
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Действительно, если Xi получается применением ротации к Xi−1, то для каждой вершины w ∈ W, где (Xi)w

отличается от (Xi−1)w, инцидентное матчинговое ребро становится менее предпочтительным. Это дает (i) (и даже
оценку |𝒯 | ≤ |E|/2). В свою очередь (ii) легко следует из Предложения 3.2.

Также, применяя лемму 3.1, легко показать коммутируемость ротаций в активном графе Γ(X). Более точно:

для любого подмножестваℒ′ ⊂ ℒ(X) матчинг X′, получаемый из X удалением ребер
из ∪(L− : L ∈ ℒ′) и добавлением ребер из ∪(L+ : L ∈ ℒ′) является стабильным, и
каждое L′ ∈ ℒ(X) − ℒ является ротацией в Γ(X′); в частности, ротации в ℒ(X) могут
применяться в произвольном порядке.

(4.2)

Это позволяет получить следующее важное свойство инвариантности множества ротаций для трасс, соеди-
няюших фиксированные матчинги (впервые свойство такого рода было получено в [11] для классических ста-
бильных марьяжей и затем было показано рядом авторов для более общих моделей стабильности).

Лемма 4.1. Пусть X,Y ∈ 𝒮 и X ≺ Y. Тогда для всех трасс 𝒯 , идущих из X в Y, множество ротаций ℛ(𝒯 ) одно и
то же.

Доказательство. Обозначим через 𝒳 множество стабильных матчингов X′ таких, что X ⪯ X′ ⪯ Y. Мы знаем,
что множество трасс, идущих из X′ ∈ 𝒳 в Y непусто (в силу предложения 3.2). Скажем, что матчинг X′ ∈ 𝒳
является особым, если найдутся две трассы 𝒯 ,𝒯 ′ из X′ в Y такие, что ℛ(𝒯 ) ̸= ℛ(𝒯 ′). Надо показать, что матчинг
X неособый (при фиксированном Y).

Предположим, что это не так, и рассмотрим особый матчинг X′ ∈ 𝒳максимальный в том смысле, что любой
матчинг Z ∈ 𝒳 такой, что X′ ≺ Z ⪯ Y, уже не является особым. В любой трассе из X′ в Y первый после X′ матчинг
Z получается из X′ применением некоторой ротации из ℒ(X′). Поэтому из выбора X′ следует, что найдутся две
ротации L, L′ ∈ ℒ(X′) такие, что матчинги Z и Z′, полученные из X′ применением L и L′ (соответственно) явля-
ются неособыми, но имеются трасса 𝒯 из X′ в Y, проходящая через Z, и трасса 𝒯 ′ из X′ в Y, проходящая через
Z′, для которых ℛ(𝒯 ) ̸= ℛ(𝒯 ′).

В то же время, поскольку ротации L и L′ коммутируют (ср. (4.2)), L является ротацией для Z′, а L′ – ротацией
для Z. Поэтому есть две трассы ̃︀𝒯 и ̃︀𝒯 ′ из X′ в Y такие, что ̃︀𝒯 начинается с X′,Z,Z′′, а ̃︀𝒯 ′ начинается с X′,Z′,Z′′,
а затем эти трассы совпадают; здесь Z′′ получается из Z применением L′ или, эквивалентно, получается из Z′

применением L. Тогдаℛ(̃︀𝒯 ) = ℛ(̃︀𝒯 ′). В силу неособости Z и Z′ должно выполнятьсяℛ(̃︀𝒯 ) = ℛ(𝒯 ) иℛ(̃︀𝒯 ′) = ℛ(𝒯 ′).
Но тогда получаем ℛ(𝒯 ) = ℛ(𝒯 ′); противоречие.

Лемма 4.1 доказана.

Назовем трассу, идущую из Xmin в Xmax полной. Согласно лемме 4.1, для всех полных трасс 𝒯 множество ро-
таций ℛ(𝒯 ) одно и то же; будем обозначать его через ℛ (таким образом, ℛ состоит из всех возможных ротаций,
применимых к матчингам в 𝒮). Известный метод сравнения ротаций, первоначально указанный в [11], подхо-
дит и для нашей модели КБМ и позволяет задать на ℛ структуру посета.

Определение 3. Для ротаций R,R′ ∈ ℛ скажем, что R предшествует R′ и обозначим это как R ⋖ R′, если в
каждой полной трассе ротация R применяется раньше, чем ротация R′.

Это бинарное отношение является транзитивным и антисимметричным и задает частичный порядок на ℛ;
мы называем (ℛ,⋖) посетом ротаций для G. Тесная связь этого посета со стабильными матчингами позволя-
ет получить “компактное описание” решетки (𝒮,≺) (в духе работы Биркхофа [10], где произвольная конечная
дистрибутивная решетка представляется в виде решетки идеалов посета).

Более точно, для каждого X ∈ 𝒮 возьмем трассу 𝒯 из Xmin в X и обозначим множество ротаций ℛ(𝒯 ) через
ω(X). Это множество не зависит от выбранной трассы, и для R,R′ ∈ ℛ из R ⋖ R′ и R′ ∈ ω(X) следует R ∈ ω(X), т.е.
ω(X) является идеалом посета (ℛ,⋖). Верно и обратное, и более того, отображение ω дает изоморфизм решеток.

Предложение 4.1. Соответствие X ↦→ ω(X) устанавливает изоморфизм между решеткой стабильных матчин-
гов (𝒮,≺F) и решеткой (ℐ,⊂) идеалов посета (ℛ,⋖) (где точные нижняя и верхняя грани для I, I′ ∈ ℐ – это I ∩ I′ и
I ∪ I′, соответственно).

Доказательство. Рассмотрим стабильные матчинги X,Y ∈ 𝒮 и возьмем их структурное пересечение (“meet”)
M := X ⋏ Y и структурное объединение (“join”) J := X ⋎ Y в решетке (𝒮,≺). Основная часть доказательства
состоит в том, чтобы установить соотношения

ω(X) ∩ ω(Y) = ω(M) и ω(X) ∪ ω(Y) = ω(J); (4.3)

иными словами, нужно показать, что ω определяет гомоморфизм рассматриваемых решеток.
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Покажем левое равенство в (4.3). Для этого применим метод доказательства предложения 3.2, рассматривая
пару M ≺ X и пару M ≺ Y. Пусть W1 (W2) – множество вершин w ∈ W, где Mw ̸= Xw (соответственно, Mw ̸= Yw).
Мы утверждаем, что W1 ∩W2 = ∅.

Чтобы это показать, следуя доказательству предложения 3.2, выберем произвольную начальную вершину
w ∈ W1, для которой выполняется mw >w xw (где {mw} = Mw и {xw} = Xw), и построим соответвующий чередую-
щийся путь P в графе допустимости D(M) с началом w до первого зацикливания, получая ротацию L ∈ ℒ(M).
Тогда для M′ := (M − L−)∪ L+ выполняется M ≺ M′ ⪯ X. Заметим, что путь P и ротация L строятся канонически,
они определяются только графом D(M) и начальной вершиной w (и в остальном не зависят от X).

В случае W1 ∩ W2 ̸= ∅, взяв общую вершину w ∈ W1 ∩ W2, мы получили бы одну и ту же ротацию для обеих
пар (M, X) и (M,Y). Но тогда для X и Y мы имели бы нижнюю грань большую, чем M (а именно, M′ как выше);
противоречие.

Следовательно, W1 ∩ W2 = ∅. Продолжая построение по указанному методу для пары (M, X), мы получим
трассу 𝒯 из M в X такую, что для каждого промежуточного матчинга ̃︀M множество вершин w ∈ W, где ̃︀Mw ̸=

Xw, является подмножеством в W1. И аналогично для трассы 𝒯 ′ из M в Y и множества W2. Отсюда следует, что
ℛ(𝒯 )∩ℛ(𝒯 ′) = ∅. Посколькуω(X) = ω(M)∪ℛ(𝒯 ) иω(Y) = ω(M)∪ℛ(𝒯 ′), мы получаем требуемое левое равенство
в (4.3).

Доказательство правого равенства в (4.3) симметричное (оно может проводиться путем перехода от ≺F к ≺W

и обращением ротационных преобразований).
Теперь требуемое утверждение легко следует из того факта, что для ротаций R,R′ ∈ ℛ отношение R ⋖ R′ не

выполняется тогда и только тогда, когда найдется стабильный матчинг X, для которого R′ ∈ ω(X) ̸∋ R. (Иными
словами, решетка (𝒮,≺) не может быть “более крупной”, чем решетка (ℐ,⊂).)

Предложение 4.1 доказано.

Как следствие, множество𝒮 биективно множеству𝒜 анти-цепей посета (ℛ,⋖). (Напомним, что анти-цепь в
посете (P, <) – это множетсво A попарно несравнимых элементов. Оно определяет идеал {p ∈ P : ∃ a ∈ A | p ≤ a},
и определяется идеалом, для которого A – множество максимальных элементов.)

5. ПОСТРОЕНИЯ

Как указывалось выше (ср. (4.1)(i)), число ротаций |ℛ| не превосходит числа ребер |E| рассматриваемого гра-
фа; поэтому посет ротаций (как граф) имеет размер O(|E|2). (Помимо этого, можно видеть, что ротации попар-
но не пересекаются по ребрам одного знака; следовательно, суммарное число ребер в ротациях не выше 2|E|.)
В свете леммы 4.1, нахождение множестваℛ не представляет большого труда, если известен начальный (наиме-
нее выгодный для F) стабильный матчинг Xmin; а именно, достаточно построить произвольную полную трассу,
идущую из Xmin (детали такого построения будут уточнены позднее). Менее тривиальной выглядит задача на-
хождения отношения предшествования ⋖ на ротациях, которое было определено неявно, путем рассмотрения
всего множества полных трасс. Мы начнем этот раздел с изложения эффективного метода определения этого
отношения и затем рассмотрим вопросы эффективного построения других упомянутых структур.

5.1. Построение порождающего графа для (ℛ,⋖)

Ротация R ∈ ℛ называется непосредственно предшествующей ротации R′ ∈ ℛ, если R⋖R′ и нет такого R′′ ∈ ℛ,
что R⋖R′′⋖R′. Обозначим через H = (ℛ,ℰ) ориентировавнный граф, в котором множество ребер ℰ образовано
всеми парами (R,R′), где R непосредственно предшествует R′; иными словами, H – это диаграмма Хассе посета
(ℛ,⋖). Граф H определяет данный посет (через достижимость ориентированными путями) и может заменять
посет при работе с приложениями.

Эффективное построение графа H опирается на следующий простой факт.

Лемма 5.1. Для R ∈ ℛ обозначим Imax
−R максимальный идеал в (ℛ,⋖), не содержащий R. Положим I′ := Imax

−R ∪

{R}. Ротация R непосредственно предшествует ротации R′ тогда и только тогда, когда R′ является минимальным
элементом, не содержащимся в I′.

Доказательство. Заметим, что Imax
−R является дополнением до ℛ множества (“фильтра”) ΦR, образованного

ротациями ̃︀R большими или равными R (т.е. R ⋖ ̃︀R или R = ̃︀R). Ясно, что минимальные элементы в ΦR − {R} –
это в точности те элементы R′, для которых R является непосредственно предшествующим. Эти R′ составляют
множество минимальных элементов вне идеала I′. Лемма доказана.

Для R ∈ ℛ обозначим через ℐ+R множество ротаций, непосредственно следующих за R. Основываясь на пред-
ложении 4.1 и лемме 5.1, мы можем эффективно строить множество ℐ+R следующим образом (при условии, что
известен матчинг Xmin).
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Построениеℐ+R. Начиная с Xmin, последовательно выстраиваем трассу𝒯 , используя все возможные ротации,
кроме R. А именно, на очередном шаге для текущего матчинга X находим множество ротаций ℒ(X), ассоции-
рованных с X (см. раздел 3.2), выбираем произвольную ротацию L ∈ ℒ(X), отличную от R, и сдвигаем X вдоль
L, получая новый текущий матчинг X′. В случае ℒ(X) = {R} первая фаза процедуры заканчивается.

Вторая фаза процедуры состоит в сдвиге полученного X вдоль R. Множество ℒ(X′) ротаций, ассоциирован-
ных с полученным при сдвиге матчинге X′, выдается как искомое множество ℐ+R.

(Нетрудно видеть, что при завершении первой фазы текущий матчинг X соответствует идеалу I = Imax
−R , т.е.

ω(X) = I. Факт совпадения ℐ+R с ℒ(X′) также очевиден.)
“Незамысловатый” алгоритм, использующий эту процедуру, состоит из |ℛ| больших итераций, каждая из ко-

торых рассматривает очередную ротацию R в списке всех ротаций. (Заметим, что нет нужды строить этот спи-
сок заранее, он может формироваться по ходу выполнения больших итераций. Список начинается с множества
ℒ(Xmin).) На каждой большой итерации многократно решается следующая базовая задача:

(P): для заданного X ∈ 𝒮 построить активный граф Γ(X) и выделить в нем множество ротаций ℒ(X).

Для построения Γ(X) просматриваются вершины w ∈ W, и для каждого w сканируются ребра w f ∈ Ew в по-
рядке убывания предпочтения >w, начиная с ребра, следующего за xw. Для каждого ребра e = w f определяется,
является ли оно интересным для f при X (путем вычисления C f (X f + e) и сравнения с X f ), и первое интересное
ребро (если таковое найдется) объявляется W-активным ребром aw. Попутно определяются F-активные ребра
и строятся связки. Это дает допустимый граф D(X). Процедуры очистки графа D(X) и разложения очищенного
активного графа Γ(X) на ротации рутинные, и могут выполняться за линейное время O(|E|). Как следствие,

решение задачи (P) сводится к выполнению O(|E|) стандартных операций плюс
O(|E|) обращениям к “оракулам” C f ( f ∈ F).

(5.1)

(Здесь и далее мы предполагаем, что функции выбора C f задаются неявно при помощи “оракула”, который
для опрашиваемого аргумента Z ⊆ E f сообщает значение C f (Z); считается, что такая операция занимает O(1)
оракульного времени.)

Бесхитростное построение множества ℐ+R для фиксированного R сводится к независимому решению O(|E|)
задач (P) (где каждая задача касается элемента строящейся трассы 𝒯 ), поэтому временные показатели, указан-
ные в (5.1), следует умножить на O(|E|). Однако этот процесс можно ускорить. Для этого в каждой вершине
w ∈ W следует запоминать последнее просканированное ребро e = w f на предыдущих шагах. Если это ребро
было активным и участвовало в примененной ротации, то дальнейшее сканирование в Ew следует начинать с
ребра, следующего по порядку за e. Если же оно не использовалось при ротации, то оно остается активным на
текущем шаге. Это обосновывается при помощи леммы 3.1, из которой следует, что если ротация L входила в
ℒ(X) для X на некотором шаге, но не была применена, то она остается действующей ротацией на последующих
шагах, пока не будет применена.

Это дает улучшенную процедуру построения ℐ+R, при которой каждое ребро в Ew сканируется не более од-
ного раза, и поэтому вся процедура для одного R ∈ ℛ выполнима за стандартное время O(|E|) и аналогичное
оракульное время. Отсюда при переборе по ℛ получаем

Предложение 5.1. При наличии матчинга Xmin нахождение минимального порождающего графа (диаграммы Хас-
се) H = (ℛ,ℰ) для посета ротаций (ℛ,⋖) осуществимо за время O(|E|2) (включая оракульное время).

5.2. Построение начального матчинга Xmin

Чтобы сконструировать Xmin, можно воспользоваться методом в [17, Sec. 3.1], приспособленным для более
широкого класса моделей стабильности на двудольных графах. Ниже мы даем его описание применительно к
нашей модели КБМ. Альтернативный метод, основанный на классической технике “отложенных принятий”
(deferred acceptance), излагается в [14, Sec. 4.1].

На итерациях алгоритма построения Xmin последовательно конструируются тройки множеств (Bi, Xi,Y i),
i = 0, 1, . . . , i, . . .. В начале полагается B0 := E. На входе очередной i-й итерации имеется множество Bi ⊆ E (уже
известное), которое преобразуется на двух стадиях итерации.

На 1-й стадии итерации Bi преобразуется в Xi ⊆ E применением оператора Cw к каждому ограничению
Bi

w = Bi
Ew

(w ∈ W), т.е. Xi – это матчинг, для которого Xi
w = Cw(Bi

w). Иными словами, в нашей модели с линей-

ными предпочтениями и единичными квотами в W для каждой вершины w ∈ W в множестве Bi
w выбирается

наиболее предпочтительное (относительно >w) ребро e, и полагается Xi
w := {e}. В случае Bi

w = ∅, полагается
Xi

w := ∅ (и вершина w будет дефицитной). Таким образом, Xi удовлетворяет квотам во всех вершинах доли W.
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На 2-й стадии итерации полученный матчинг Xi трансформируется в Y i ⊆ E применением оператора C f к
каждому ограничению Xi

f = Xi
E f

( f ∈ F), т.е. Y i – это матчинг, для которого Y i
f = C f (Xi

f ). (Следовательно, Y i

приемлемое для всех вершин; однако оно не обязано быть стабильным.)
Полученные множества Xi,Y i затем используются при генерации множества Bi+1 для следующей итерации.

А именно:

Bi+1 состоит из всех e ∈ E таких, что e ∈ Bi, и либо e ∈ Xi ∩Y i, либо e /∈ Xi ∪Y i (иначе
говоря, e ∈ Bi не попадает в Bi+1, если e принадлежит Xi и не принадлежит Y i).

(5.2)

Затем Bi+1 преобразуется в Xi+1 и Y i+1 как указано выше, и т.д. Процесс заканчивается, когда на текущей,
p-й, итерации получаем равенство Y p = Xp (эквивалентно, Bp+1 = Bp). Можно видеть, что B0 ⊃ B1 ⊃ · · · ⊃ Bp,
поэтому процесс конечен и число итераций не превосходит |E|.

Из доказанного в [17] следует

Предложение 5.2. Полученный матчинг Xp стабильный и оптимальный для W, т.е. Xp = Xmin.

Следует заметить, что для рассматриваемой в [17] общей модели, которая может иметь дело с вещественны-
ми функциями на E, процесс преобразования соответствующих функций (bi, xi, yi) может быть бесконечным,
но всегда сходится к некоторой тройке (̂︀b, ̂︀x,̂︀y), удовлетворяющей ̂︀x = ̂︀y. Доказывается (в Теоремах 1 и 2 в [17]),
что предельная функция ̂︀x стабильная и оптимальная для соответствующей доли вершин. В нашем частном
булевом случае мы получаем предложение 5.2.

На i-й итерации алгоритма множество Xi формируется из Bi за O(|W |) (“амортизационных”) действий, путем
взятия первых элементов в ограничениях Bi

w, w ∈ W. Множества Xi
f для всех f ∈ F можно также сформировать за

O(|W |) действий, и оператор C f применяется к каждому Xi
f не более одного раза (вычисляя Y i

f ). С учетом этого,
имплементацию алгоритма можно организовать так, чтобы получить следующие оценки сложности:

матчинг Xmin строится за время O(|E||V |) (включая оракульное время). (5.3)

Это вместе с предложением 5.1 дает следующий результат.

Теорема 5.1. Посет ротаций (ℛ,⋖) может быть построен за время O(|E|2) (включая оракульное время).

Замечание 2. Построение ротаций и их посета нетрудно перенести на КБМ с графом G = (V, E), содержащим
кратные ребра. Для этого используется редукция к графу G′ = (V ′, E′) без кратных ребер путем замены ребер e
подграфами Ke как указано в замечании 1 (в разд. 2); здесь множество U заменяемых ребер содержит по край-
ней мере одно ребро из каждой пары кратных ребер. Стабильные матчинги в G′ назовем родственными, если
они отличаются только на некоторых циклах Oe для e ∈ U (учитывая случай (*), отмеченный в замечании 1).
Тогда множество 𝒮 стабильных матчингов для G изоморфно множеству классов родственности в множестве
стабильных матчингов для G′. В соответствии с этим, множество ℛ′ ротаций для G′ делится на два подмноже-
ства ℛ′1 и ℛ′2, где каждая ротация в ℛ′2 соответствует циклу Oe для некоторого e ∈ U. Можно видеть, что если при
построении трассы в G′ применяется ротация, содержащая ребро из Ke для некоторого e ∈ U, то значения мат-
чинга стабилизируются на Ke, т.е. никакая из последующих ротаций уже не использует ребер из Ke. (Это следует
из структуры Ke и монотонности изменений на всех ребрах, а именно, если при ротации ребро перестает быть
матчинговым, то оно остается таковым в дальнейшем.)

Как следствие, каждая ротация в ℛ′2 является максимальным элементом посета (ℛ′,⋖′). В свою очередь,
ротации для G взаимно однозначно соответствуют элементам в ℛ′1 (являясь образами последних при замене
подграфов Ke ребрами e), и посет ротаций (ℛ,⋖) для G изоморфен ограничению посета (ℛ′,⋖′) на ℛ′1. Так как
|E′| < 8|E|, посет для G строится за время O(|E|2), ввиду теоремы 5.1.

6. АФФИННАЯ ПРЕДСТАВИМОСТЬ И СТАБИЛЬНЫЕ МАТЧИНГИ МИНИМАЛЬНОЙ СТОИМОСТИ

Биекция ω, представленная в предложении 4.1, позволяет показать аффинную представимость решетки
(𝒮,≺F), по аналогии с тем, как это делается в [14] для общей булевой задачи или в [20] для задачи о стабиль-
ных распределениях.

Напомним, что каждая ротация R ∈ ℛ возникает как цикл определенного активного графа Γ(X), и множе-
ство ее ребер имеет фиксированное разбиение, обозначаемое (R+,R−) и состоящее из W- и F-активных ребер,
соответственно. Мы ассоциируем с R характеристический вектор βR ∈ RE, принимающий значение 1 для e ∈ R+,
−1 для e ∈ R−, и 0 для остальных ребер.

Помимо пространства RE, мы также будем рассматривать пространство Rℛ с координатами, индексируемы-
ми ротациями; в этом случае мы будем обозначать единичный базисный вектор, соответствующий ротации R,
как ⟨R⟩.
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Для подмножества X ⊆ E его характеристический 0,1 вектор в RE будет обозначаться как χX = χX
E, и анало-

гично, для подмножества I ⊆ ℛ его характеристический 0,1 вектор в Rℛ будет обозначаться как χI = χI
ℛ.

Пусть A ∈ RE×ℛ – матрица, столбцы которой образованы векторами βR, R ∈ ℛ. Из предложения 4.1 следует,
что

отображение λ ∈ Rℛ
γ

↦−→ x ∈ RE, где x определяется как χXmin
+ Aλ, порождает биек-

цию между характеристическими векторами χI
ℛ идеалов I посета (ℛ,⋖) и характе-

ристическими векторами χX
E стабильных матчингов X ∈ 𝒮.

(6.1)

(Здесь γ соответствует естественному расширению отображения ω−1 из предложения 4.1.)
Согласно описаниям в разд. 5, матрица A может быть построена эффективно за время O(|E|2). Благодаря

этому, аффинная представимость для решетки (𝒮,≺F), выраженная в (6.1) (где порядок ≺F согласуется с вло-
жением ⊂ в решетке идеалов для (ℛ,⋖)), может применяться для сведения определенных задач о стабильных
матчингах к “более простым” задачам на идеалах посета ротаций.

Прежде всего отметим, что аффинное отображение γ в (6.1) переводит выпуклую оболочку conv(ℐ) ⊂ Rℛ
множества ℐ идеалов посета ротаций в выпуклую оболочку conv(𝒮) ⊂ RE множества стабильных матчингов 𝒮.
(Здесь мы для простоты изложения отождествляем идеалы посета и стабильные матчинги с их характеристиче-
скими векторами.) Многогранник conv(ℐ) полноразмерный (поскольку каждый единичный базисный вектор
⟨R⟩ (R ∈ ℛ) может быть выражен как разность характеристических векторов двух идеалов в ℐ). Он описывается
неравенствами

0 ≤ λ(R) ≤ 1, R ∈ ℛ; (6.2)

λ(R) ≥ λ(R′), R,R′ ∈ ℛ, R ⋖ R′. (6.3)

Эта линейная система соответствует описанию порядкового многогранника (order polytope)𝒫Q для конечного
посета Q в работе Стэнли [15]; в нашем случае Q = (ℛ,⋖) и 𝒫Q = conv(ℐ). Гиперграни (facets) в conv(ℐ) выража-
ются неравенствами трех видов:

(a) λ(R) ≤ 1 для минимальных R; (б) λ(R) ≥ 0 для максимальных R; и (в)
λ(R) ≥ λ(R′), где R непосредственно предшествует R′.

(6.4)

Что касается вершин, то

вершины в conv(ℐ) взаимно однозначно соответствуют идеалам в ℐ. (6.5)

(Действительно, каждый идеал I ∈ ℐ определяет вершину в conv(ℐ), поскольку χI – единственный вектор,
максимизирующий скалярное произведение aχI′ по всем идеалам I′ ∈ ℐ, где a принимает значение 1 на ротациях
R ∈ I, и значение −1 на ротациях R ∈ ℛ − I. Обратное очевидно.)

Важное свойство отображения γ в (6.1) следует из того, что

матрица A имеет полный столбцовый ранг. (6.6)

Этот факт был показан в [14, Th. 1.4] для общего булевого случая (где ФВ для всех вершин подчиняются
аксиомам (A1),(A2),(A3)). Доказательство этого для нашей модели КБМ довольно простое, и для полноты из-
ложения, мы его приводим.

Доказательство (6.6). Положим N := |ℛ| и перенумеруем ротации как R(1), . . . ,R(N), соблюдая правило: из
R(i) ⋖ R( j) следует i < j (упорядочение такого рода известно под названием “топологической сортировки” вер-
шин ациклического ориентированного графа). Для каждого i = 1, . . . ,N в R(i) выделим одно ребро в “отрица-
тельной” части R(i)−, которое обозначим как ei. Для полученных нумераций справедливо следующее:

(a) все ребра e1, . . . , eN различные; и (б) для любых 1 ≤ i < j ≤ N значение βR( j)

на ребре ei равно 0.
(6.7)

Эти свойства следуют из того, что для ротации R, строящейся в активном графе Γ(X) матчинга X, в каждой
вершине w ∈ W, принадлежащей R, матчинговое ребро e = w f ∈ X более предпочтительное, чем активное ребро
a = w f ′, т.е. e >w a. Мы имеем e ∈ R− и a ∈ R+, и при применении ротации R к X матчинговое ребро e меняется
на a (так сказать “сдвигается вправо”). Поэтому при построении любой трассы после использования ротации
R каждая последующая ротация не может содержать ребро e. Отсюда следуют оба свойства в (6.7). (Фактически
можно наблюдать следующее: любое ребро e принадлежит не более двум ротациям, и если e принадлежит R(k)
и R(i) при k < i, то эти ротации сравнимы, т.е. выполняется R(k) ⋖ R(i), и при этом e ∈ R(k)+ и e ∈ R(i)−.)
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Теперь переставим столбцы и строки матрицы A так, чтобы столбцы βR(i) шли по возрастанию индекса i
(слева-направо), и первые N строк соответствовали ребрам e1, . . . , eN, следующих по возрастанию их индексов
(сверху-вниз). Тогда из (6.7) следует, что подматрица, образованная первыми N строками, является нижне тре-
угольной с коэффициентами −1 на диагонали. Это дает (6.6).

Из (6.1) и (6.6) получаем

Следствие 6.1. dim(conv(𝒮)) = dim(conv(ℐ)) = |ℛ|, и многогранник conv(𝒮) аффинно конгруэнтен порядковому
многограннику conv(ℐ) посета (ℛ,⋖).

В частности, вершины conv(𝒮) образованы всеми стабильными матчингами в 𝒮 и взаимно однозначно со-
ответствуют идеалам в ℐ, многогранник conv(𝒮) имеет O(|ℛ|2) гиперграней, все они являются образами при γ
гиперграней в conv(ℐ) (указанными в (6.4)) и могут быть эффективно выписаны.

В завершении этого раздела мы рассматриваем задачу о стабильном матчинге минимальной стоимости:

для заданных стоимостей c(e) ∈ R ребер e ∈ E найти стабильный матчинг X ∈ 𝒮
минимальной общей стоимости c(X) :=

∑︀
e∈E c(e). (6.8)

Заметим, что поскольку все стабильные матчинги X имеют одинаковый размер |X|, функция c может зада-
ваться с точностью до константы; в частности, можно считать c положительной. Заменяя c на −c, мы получаем
эквивалентную задачу максимизации c(X) среди X ∈ 𝒮.

Эффективный метод, разработанный в [12] для решения задачи минимизации линейной функции на мно-
жестве стабильных марьяжей и впоследствии успешно примененный рядом авторов для некоторых других мо-
делей стабильности, состоит в сведении к задаче линейной минимизации на множестве идеалов соответству-
ющего посета ротаций (в предположении, что такой посет существует и может быть эффективно построен), и
затем последняя задача сводится методом Пикара [13] к классической задаче о минимальном разрезе ориенти-
рованного графа. Для полноты изложения мы далее описываем метод решения задачи (6.8) для нашего случая
(придерживаясь описания в работе [21]).

Вначале вычисляется стоимость cβR (= c(R+) − c(R−)) каждой ротации R ∈ ℛ. Тогда для каждого X ∈ 𝒮 и
соответствующего идеала I := ω(X) имеем

c(X) = c(Xmin) +
∑︁

(cβR : R ∈ I).

Это позволяет перейти к следующей задаче для ротаций R с весами (стоимостями) ζ(R) := cβR:

найти идеал I ∈ ℐ посета (ℛ,⋖), минимизирующий общий вес ζ(I) :=
∑︀

(ζ(R) : R ∈ I). (6.9)

Удобно слегка расширить постановку последней задачи, рассматривая произвольный конечный ориентиро-
ванный граф H = (VH , EH) и функцию весов ζ : VH → R. Требуется найти замкнутое множество вершин X ⊆ VH

минимального веса ζ(X); назовем это задачей (*). Здесь множество X называется замкнутым, если в H нет ребер,
идущих их VH − X в X. (Ясно, что в соответствующем графе посета замкнутые множества – это идеалы.)

Следуя [13], задача (*) сводится к задаче о минимильном разрезе ориентированного графа ̂︀H = (̂︀V , ̂︀E) с функ-
цией пропускных способностей ребер h, которые получаются из H, ζ при:

(a) добавлении двух вершин: “источника” s и “стока” t;
(б) добавлении множества E+ ребер (s, v) для всех вершин v, принадлежащих V+ := {v ∈ VH : ζ(v) > 0};
(в) добавлении множества E− ребер (u, t) для всех вершин u, принадлежащих V− := {u ∈ VH : ζ(u) < 0};
(г) назначении пропускных способностей h(s, v) := ζ(v) для v ∈ V+, h(u, t) := |ζ(u)| для u ∈ V−, и h(e) := ∞ для

всех e ∈ EH.
Напомним, что под s–t разрезом в ̂︀H понимается множество направленных ребер δ(A), идущих из подмно-

жества вершин A ⊂ ̂︀V такого, что s ∈ A ̸∋ t, в его дополнение ̂︀V − A, и пропускной способностью этого разреза
считается величина h(δ(A)) :=

∑︀
(h(e) : e ∈ δ(A)). Можно видеть, что δ(A) имеет минимальную пропускную спо-

собность среди всех s–t разрезов тогда и только тогда, когда X := VH − A – замкнутое множество минимального
веса ζ(X) в H.

Действительно, для s–t разреза δ(A) величина h(δ(A)) является конечной тогда и только тогда, когда δ(A)
не содержит ребер из H (учитывая бесконечную пропускную способность последних). Отсюда следует, что
δ(A) ⊆ E+ ∪ E−, и что множество X замкнутое. Тогда

h(δ(A)) = h(δ(A) ∩ E+) + h(δ(A) ∩ E−) = ζ(X ∩ V+) +
∑︁

(|ζ(u)| : u ∈ (VH − X) ∩ V−) =

= ζ(X ∩ V+) + ζ(X ∩ V−) − ζ(V−) = ζ(X) − ζ(V−).

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



134 КАРЗАНОВ

Таким образом, ζ(X) отличается от h(δ(A)) на константу ζ(V−), откуда следует требуемое свойство, и мы при-
ходим к желаемому результату.

Теорема 6.1. Задача о стабильном матчинге минимальной стоимости (6.8) для рассматриваемой модели КБМ
разрешима в сильно полиномиальное время (оценивающее число стандартных и оракульных операций).

7. ПРОИЗВОЛЬНЫЕ КВОТЫ НА W

Выше мы описывали конструкции и доказывали утверждения в предположении, что в рассматриваемой
комбинированной модели стабильности (КБМ) квоты всех вершин в доле W равны 1. Все это достаточно просто
обобщается на случай произвольных квот q(w) ∈ Z+, w ∈ W, и ниже мы даем краткое изложение уточнений и
изменений, оставляя аккуратную проверку деталей читателю как упражнение.

1) Прежде всего уточним конструкцию активного графа для стабильного матчинга X ⊆ E (разд. 3.1). Ранее
для полновесной вершины w ∈ W= мы обозначали xw единственное ребро в Xw = X ∩ Ew. Теперь, рассматривая
полновесную вершину w ∈ W (т.е. удовлетворяющую |Xw| = q(w)), мы обозначаем xw последнее (наименее пред-
почтительное) ребро в Xw. Определения W-допустимого ребра aw в Ew и связки (aw, bw

f ) остаются прежними (как
в (3.1) и (3.2)). Заметим, что, как и прежде, каждая вершина в W имеет не более одного W-допустимого ребра.

2) Как и прежде, в графе D = D(X), определяемом направленными W- и F-допустимыми ребрами, для
вершин f ∈ F число входящих W-допустимых ребер (вида aw = (w, f )) больше или равно числу выходящих
F-допустимых ребер (вида b = ( f ,w′)). (Здесь первое число превосходит второе, когда для входящего ребра
aw = (w, f ) выполняется C f (X f + aw) = X f + aw (и следовательно, aw не порождает связку), или когда имеются две
или более связки (a, b), (a′, b′) с b = b′.) В то же время, для вершин w ∈ W имеется одно выходящее W-допустимое
ребро aw, а число σw входящих F-допустимых ребер ( f ,w) может быть равно 0, 1 или более (последнее может воз-
никнуть при q(w) > 1).

3) Процедура очистки остается дословно той же самой, она преобразует D в активный граф Γ = Γ(X). За-
метим, что для вершин w в WΓ := W ∩ VΓ процедура будет обеспечивать выполнение |δin(w)| ≥ |δout(w)| = 1 (где
δin(w) и δout(w) обозначают множества входящих и выходящих ребер в Γ, инцидентных w); в случае σw > 1 здесь
априори допустимо строгое неравенство. Тем не менее, этого не происходит, и свойство (3.3) сохраняется в си-
лу простых балансовых соотношений (ввиду того, что, как и прежде, |δin(v)| ≥ |δout(v)| для всех v ∈ VΓ). Таким
образом, как и прежде, Γ распадается на непересекающиеся по ребрам циклы-ротации, каждая вершина в WΓ
принадлежит ровно одной ротации, и любая ротация L проходит через каждую вершину в WL ровно один раз,
но может многократно проходить через одну и ту же вершину в FL.

4) Лемма 3.1 остается справедливой, и ее доказательство не изменяется. В доказательстве предложения 3.1
множество X′w теперь не обязано состоять из одного ребра, а в соответствии с общим правилом определяется
как X′w := Xw − e+ aw, где {e} = L− ∩ Ew. Это не влияет на доказательство, с точностью до мелких поправок. В до-
казательстве предложения 3.2 в случае Xw ̸= Yw, вместо {xw} = Xw и {yw} = Yw, ребра xw и yw должны выбираться
в Xw − Yw и Yw − Xw, соответственно, так, чтобы выполнялось xw >w yw (что можно сделать, ввиду Xw ≻w Yw).
Структура доказательства и основные детали сохраняются.

5) В доказательстве предложения 4.1, вместо {mw} = Mw и {xw} = Xw, следует выбрать mw ∈ Mw − Xw и xw ∈

∈ Xw − Mw таким образом, чтобы выполнялось mw >w xw. В остальном изложение разд. 4 принципиально не
изменяется.

6) Можно убедиться, что построения и результаты, изложенные в разд. 5 и 6, верны и для общего случая
квот в W. В частности, остается верной теорема 5.1, утверждающая, что посет ротаций (ℛ,⋖) строится за время
O(|E|2).

8. МОДЕЛЬ СТАБИЛЬНОСТИ С ПОСЛЕДОВАТЕЛЬНЫМ ВЫБОРОМ

Как упоминалось во Введении, рассматриваемая нами модель стабильности (КБМ) появляется при редук-
ции более общей модели стабильных матчингов в двудольном графе. В последней предпочтения агентов одной
доли (“фирм”) задаются с помощью плоттовских и кардинально монотонных ФВ, а предпочтения агентов дру-
гой доли (“работников”) задаются т.н. последовательными (sequential) ФВ; для определенности мы далее будем
именовать эту модель последовательной, или П-моделью. В работе [16] было установлено, что имеет место ре-
дукция П-модели к КБМ, при которой множества стабильных матчингов оказываются изоморфными. Ниже,
следуя [16], мы даем описание П-модели и ее редукции к КБМ и формулируем утверждения об изоморфизмах
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соответствующих матчингов и их решеток. Затем мы обсуждаем, какие следствия для П-модели можно полу-
чить из результатов о ротациях и их приложениях, полученных для КБМ.

Следует заметить, что в [16] рассматривается более широкий класс моделей с последовательными ФВ, од-
нако нас сейчас интересует только та их них, что непосредственно связана с редукцией к КБМ. Для простоты
изложения мы будем предполагать, что рассматриваемые графы не содержат кратных ребер (допущение крат-
ных ребер будет сделано в замечании в конце раздела).

Как и прежде, рассматривается двудольный граф G = (V, E) с вершинными долями W (“работники”) и F
(“фирмы”), и для каждой вершины f ∈ F задана плоттовская и кардинально монотонная ФВ C f : 2E f → 2E f .
В то же время для каждой вершины w ∈ W задана последовательность линейных ФВ C1

w, . . . ,C
q(w)
w на Ew; это

означает, что каждая ФВ Ci
w связана с линейным порядком >i

w на Ew и выбирает в каждом подмножестве Z ⊆ Ew

максимальный элемент относительно >i
w. Можно считать, что q(w) ≤ |Ew|.

Определение 4. Обозначим C1
w * · · · * Cq(w)

w функцию выбора Cw, которая для любого Z ⊆ Ew определяет его
подмножество Cw(Z), состоящее из элементов z1, . . . , zk, где k = min{|Z|, q(w)}, которые выбираются по следующе-
му рекурсивному правилу: zi – это максимальный элемент относительно >i

w в множестве Z − {z1, . . . , zi−1}. Такую
функцию Cw назовем последовательной ФВ ранга q(w), порождаемую линейными порядками >1

w, . . . , >
q(w)
w (или

линейными ФВ C1
w, . . . ,C

q(w)
w ).

Показывается, что ФВ Cw является плоттовской и квотируемой с квотой q(w). Совокупность {Cv, v ∈ V} ука-
занных ФВ и определяет то, что мы выше назвали П-моделью. Эта модель представляет собой частный случай
СБМ (специальной булевской модели, упомянутой во Введении), и в то же время она обобщает КБМ. (Заме-
тим также, что, как указано в [16], ранее было показано, что не всякая квотируемая плоттовская ФВ является
последовательной ФВ.)

Приступим к описанию редукции данной П-модели, определяемой вышеуказанными ФВ Cv, v ∈ V. Граф G
преобразуется путем репликации вершин доли W. А именно,

каждая вершина w ∈ W заменяется q(w) вершинами w1, . . . ,wq(w), и, соответственно,
каждое ребро w f ∈ E порождает q(w) ребер wi f , i = 1, . . . , q(w).

(8.1)

Полученный граф обозначим ̃︀G = (̃︀V , ̃︀E) и обозначим через π естественное отображение (проекцию) ̃︀V ∪ ̃︀E
в V ∪ E. Объекты, связанные с ̃︀G, мы будем также обозначать с тильдой. В частности, копии вершин f ∈ F в ̃︀G
обозначим как ̃︀f , и для любой вершины ̃︀v ∈ ̃︀V множество инцидентных ребер в ̃︀G обозначим как ̃︀Ẽ︀v.

Теперь объясним, как задаются предпочтения и функции выбора ̃︀C̃︀v для вершин ̃︀v ∈ ̃︀V. Для вершин в ̃︀W это
делается бесхитростно, а именно:

для вершины wi ∈ ̃︀W (где w ∈ W и 1 ≤ i ≤ q(w)) ФВ ̃︀Cwi – это линейная ФВ, определяе-
мая линейным порядком >wi на ̃︀Ewi , являющимся копией порядка >i

w на Ew.
(8.2)

Для вершин в ̃︀F устройство функций выбора менее тривиально. А именно, для вершины ̃︀f ∈ ̃︀F (копии f в F)
рассмотрим подмножество ребер ̃︀Z ⊆ ̃︀Ẽ︀f и его образ Z = π(̃︀Z) в G, и образуем ̃︀C̃︀f следующим образом:

для каждого w f ∈ C f (Z) в “слое” π−1(w f ) возьмем ребро wi f такое, что wi f при-
надлежит множеству ̃︀Z и при этом имеет минимальный номер i; тогда ̃︀C̃︀f является
объединением взятых элементов.

(8.3)

Пусть 𝒮 обозначает множество стабильных матчингов для рассматриваемой П-модели с графом G и функ-
циями выбора C f ( f ∈ F) и Cw (w ∈ W) (где C f плоттовская и кардинально монотонная, а Cw – последовательная

ФВ, порожденная линейными порядками >1
w, . . . , >

q(w)
w ). Пусть ̃︀𝒮 обозначает множество стабильных матчингов

для КБМ с построенными графом ̃︀G, ФВ ̃︀C̃︀f ( f ∈ F) и линейными порядками >wi . В [16] доказываются следую-
щие ключевые свойства:

(i) для каждого стабильного матчинга ̃︀X ∈ ̃︀𝒮 ограничение отображения π на множество ̃︀X
инъективно;

(ii) отображение π индуцирует биекцию между множествами стабильных матчингов ̃︀𝒮 и 𝒮;

(iii) указанное отображение стабильных матчингов ̃︀X π
↦−→ X дает изоморфизм решеток на ̃︀𝒮 и

𝒮, т.е. для X,Y ∈ 𝒮 выполняются π−1(X ⋏Y) = π−1(X) ̃︀⋏π−1(Y) и π−1(X ⋎Y) = π−1(X) ̃︀⋎π−1(Y)
(где ⋏ и ⋎ обозначают взятие точной нижней грани (meet) и точной верхней грани (join)
для 𝒮, и аналогичные обозначения с тильдами применяются для ̃︀𝒮).

(8.4)
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Основываясь на (8.4) и используя полученные результаты о ротациях для КБМ, мы можем дать описание
ротаций для П-модели.

Для этого рассмотрим ротацию ̃︀R в графе ̃︀G. Она применяется для перехода от некоторого стабильного мат-
чинга ̃︀X ∈ ̃︀S к непосредственно следующему (в смысле порядка ≺̃︀F в ̃︀S ) стабильному матчингу ̃︀X′, а именно,̃︀X′ = (̃︀X − ̃︀R−) ∪ ̃︀R+. Положим X := π(̃︀X) и X′ := π(̃︀X′). В силу (8.4)(i),(ii), π устанавливает биекцию между ̃︀X и X и
между ̃︀X′ и X′, откуда легко заключить, что ̃︀R− изоморфно π(̃︀R−), и ̃︀R+ изоморфно π(̃︀R+). Априори мы не можем
исключить ситуацию ∆ := π(̃︀R−) ∩ π(̃︀R+) ̸= ∅ (в этом случае имеется ребро w f ∈ E такое, что wi f ∈ ̃︀R− и w j f ∈ ̃︀R+
для некоторых i ̸= j), и в данный момент мы оставляем возможность ∆ ̸= ∅ как открытый вопрос. Определим

R− := π(̃︀R−) − ∆ и R+ := π(̃︀R+) − ∆.

Тогда X′ = (X − R−) ∪ R+, |R−| = |R+|, и оба множества R−,R+ непустые (иначе было бы ̃︀X ̸= ̃︀X′, но π(̃︀X) = π(̃︀X′),
вопреки (8.4)(ii)).

Можно видеть, что R := π(̃︀R) − ∆ порождает реберно простой цикл в G (индуцированный ротацией ̃︀R, рас-
сматриваемой как цикл), и в этом цикле чередуются ребра из R− (“отрицательные”) и R+ (“положительные”).
Это R (рассматриваемое, в зависимости от контекста, как множество ребер или как цикл) играет роль ротации
в G, и мы говорим, что стабильный матчинг X′ получается из X применением ротации R.

(Мы также оставляем открытым вопрос, может ли ротация R проходить через одну и ту же вершину в W
более одного раза, что невозможно для ̃︀R и ̃︀W.)

Суммируя сказанное выше, мы можем получить из свойств в (8.4) и результатов для КБМ следующие ожи-
даемые утверждения:

(i) каждый стабильный матчинг X ∈ 𝒮 может быть получен из минимального мат-
чинга в (𝒮,≺F) применением последовательности ротаций в G;

(ii) отображение ̃︀R ↦→ R = π(̃︀R)− (π(̃︀R+)∩ ̃︀R−)) дает биекцию между ротациями в ̃︀G и G;

(iii) отображение π индуцирует изоморфизм между посетами ротаций для ̃︀G и G.

(8.5)

Заметим, что размеры графа ̃︀G, полученного репликацией каждой вершины w ∈ W копиями в количестве
q(w) ≤ |F|, можно грубо оценить как O(|W ||F|) вершин и O(|W ||F|2) ребер. Поэтому из теоремы 5.1 можно заклю-
чить, что

для П-модели с графом G = (V = W ⊔ F, E) множество ротаций и их посет могут
быть построены за время O(|W |2|F|4) (включая число обращений к оракулам).

(8.6)

(При |W | > |F| эта оценка слегка улучшает оракульную оценку O(|W |3|F|3) для построения посета ротаций для
СБМ в работе [14].)

Эффективное построение ротаций и их посета в П-модели позволяет эффективно решать задачу миними-
зации линейной функции на множестве стабильных матчингов, применяя метод, аналогичный описанному
в разд. 6.

В заключении, заметим также, что при рассмотрении П-модели на графе G с возможными кратными реб-
рами можно действовать как изложено в замечании 1 (в разд. 2), получая сведение к П-модели на графе G′ без
кратных ребер (с индуцированными ФВ для прежних вершин и линейными порядками для добавленных вер-
шин), и затем описывать связь ротаций в G, G′ и ̃︀G′, рассуждая как выше и используя замечание 2 из разд. 5
(подробности мы здесь опускаем).

Автор благодарит Данилова Владимира Ивановича за полезные обсуждения по теме статьи и информиро-
вание о работе [16].
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Abstract. A model of stable edge subsets (“matchings”) in a bipartite graph G = (V, E) is considered, in
which preferences for vertices of one side (“firms”) are given by choice functions with standard properties
of consistency, substitutability, and cardinal monotonicity, and preferences for vertices of the other side
(“workers”) are given by linear orders. For such a model, we give a combinatorial description of the structure
of rotations and propose an algorithm for constructing a rotation poset with a time complexity estimate
O(|E|2) (including calls to oracles associated with choice functions). As a consequence, a “compact” affine
representation of stable matchings can be obtained and related problems can be solved efficiently.

Keywords: bipartite graph, choice function, linear preferences, stable matching, affine representability,
sequential choice
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