Self-Propagating High Temperature Synthesis of MAX Phases of Ti-Al-C System with Addition of B4C

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work self-propagating high-temperature synthesis was used to obtain Ti-Al-C system MAX phases in situ reinforced with TiB2 and TiC, from B4C, and powders of titan, aluminum and soot, the following reaction mechanisms were identified. During the synthesis on the air, the formation of nitride phases TiN and Ti2AlN was registered in synthesized material. The possibility of formation of ternary carbide with stoichiometry of Ti3AlC with cubic antiperovskite structure was demonstrated. Characteristic thermograms, acquired during synthesis and following deformation of investigated materials, are presented.

Sobre autores

P. Stolin

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID ID: 0000-0002-3063-4317
Chernogolovka, Russia

A. Bazhina

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Email: arina@ism.ac.ru
ORCID ID: 0000-0003-0678-3379
Chernogolovka, Russia

I. Nazarko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

A. Kulikova

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

A. Ivanov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID ID: 0009-0004-6668-8300
Chernogolovka, Russia

M. Antipov

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

ORCID ID: 0000-0002-7498-428X
Chernogolovka, Russia

N. Homenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences (ISMAN)

Chernogolovka, Russia

Bibliografia

  1. Sokol M., Natu V., Kota S., Barsoum M.W. // Trends Chem. 2019. Vol. 1. N 2. P. 210. doi: 10.1016/J.TRECHM.2019.02.016
  2. Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. Vol. 104. P. 65. doi: 10.1111/jace.17544
  3. Akhlaghi M., Salahi E., Tayebifard S.A., Schmidt G. // Synth. Sinter. 2022. Vol. 2. N 3. P. 138. doi: 10.53063/synsint.2022.2383
  4. Sun W., Shi Y., Wu C., Wei X., Zhang Y., Li G., Chen L., Ma C., Sun Z.M., Zhang P., Ding J. // J. Mater. Res. Technol. 2023. Vol. 27. P. 1968. doi: 10.1016/j.jjmrt.2023.10.057
  5. Kang X., Pu Z., Zheng M., Wu J., Xiang J., Wu F., Liu C. // J. Alloys Compd. 2024. Vol. 1008. N 9. P. 176862. doi: 10.1016/j.jallcom.2024.176862
  6. Shichalin O.O., Ivanov N.P., Seroshtan A.I., Nadaraia K.V., Simonenko T.L., Gurin M.S., Komakova Z.E., Shchitovskaya E.V., Barkhudarov K.V., Tsygankov D.K., Rinchinova V.B., Fedorets A.N., Buravlev I.Y., Ognev A.V., Papynov E.K. // Ceram. Int. 2024. Vol. 50. N 24. P. 53120. doi: 10.1016/j.ceramint.2024.10.161
  7. Nian Y., Zhang Z., Yang S., Liu M., Zhang K., Zhou X. // Vacuum. 2024. Vol. 224. doi: 10.1016/j.vacuum.2024.113158
  8. Min X., Xu G., Mei B. // Adv. Mater. Res. 2009. Vol. 66. P. 53. doi: 10.4028/ href='www.scientific.net/AMR.66.53' target='_blank'>www.scientific.net/AMR.66.53
  9. Wang W., Xu J., Ma K., Zhang Y., Li Y., Xue W., Duan D., Zuo J., Zhu P., Li M. // Tribol. Int. 2025. Vol. 212. doi: 10.1016/j.triboint.2025.110985
  10. Wang X.H., Zhou Y.C. // J. Mater. Sci. Technol. 2010. Vol. 26. N 5. P. 385. doi: 10.1016/S1005-0302(10)60064-3
  11. Yang J., Tan S., Xiao G., Wang B., Jiang W., Yang X., Zhang H. // Ceram. Int. 2024. Vol. 50. N 20. P. 39975. doi: 10.1016/j.ceramint.2024.07.381
  12. Li D., Liu C., Liu Y., Zhou L., Wang K., Wang L., Wang R. // Int. J. Refract. Met. Hard Mater. 2024. Vol. 125. doi: 10.1016/j.ijrmhm.2024.106904
  13. Li D., Liu Y., Liu C., Zhou L., Wang K., Hu Y., Wang R. // Ceram. Int. 2025. Vol. 51. N 3. P. 3432. doi: 10.1016/j.ceramint.2024.11.320
  14. Чижиков А.П., Константинов А.С., Бажин П.М. // ЖНХ. 2021. Т. 66. N 8. С. 1002
  15. Лепакова О.К., Терехова О.Г., Костикова В.А., Кингар В.Д. // Химия в интересах устойчивого развития. 2004. Т. 12. № 4. С. 459
  16. Лапшин О.В., Болдырев Е.В., Болдырев В.В. // ЖНХ. 2021. Т. 66. № 3. С. 402
  17. Bazhin P.M., Kovalev D.Yu., Lugirina M.A., Averichev O.A. // Int. J Self-Propag. High-Temp. Synth. 2016. Vol. 25. N 1. P. 30. doi: 10.3103/S1061386216010027
  18. Zhang W., Gao L., Li J., Yang B., Jin Y. // Ceram. Int. 2011. Vol. 37. N 3. P. 783. doi: 10.1016/j.ceramint.2010.10.019
  19. Zhang W. // Nanotechnol. Rev. 2023. Vol. 12. N 1. P. 20220571. doi: 10.1515/ntrev-2022-0571.
  20. Корниенко Е.Е., Кузьмин В.И., Ложкин В.С. // Обработка металлов (технология, оборудование, инструменты). 2017. № 3(76). С. 42
  21. Gudym T.S., Khabirov R.R., Krutskii Y.L., Cherkasova N.Yu., Anisimov A.G., Semenov A.O. // Inorg. Mater. 2024. Vol. 60. P. 1496. doi: 10.1134/S0020168525700177
  22. Hou B., Wang A., Liu P., Xie J. // Nanotechnol. Rev. 2023. Vol. 12. N 1. P. 20220510. doi: 10.1515/ntrev-2022-0510
  23. Du Y. // Chin. Phys. Lett. 2009. Vol. 26. N 11. doi: 10.1088/0256-307X/26/11/117102
  24. Cтолин А.М., Бажин П.М., Константинов А.С., Алымов М.И. // Докл. АН. 2018. Т. 480. № 6. С. 681
  25. Bazhin P.M., Stolin A.M., Konstantinov A.S., Kostitsyna E.V., Ignatov A.S. // Mater. 2016. Vol. 9. N 12. P. 1027. doi: 10.3390/ma9121027

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).