УДК 547.94;834.2

ПРОИЗВОДНЫЕ (–)-ЦИТИЗИНА С ТИОМОЧЕВИННЫМ ФРАГМЕНТОМ. СИНТЕЗ И ПРОТИВОВИРУСНАЯ АКТИВНОСТЬ

© 2024 г. А. В. Ковальская¹, А. Н. Лобов¹, В. В. Зарубаев², И. П. Цыпышева^{1,*}

¹ Уфимский институт химии, Уфимский федеральный исследовательский центр Российской академии наук, Уфа, 450054 Россия

² Научно-исследовательский институт эпидемиологии и микробиологии имени Пастера, Санкт-Петербург, 197101 Россия *e-mail: tsypysheva.ip@gmail.com

Поступило в редакцию 28 августа 2024 г. После доработки 2 сентября 2024 г. Принято к печати 4 сентября 2024 г.

Синтезированы новые производные хинолизидинового алкалоида (—)-цитизина с замещенным 2-пиридоновым ядром и тиомочевинным фрагментом в биспидиновой части молекулы. Проведена оценка способности синтезированных соединений (цитизинсодержащих тиомочевин) ингибировать репродукцию вируса парагриппа человека 3 типа. Установлено, что производные, полученные взаимодействием бензоил- или фенилизотиоцианата с (—)-цитизином, а также его 9-бром- или 9,11-производным, эффективно подавляют размножение вируса парагриппа человека 3 типа (их показатели селективности составляют 56, 58 и 95 соответственно), что подтверждает перспективность выбранного подхода к синтетическим модификациям алкалоида (—)-цитизина с целью получения на его основе эффективных противовирусных агентов.

Ключевые слова: (–)-цитизин, тиомочевина, цитотоксичность, противовирусная активность, вирус парагриппа человека 3 типа (HPIV3)

DOI: 10.31857/S0044460X24060054, **EDN:** EZGYGT

ВВЕДЕНИЕ

Согласно статистике, вирусные инфекции дыхательных путей, вызываемые более чем 200 известными респираторными вирусами, относящимися к семействам Adenoviridae, Orthomyxoviridae, Paramyxoviridae, Picornaviridae и Coronaviridae [1], являются наиболее распространенными сезонными заболеваниями. Одно из этих семейств — Paramyxoviridae, включает опасные вирусы парагриппа человека (HPIVs), вызывающие у пациентов заболевания, осложняющиеся ларинготрахеобронхитом и пневмонией [2, 3], наиболее тяжело протекающие у детей дошкольного возраста [2, 4]. Поскольку прямая химиотерапия инфекций, вызванных HPIVs, отсутствует, попытки применения для этой цели из-

вестных противовирусных средств предпринимаются регулярно, однако, и рибавирин (противовирусный препарат широкого спектра действия), и занамивир (противогриппозный препарат) оказались активными только *in vitro* [1, 5]. В свете этих обстоятельств поиск новых противовирусных агентов, активных в отношении HPIVs, остается одной из актуальных задач глобального здравоохранения.

С другой стороны, известно, что спектр биологической активности производных тиомочевины более, чем широк (в первую очередь, за счет их способности участвовать в регуляции наиболее важных функции человеческого организма), что является причиной непрекращающегося интенсивного поиска новых противовирусных средств на

основе этого класса органических соединений. Так, среди органических производных тиомочевины в течение последних нескольких десятилетий были обнаружены ненуклеозидные ингибиторы обратной транскриптазы вируса иммунодефицита человека (HIVs, Retroviridae) [6-9], ингибиторы репродукции вируса гепатита С (HCV, Hepandoviridae) [10], герпеса (HSV, Herpesviridae) [11, 12], вируса Коксаки, энтеровируса ECHO, риновируса HRV (Picornaviridae) [13, 14], вируса лихорадки Западного Нила (Flaviviridae) [15], арбовируса Чикунгунья (Togaviridae) [16], вируса осповакцины (Poxviridae) [17], вируса энцефалита Ла-Кросс (*Bunyaviridae*) [18], а также гриппа A(H1N1) (Orthomyxoviridae) [19, 20]. Кроме того, результаты наших собственных исследований показали, что производные хинолизидинового алкалоида (-)-цитизина также обладают выраженной противовирусной активностью [21-24].

Поэтому целью настоящей работы является синтез новых производных (—)-цитизина, содержащих фрагменты замещенных тиомочевин, с параллельной оценкой их способности ингибировать репродукцию вируса парагриппа 3 типа (HPIV3) *in vitro*.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Хинолизидиновый алкалоид – (–)-цитизин 1 (вторичный метаболит растений семейства *Fabaceae* [25]) – использован в качестве исходного соединения, 3-N-замещенные производные алкалоида 1 (аллилцитизин 2, бензилцитизин 3 и 9-нитро-, 9-бром-, 9,11-дибром- и 11-хлорпроизводные 4-7) синтезированы согласно методикам, описанным в работах [26-28]. Тиомочевины 8-11 получены в соответствии с работами [29-31]. Взаимодействие производных 4-7 с аллил- и фенилизотиоцианатом в кипящем бензоле позволило получить новые питизинзамещенные мочевины 12–19 с выхолами от 75 до 96% (схема 1). Контроль за ходом реакции осуществляли методом тонкослойной хроматографии (ТСХ), соединения выделены методом колоночной хроматографии на SiO₂. Строение новых тиомочевин 12-19 установлено на основании данных элементного анализа, ЯМР и ИК спектроскопии.

Далее была проведена оценка цитотоксичности (микротетразолиевый тест, МТТ) и способности тиомочевин 8–19 подавлять репродукцию вируса парагриппа человека HPIV3. В качестве препарата сравнения использовали рибавирин (из-за широты

Схема 1.

Реагенты и условия: i, R^3 Br, K_2 CO₃, ацетон, 56° C; ii, $NaNO_3$, H_2SO_4 ; iii, KHlg, H_2O_2 , 50% H_2SO_4 ; iv, R^3NCS , бензол, 80° C.

его противовирусных свойств [32]); для каждого образца определены значения CC_{50} , IC_{50} и рассчитаны индексы селективности SI (отношение CC_{50}/IC_{50}). Данные о цитотоксичности и противовирусной активности соединений **8–19** представлены в табл. 1.

Согласно полученным результатам, почти все соединения проявили низкую или умеренную цитотоксичность (их значения CC_{50} находятся в интервале от 304 до 2008 мкМ). Лишь тиокарбоксамиды **14**, **18** и **19** (**18** и **19** содержат в положении 11 атом хлора)

Таблица 1. Активность соединений **8–19** в отношении вируса HPIV3.

No	\mathbb{R}^1	R ²	R ³	HPIV3 ^a		
				CC ₅₀ , мкМ ^б	IC ₅₀ , мкМ ^в	SI ^r
8	Н	Н	(CS)NH ₂	>2008	2008±168	1
9	Н	Н	(CS)NHAll	1076±93	80±10	14
10	Н	Н	(CS)NHPh	1046±98	523±61	2
11	Н	Н	(CS)NH(CO)Ph	1144±79	20±3	58
12	NO_2	Н	(CS)NHAll	512±48	509±42	1
13	NO_2	Н	(CS)NHPh	377±21	135±20	3
14	Br	Н	(CS)NHAll	121±9	25±4	5
15	Br	Н	(CS)NHPh	304±17	5±1	56
16	Br	Br	(CS)NHAll	355±27	314±24	1
17	Br	Br	(CS)NHPh	500	2.5	94
18	Н	Cl	(CS)NHAll	192.4	170	1.1
19	Н	Cl	(CS)NHPh	227	170	1.3
Рибавирин ^д				>2049	11±2	192

^а Вирус парагриппа человека (HPIV) тип 3 (штамм HA1).

Схема 2.

ЖУРНАЛ ОБЩЕЙ ХИМИИ том 94 № 6 2024

 $^{^{6}}$ CC $_{50}$ – цитотоксическая концентрация, мкМ.

 $^{^{\}rm B}$ IC $_{50}$ – 50%-ная ингибирующая концентрация, мкМ.

 $^{^{\}Gamma}$ SI – индекс селективности, отношение CC_{50} /IC $_{50}$.

д Препарат сравнения.

продемонстрировали значения CC_{50} , равные 121, 192 и 227 мкМ соответственно.

Установлено, что тиомочевины 9, 10 и 12, 13 (с нитрогруппами в положении 9 2-пиридонового ядра), а также 11-хлорпроизводные 18 и 19 не проявляют противовирусной активности (табл. 1). Выраженная способность ингибировать репродукцию вируса НРІV3 обнаружена у бензоилтиомочевины 11, 9-бромфенилтиомочевины 15 и 9,11-дибромфенилтиомочевины 17: их ингибирующие концентрации ІС₅₀ составляют 20, 5 и 2.5 мкМ; индексы селективности (SI) равны 58, 56 и 94 соответственно. В то же время, индекс селективности соединений 11, 15 и 17 несколько ниже, чем у препарата сравнения рибавирина (SI рибавирина составляет 192, табл. 1, схема 2).

Таким образом, среди протестированных соединений противовирусной активностью обладают производные с атомами брома в 2-пиридоновом ядре исходного (—)-цитизина и/или с бензоил- или фенилтиомочевинным фрагментом в биспидиновой части молекулы. Значение индекса селективности наиболее активного соединения 17, (1S,5R)-9,11-дибром-8-оксо-N-фенил-1,5,6,8-тетрагидро-2H-1,5-метанопиридо[1,2-a][1,5]диазоцин-3(4H)-карботиоамида, близко к 100.

ВЫВОДЫ

Синтезированы новые производные хинолизидинового алкалоида (-)-цитизина с тиомочевинными фрагментами. Проведена оценка их способности ингибировать репродукцию вируса парагриппа человека типа 3. Найдены три соединения – продукты взаимодействия (-)-цитизина с бензоилизотиоцианатом и 9-бром- и 9,11-дибромцитизина с фенилизотиоцианатом, которые проявили заметную противовирусную активность с индексами селективности 56, 58 и 94 соответственно. Показано, что комбинация электрофильного бромирования 2-пиридонового ядра (–)-цитизина с введением в биспидиновую часть молекулы фенил- (или бензоил-) тиомочевинного фрагмента приводит к проявлению противовирусных свойств, что может стать основой для дальнейшего поиска новых противовирусных агентов на основе производных хинолизидинового алкалоида (–)-цитизина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного материала использованы коммерчески доступные (—)-цитизин (CAS 485-35-8), аллилизотиоцианат (CAS 57-06-7) и фенилизотиоцианат (CAS 103-72-0). Физико-химические характеристики соединений **2**–**4**, **6**–**9** и **10**–**13** соответствовали литературным данным [26–31].

Контроль за ходом реакций осуществляли методом ТСХ на пластинах ALUGRAM®. Колоночная хроматография выполнена на силикагеле (0.05–0.1 мм) (МАСНЕКЕУ-NAGEL, Germany). Температуры плавления определены на аппарате Boetius PHMK 05 VEB Wagetechnik Rapido (Radebeul). Оптическое вращение измерено на цифровом поляриметре PerkinElmer 341 LC с натриевой лампой (длина волны D-линии – 589 нм). Элементный анализ выполнен на СНNS анализаторе Euro 3000 (Некаtech). Спектры ЯМР ¹H, ¹⁵N и ¹³С записаны в дейтерированном ДМСО на импульсном спектрометре Bruker Avance III с рабочей частотой 500.13 (¹H) и 125.47 МГц (¹³C).

(1R,5R)-N-Аллил-9-нитро-8-оксо-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-*a*][1,5]диазоцин-3(4Н)-карботиоамид (12). Смесь 9-нитроцитизина 4 (0.2 г, 0.85 ммоль) и аллилизотиоцианата (0.08 г, 0.85 ммоль) кипятили в бензоле (20 мл). После завершения реакции (контроль по ТСХ) реакционную смесь концентрировали, остаток хроматографировали на SiO_2 (CHCl₃:MeOH = 97:3). Выход 71% (0.20 г), $[\alpha]_D^{20}$ –330.0 (ДМСО, c = 0.9), желтые кристаллы, т. пл. 207°С (MeOH), R_f 0.57 (ацетон). ИК спектр (пленка), v, cm^{-1} : 3337, 3070, 2929, 1668, 1552, 1471, 1426, 1407, 1343, 1318, 1294, 1260, 1221, 1174, 1156, 1124, 1091, 1064, 1038, 1002, 918, 852, 778, 683, 626. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 1.95 д. т. т (1H, $\mathrm{H}^{12}_{\mathit{cuh}}$, 2J 12.7, $^3J_{12\mathit{cuh}-1}$ 3.4, $^3J_{12\mathit{cuh}-5}$ 3.4, $^4J_{12\mathit{cuh}-4\mathit{9h0o}}$ 1.7, $^4J_{12\mathit{cuh}-2\mathit{9h0o}}$ 1.7), 2.03 д. т. д (1H, $\mathrm{H}^{12}_{\mathit{ahmu}}$, 2J 12.7, $^3J_{12анти-1}$ 3.3, $^3J_{12анти-5}$ 3.3, $^4J_{12анти-69ндо}$ 1.3), 2.58 м (1H, H⁵), 3.17 д. д. д (1H, H⁴ $_{9\kappa30}$, 2J 13.3, $^3J_{49\kappa30-5}$ 2.1, $^4J_{49\kappa30-69\kappa30}$ 1.2), 3.30 д. д (1H, H $_{9\kappa30}$, 2J 13.3, $^3J_{29\kappa30-1}$ 2.5), 3.38 м (1H, H¹), 3.80 д. д. д (1H, H $_{9K30}^6$, 2J 15.8, $^3J_{69K30-5}$ 6.5, $^4J_{69K30-49K30}$ 1.2), 3.90 д. д. т (1H, H $_{A}^{1'}$, 2J 15.8, $^3J_{1'A-2'}$ $5.1, {}^{4}J_{1'\text{A-}3'uuc}$ $1.6, {}^{4}J_{1'\text{A-}3'mpanc}$ 1.6), 4.10 д. д. т (1H, $H_{\rm B}^{1'}, {}^2J\,15.8, {}^3J_{1'{\rm B}-2'}\,5.1, {}^4J_{1'{\rm B}-3'uuc}\,1.6, {}^4J_{1'{\rm B}-3mpanc}\,1.6),$ 4.17 д. т (1H, $H_{\ni H\partial O}^6$, 2J 15.8, ${}^3J_{6\ni H\partial O}$ -5 1.0, ${}^4J_{6\ni H\partial O}$ -12анти 1.0), 4.82 д. к (1H, $H_{mpahc}^{3'}$, 2J 1.6, ${}^3J_{3mpahc-2'}$ 17.1, $^4J_{3'mpahc-1'A}$ 1.6, $^4J_{3'mpahc-1'B}$ 1.6), 4.88 д. д. т (1H, $\mathrm{H}^2_{\mathfrak{H}\partial\mathcal{O}}$, ^{2}J 13.3, $^{3}J_{2\ni h\partial o-1}$ 3.1, $^{4}J_{2\ni h\partial o-4\ni h\partial o}$ 1.7, $^{4}J_{2\ni h\partial o-12cuh}$ 1.7),

4.89 д. к (1H, $H_{yuc}^{3'}$, 2J 1.6, $^3J_{3'yuc-2'}$ 10.6, $^4J_{3'mpanc-1'A}$ 1.6, $^4J_{3'yuc-1'B}$ 1.6), 4.93 д. д. т (1H, $H_{9H\partial O}^4$, 2J 13.3, $^3J_{49H\partial O-5}$ 3.3, $^4J_{49H\partial O-29H\partial O}$ 1.7, $^4J_{49H\partial O-12CUH}$ 1.7), 5.64 д. д. т (1H, $H_{2'}^{1'}$, $^3J_{2'-3'mpanc}$ 17.1, $^3J_{2'-3'yuc}$ 10.6, $^3J_{2'-1'A}$ 5.1, $^3J_{2'-1'B}$ 5.1), 6.44 д (1H, $^3J_{11-10}$ 8.2, H_{11}^{11}), 8.36 д (1H, H_{10}^{10} , $^3J_{10-11}$ 8.2). Спектр ЯМР 13 С (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 24.9 (${\rm C}^{12}$), 27.6 (${\rm C}^5$), 35.7 (${\rm C}^1$), 47.6 (${\rm C}^{1'}$), 50.0 (${\rm C}^6$), 52.8 (${\rm C}^4$), 53.3 (${\rm C}^2$), 104.5 (${\rm C}^{11}$), 115.2 (${\rm C}^{3'}$), 134.6 (${\rm C}^9$), 135.3 (${\rm C}^2$), 138.1 (${\rm C}^{10}$), 154.7 (${\rm C}^8$), 159.2 (${\rm C}^{11a}$), 182.4 (C=S). Спектр ЯМР 15 N (ДМСО- d_6), $\delta_{\rm N}$, м. д.: 111.1 (NH), 190.4 (${\rm N}^7$), 368.3 (NO₂). Найдено, %: С 53.87; H 5.44; N 16.75; S 9.58. ${\rm C}_{15}H_{18}{\rm N}_4{\rm O}_3{\rm S}$. Вычислено, %: С 53.88; H 5.43; N 16.76; S 9.59.

(1*R*,5*S*)-9-Нитро-8-оксо-N-фенил-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-*a*][1,5]диазоцин-3(4H)-карботиоамид (13) получали аналогично из 9-нитроцитизина 4 (0.2 г, 0.85 ммоль) и фенилизотиоцианата (0.11 г, 0.85 ммоль). Продукт 13 выделен методом колоночной хроматографии на SiO₂ (EtOAc). Выход 85% (0.27 г), $[\alpha]_D^{20}$ –99.0 (ДМСО, c = 0.51), желтые кристаллы, т. пл. 184° С (EtOAc), $R_{\rm f}$ 0.6 (ацетон). ИК спектр (пленка), v, см⁻¹: 3268, 1668, 1553, 1524, 1501, 1464, 1456, 1446, 1426, 1407, 1386, 1377, 1361, 1346, 1339, 1332, 1315, 1298, 1259, 1229, 1222, 1157, 1104, 1038, 1002, 946, 920, 806, 792, 702, 611. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 1.97 д. т. т (1H, $\mathrm{H}^{12}_{\mathit{cuh}}$, 2J 12.7, $^3J_{12\mathit{cuh}-1}$ 3.4, $^3J_{12\mathit{cuh}-5}$ 3.4, $^4J_{12\mathit{cuh}-4\mathit{9h}0o}$ 1.7, $^4J_{12\mathit{cuh}-2\mathit{9h}0o}$ 1.7), 2.07 д. т. д (1H, $\mathrm{H}^{12}_{\mathit{ahmu}}$, 2J 12.7, $^3J_{12анти-1}$ 3.3, $^3J_{12анти-5}$ 3.3, $^4J_{12анти-6эндо}$ 1.3), 2.59 м $(1H, H^5)$, 3.29 д. д. д $(1H, H^4_{_{9K30}}, ^2J 13.3, ^3J_{_{49K30-5}} 2.1,$ $^4J_{43\kappa30-63\kappa30}$ 1.2), 3.39 м (1H, H¹), 3.43 д. д (1H, H²_{3 κ 30}, 2 *J* 13.1, 3 *J*_{29к30-1} 2.5), 3.77 д. д. д (1H, H $_{9\kappa30}^6$, 2 *J* 15.3, $^3J_{69\kappa30-5}$ 6.5, $^4J_{69\kappa30-49\kappa30}$ 1.2), 4.36 д. т (1H, $\mathrm{H}^6_{9H\partial O}$, 2J 15.3, ${}^{3}J_{69H\partial o^{-5}}$ 1.0, ${}^{4}J_{69H\partial o^{-1}2aHmu}$ 1.0), 4.87 д. д. т (1Н 2J 13.1, $^3J_{29H\partial o^{-1}}$ 3.1, $^4J_{29H\partial o^{-4}9H\partial o}$ 1.7, $^4J_{29H\partial o^{-1}2cuH}$ 1.7, $H_{_{9H\partial O}\text{-}2}$), 5.03 д. д. т (1H, $H_{_{9H\partial O}}^4$, 2J 13.3, $^3J_{_{49H\partial O}\text{-}5}$ 3.3, $^{4}J_{4_{3H\partial o-2_{3H\partial o}}}$ 1.7, $^{4}J_{4_{9H\partial o-12cuh}}$ 1.7), 6.44 д (1H, H¹¹, $^{3}J_{11-10}$ 8.2), 6.91 д. д (2H, H^{2'(6')}, $^{3}J_{2'(6')-3'(5')}$ 8.5, $^{4}J_{2'(6')-4'}$ 1.3), 7.05 т. т (1H, H⁴′, ${}^3J_{4'\text{-}3'(5')}$ 7.4, ${}^4J_{4'\text{-}2'(6')}$ 1.3), 7.18 д. д (2H, H^{3'(5')}, ${}^3J_{3'(5')-2'(6')}$ 8.5, ${}^3J_{3'(5')-4'}$ 7.4), 8.32 д (1H, H^{10} , ${}^{3}J_{10-11}$ 8.2). Спектр ЯМР ${}^{13}\mathrm{C}$ (ДМСО- d_{6}) δ_{C} , м. д.: $25.0 (C^{12}), 28.1 (C^{5}), 36.0 (C^{1}), 49.9 (C^{6}), 53.5 (C^{4}),$ $54.3 (C^2)$, $104.7 (C^{11})$, $124.9 (C^{4'})$, $125.5 (C^{2'(6')})$, 128.4 $(C^{3'(5')})$, 134.9 (C^9) , 137.9 (C^{10}) , 141.0 $(C^{1'})$, 154.8 (C^8) , 158.9 (C^{11a}) , 182.7 (C=S). Найдено, %: C 58.38; H 4.91; N 15.11; S 8.66. $C_{18}H_{18}N_4O_3S$. Вычислено, %: C 58.36; H 4.90; N 15.13; S 8.65.

(1S,5R)-N-Аллил-9-бром-8-оксо-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-*a*][1,5]диазоцин-3(4H)-карботиоамид (14) получали аналогично из 9-бромцитизина 5 (0.2 г, 0.74 ммоль) и аллилизотиоцианата (0.07 г, 0.74 ммоль). Продукт 14 выделен методом колоночной хроматографии на SiO₂ (EtOAc). Выход 92% (0.25 г), $[\alpha]_D^{20}$ –95.0 (CH₃OH, c = 0.57), белые кристаллы, т. пл. $189-190^{\circ}$ С (EtOAc), $R_{\rm f}$ 0.43 (ацетон). ИК спектр (пленка), v, см⁻¹: 3276, 1640, 1577, 1539, 1464, 1456, 1436, 1377, 1339, 1328, 1303, 1264, 1245, 1212, 1152, 1110, 1088, 959, 901, 879, 721, 609. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): $1.89 \text{ m} (1\text{H}, \text{H}_{\textit{cuh}}^{12}), 1.96 \text{ m} (1\text{H}, \text{H}_{\textit{ahmu}}^{12}), 2.52 \text{ m} (1\text{H}, \text{H}^5),$ 3.10 д. д. д (1H, $\mathrm{H}^4_{_{9K3O}}, ^2J$ 13.2, $^3J_{_{49K3O}-5}$ 2.1, $^4J_{_{49K3O}-69K3O}$ 1.4), 3.19 д. д (1H, $H_{9к30}^2$, J_{3k30-5} 2.1, $J_{49к30-69к30}$ 1.4), 3.19 д. д (1H, $H_{9к30}^2$, J_{3k30-1} 2.3), 3.21 м (1H, H_{1}^1), 3.74 д. д. д (1H, $H_{9\kappa30}^6$, $J_{15.6}$, $J_{69к30-5}$ 6.6, $J_{69к30-49κ30}$ 1.4), 3.91 д. т. т (1H, J_{1}^{1} , $J_{15.9}$, $J_{1'A-NH}$ 5.3, $^{3}J_{1'A-2'}$ 5.3, $^{4}J_{1'A-3'uuc}$ 1.6, $^{4}J_{1'A-3'mpanc}$ 1.6), 4.08 д. т (1H, $\mathrm{H}_{_{^{9}\mathcal{H}\partial O}}^{6}, {}^{2}J\,15.6, {}^{3}J_{_{^{69\mathcal{H}\partial O-5}}}\,1.1, {}^{4}J_{_{69\mathcal{H}\partial O-1}2\mathcal{H}mu}\,1.1), 4.15$ д. т. т $(1H, H_B^{1\prime}, {}^2J 15.9, {}^3J_{1'B-NH} 5.3, {}^3J_{1'B-2'} 5.3, {}^4J_{1'B-3'\mu\nu} 1.6,$ $^4J_{1'\text{B-}3'mpanc}$ 1.6), 4.79 д. д. т (1H, $\mathrm{H}^2_{_{^{9}\!H^{\partial}O}}$, 2J 13.4, $^3J_{_{^{29}\!H^{\partial}O^{-1}}}$ $3.1, {}^4J_{2_{9H\partial O}-4_{9H\partial O}}$ $1.7, {}^4J_{2_{9H\partial O}-12_{CUH}}$ 1.7), 4.82 д. к (1H, $\mathrm{H}_{mpahc}^{3'}$) ^{2}J 1.6, $^{3}J_{3'mpahc-2'}$ 17.1, $^{4}J_{3'mpahc-1'A}$ 1.6, $^{4}J_{3'mpahc-1'B}$ 1.6), 4.92 д. к (1H, $H_{yuc}^{3'}$, 2J 1.6, $^3J_{3'yuc-2'}$ 10.4, $^4J_{3'mpanc-1'A}$ 1.6, $^4J_{3'uuc-1'B}$ 1.6), 4.96 д. д. т (1H, $H_{3H\partial o}^4$, 2J 13.2, $^3J_{49H\partial o-5}$ $3.2,\,^4J_{4_{9H\partial 0}-2_{9H\partial 0}}\,1.7,\,^4J_{4_{9H\partial 0}-12_{CUH}}\,1.7),\,5.66$ д. д. т (1H, H²', $^3J_{2'\text{-}3'mpahc}\,17.1,\,^3J_{2'\text{-}3'uuc}\,10.4,\,^3J_{2'\text{-}1'A}\,5.1,\,^3J_{2'\text{-}1'B}\,5.1),$ 6.15 д (1H, H¹¹, ${}^{3}J_{11-10}$ 7.6), 7.77 т (1H, NH, ${}^{3}J_{NH-1'A}$ 5.3, $^{3}J_{\text{NH-1'B}}$ 5.3), 7.80 д (1H, H 10 , $^{3}J_{10\text{-}11}$ 7.6). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 24.9 (С¹²), 27.3 (С⁵), 34.0 (C^1) , 47.3 $(C^{1'})$, 49.5 (C^6) , 52.5 (C^4) , 53.4 (C^2) , 105.1 (C^{11}) , 110.8 (C^9) , 114.5 $(C^{3'})$, 135.1 $(C^{2'})$, 140.7 (C^{10}) , 149.5 (С^{11a}), 158.1 (С⁸), 182.2 (С=S). Спектр ¹⁵N ЯМР (ДМСО- d_6), δ_N , м. д.: 104.4 (N³), 111.7 (NH), 175.6 (N⁷). Найдено, %: С 48.90; H 4.94; Br 21.73; N 11.40; S 8.69. C₁₅H₁₈BrN₃OS. Вычислено, %: С 48.92; Н 4.93; Br 21.70; N 11.41; S 8.71.

(1*S*,5*R*)-9-Бром-8-оксо-N-фенил-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-*a*][1,5]диазоцин-3(4*H*)-карботиоамид (15) получали аналогично из 9-бромцитизина 5 (0.2 г, 0.74 ммоль) и фенилизотиоцианата (0.1 г, 0.74 ммоль). Выпавший осадок отфильтровывали, промывали бензолом (3×10 мл) и сушили. Выход 84% (0.25 г), $[\alpha]_D^{20}$ –5.0 (ДМСО, c = 0.93), белые кристаллы, т. пл. 229°С (МеОН), R_f 0.5 (ацетон). ИК спектр (пленка), v, см⁻¹: 3209, 3032, 1639, 1597, 1575, 1534, 1497, 1462, 1410, 1377, 1352, 1326, 1302, 1261, 1150, 1102, 1087, 960,

942, 724, 610. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. $(J, \Gamma$ ц): 1.94 м (1H, H_{cuh}^{12}), 2.05 м (1H, H_{ahmu}^{12}), 2.55 м $(1H, H^5)$, 3.22 м $(1H, H^1)$, 3.25 д. д. д $(1H, H^4_{\varkappa \varkappa \sigma}, {}^2J$ 13.2, ${}^{3}J_{49к30-5}$ 2.1, ${}^{4}J_{49к30-69к30}$ 1.4), 3.35 д. д (1H, $\mathrm{H}^{2}_{9к30}$, 2 *J* 13.4, 3 *J*_{2экзо-1} 2.3), 3.74 д. д. д (1H, H $^6_{$ экзо</sub>, 2 *J* 15.6, $^{3}J_{6$ 9 κ 30-5</sub> 6.6, $^{4}J_{6$ 9 κ 30-49 κ 30</sub> 1.4), 4.32 д. т (1H, H $_{9$ H $do}$ 0, ^{2}J 15.6, $^3J_{63\kappa30-5}$ 1.1, $^4J_{63\kappa30-12a\mu mu}$ 1.1), 4.81 д. д. т (1H, $\mathrm{H}^2_{3\mu\partial\rho}$, ^{2}J 13.4, $^{3}J_{29H\partial o-1}$ 3.1, $^{4}J_{29H\partial o-49H\partial o}$ 1.7, $^{4}J_{29H\partial o-12cuH}$ 1.7), 5.11 д. д. т (1H, $H_{9H\partial o}^4$, 2J 13.2, $^3J_{49H\partial o-5}$ 3.2, $^4J_{49H\partial o-29H\partial o}$ $1.7, {}^{4}J_{4$ эндо-12син $1.7), 6.13 д (1H, H<math>^{11}, {}^{3}J_{11-10}$ 7.6), 6.97 д $(1H, H^{2'(6')}, {}^{3}J$ 7.7), 7.04 т $(1H, H^{4'}, {}^{3}J$ 7.3), 7.20 д. д $(1H, H^{3''(5')}, {}^{3}J7.7, {}^{3}J7.3), 7.75 \, \text{д} (1H, H^{10}, {}^{3}J_{10-11}, 7.6),$ 9.01 уш. с (1H, NH). Спектр ЯМР ¹³С (ДМСО-*d*₆), $\delta_{\rm C}$, M. A.: 25.3 (C¹²), 27.7 (C⁵), 34.7 (C¹), 49.5 (C⁶), 53.3 (C²), 54.6 (C⁴), 105.2 (C¹¹), 111.0 (C⁹), 124.2 $(C^{4'})$, 125.1 $(C^{2'(6')})$, 127.8 $(C^{3'(5')})$, 140.6 (C^{10}) , 141.0 $(C^{1'})$, 149.3 (C^{11a}) , 158.3 (C^{8}) , 182.9 (C=S). Спектр ¹⁵N ЯМР (ДМСО- d_6), δ_N , м. д.: 127.2 (NH), 175.2 (N⁷). Найдено, %: C 53.45; H 4.50; Br 19.79; N 10.340; S 7.91. C₁₈H₁₈BrN₃OS. Вычислено, %: С 53.47; Н 4.49; Br 19.76; N 10.39; S 7.93.

(1R,5R)-N-Аллил-9,11-дибром-8-оксо-1,5,6,8тетрагидро-2H-1,5-метанопиридо[1,2-a][1,5]диазоцин-3(4H)-карботиоамид (16) получали аналогично из 9,11-дибромцитизина **6** (0.2 г, 0.57 ммоль) и аллилизотиоцианата (0.056 г, 0.57 ммоль). Продукт 16 выделен методом колоночной хроматографии на SiO_2 (EtOAc). Выход 91% (0.23 г), $\lceil \alpha \rceil_D^{20}$ –78.0 (ДМСО, c = 1.04), аморфное вещество, $R_{\rm f}$ 0.56 (ацетон). ИК спектр (пленка), v, cm^{-1} : 3250, 1635, 1568, 1540, 1518, 1457, 1411, 1400, 1377, 1357, 1334, 1327, 1303, 1263, 1241, 1213, 1144, 1097, 957, 856, 759, 738, 705, 658, 600. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 1.93 д. т. т (1H, H_{cuh}^{12} , 2J 12.7, ${}^3J_{12cuh-1}$ 3.4, ${}^3J_{12cuh-5}$ $3.4, {}^4J_{12cuh-4эh∂o}$ $1.7, {}^4J_{12cuh-2эh∂o}$ 1.7), 2.06 д. т. д (1H, H_{ahmu}^{12} , 2J 12.7, ${}^3J_{12ahmu-1}$ 3.3, ${}^3J_{12ahmu-5}$ 3.3, ${}^4J_{12ahmu-9h\partial o}$ 1.3), 2.51 м (1H, H⁵), 3.17 д. д. д (1H, H $^4_{_{9K30}}$, 2J 13.3, $^{3}J_{4_{9\kappa30-5}}$ 2.1, $^{4}J_{4_{9\kappa30-69\kappa30}}$ 1.2), 3.18 д. д (1H, $\mathrm{H}^{2}_{_{9\kappa30}}$, ^{2}J 13.2, $^3J_{29\kappa30-2}$ 2.5), 3.43 м (1H, H¹), 3.77 д. д. д (1H, H $_{9\kappa30}^6$, 2J 15.4, $^3J_{6$ 9 κ 3o-5</sub> 6.5, $^4J_{6$ 9 κ 3o-49 κ 3o 1.2), 3.95 д. д. т (1H, $H_{A}^{1'}$, ${}^{2}J$ 15.8, ${}^{3}J_{1'A-2'}$ 5.1, ${}^{4}J_{1'A-3'uuc}$ 1.6, ${}^{4}J_{1'A-3'mpahc}$ 1.6), 4.08 д. д. т (1H, $H_{\rm B}^{\rm l'}$, 2J 15.8, $^3J_{1'{\rm B-2'}}$ 5.1, $^4J_{1'{\rm B-3'}uuc}$ 1.6, $^4J_{1'\text{B-}3'mpahc}$ 1.6), 4.11 д. т (1H, $H_{\text{эндо}}^6$, 2J 15.4, $^3J_{6\text{эндо-}5}$ $1.0, {}^{4}J_{6$ _{эндо-12анти} 1.0), 4.75 д. д. т (1H, $H_{}^{4}$ _{эндо}, ${}^{2}J$ 13.3, $^3J_{4$ эндо-5 3.3, $^4J_{4$ эндо-2эндо 1.7, $^4J_{4$ эндо-12син 1.7), 4.84 д. к (1H, $\mathrm{H}_{mpahc}^{3\prime}$, 2J 1.6, $^3J_{3mpahc-2'}$ 17.1, $^4J_{3'mpahc-1'A}$ 1.6, $^4J_{3'mpahc-1'B}$ 1.6), 4.94 д. к (1H, $\mathrm{H}_{uuc}^{3\prime}$, 2J 1.6, $^3J_{3'uuc-2'}$ 10.6, ${}^4J_{3'uuc-1'A}$ 1.6, ${}^4J_{3'uuc-1'B}$ 1.6), 5.09 д. д. т (1H, ${
m H}_{{\it эндо}}^2, {}^2J$ 13.2, ${}^3J_{{\it 2эндo}-1}$ 3.1, ${}^4J_{{\it 2эндo}-4{\it 3ндo}}$ 1.7, ${}^4J_{{\it 2эндo}-12cun}$ 1.7), 5.66 д. д. т (1H, H²', ${}^3J_{2'\text{-3'mpahc}}$ 17.1, ${}^3J_{2'\text{-3'yuc}}$ 10.6, ${}^3J_{2'\text{-1'A}}$ 5.1, ${}^3J_{2'\text{-1'B}}$ 5.1), 8.07 с (1H, H¹0). Спектр ЯМР 13 С (ДМСО- d_6), $\delta_{\rm C}$, м. д.: 25.1 (С¹2), 27.2 (С⁵), 34.3 (С¹), 47.1 (С¹'), 50.8 (С6), 50.8 (С²), 51.6 (С⁴), 97.5 (С¹¹), 111.7 (С°), 114.7 (С³'), 134.9 (С²'), 143.2 (С¹0), 146.3 (С¹¹а), 157.6 (С²), 182.1 (С=S). Спектр 15 N ЯМР (ДМСО- d_6), $\delta_{\rm N}$, м. д.: 110.6 (NH), 177.5 (N³). Найдено, %: С 40.31; Н 3.82; Вг 35.75; N 9.420; S 7.19. С ${}_{15}{\rm H}_{17}{\rm Br}_2{\rm N}_3{\rm OS}$. Вычислено, %: С 40.29; Н 3.83; Вг 35.74; N 9.40; S 7.17.

(1S,5R)-9,11-Дибром-8-оксо-N-фенил-1,5,6,8тетрагидро-2H-1,5-метанопиридо[1,2-a][1,5]диазоцин-3(4H)-карботиоамид (17) получали аналогично из 9,11-дибромцитизина 6 (0.2 г, 0.57 ммоль) и фенилизотиоцианата (0.076 г, 0.57 ммоль. Продукт 17 выделен методом колоночной хроматографии на SiO_2 (EtOAc). Выход 98% (0.27 г), $\lceil \alpha \rceil_D^{20}$ –87.0 (ДМСО, c = 1.12), аморфное вещество, $R_{\rm f}$ 0.55 (ацетон). ИК спектр (пленка), v, см⁻¹: 3292, 2940, 1643, 1596, 1546, 1518, 1406, 1320, 1260, 1225, 1181, 1143, 1112, 1069, 1032, 913, 848, 800, 734, 701, 665, 536. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ , м. д. (J, Γ ц): 1.98 д. т. т (1H, ${
m H}_{cuh}^{12},\,^2\!J\,12.9,\,^3\!J_{12cuh\text{-}1}\,3.4,\,^3\!J_{12cuh\text{-}5}\,3.4,\,^4\!J_{12cuh\text{-}49h\partialo}\,1.7,\,^4\!J_{12cuh\text{-}49h\partialo}\,1.7),\,2.13$ д. т. д (1H, ${
m H}_{ahmu}^{12},\,^2\!J\,12.9,\,$ $^3J_{12a+mu-1}$ 3.1, $^3J_{12a+mu-5}$ 3.1, $^4J_{12a+mu-69+\partial o}$ 1.0), 2.55 m (1H, H⁵), 3.33 д. д. д (1H, H⁴_{экзо}, 2J 13.0, $^3J_{4экзо-5}$ 2.3, $^4J_{4_{9\kappa30}-6_{9\kappa30}}$ 1.0), 3.35 д. д (1H, $\mathrm{H}^2_{9\kappa30}$, 2J 13.2, $^3J_{2_{9\kappa30-1}}$ 2.3), 3.48 м (1H, H¹), 3.76 д. д. д (1H, H $_{_{9K30}}^{6}$, ^{2}J 15.5, $^3J_{6$ 3 κ 30-5 6.6, $^4J_{6$ 3 κ 30-438 κ 30 д. т (1H, H $_{9$ H00, 2 2 2 1 15.5, $^3J_{6$ эндо-5 1.1, $^4J_{6$ эндо-12aн $m}u$ 1.1), 4.94 д. д. т (1H, $\mathrm{H}^4_{$ эндо, $^2 J$ 13.0, $^3 J_{49H\partial o-5}$ 3.2, $^4 J_{49H\partial o-29H\partial o}$ 1.7, $^4 J_{49H\partial o-12cuH}$ 1.7), 5.06 д. д. т (1H, $\mathrm{H}^2_{9H\partial o}$, $^2 J$ 13.2, $^3 J_{29H\partial o-1}$ 3.1, $^4 J_{29H\partial o-49H\partial o}$ $1.7, {}^4J_{2$ эндо-12син 1.7), 6.92 д. д $(2H, H^{2'(6')}, {}^3J_{2'(6')-3'(5')}$ 8.7, $^{4}J_{2'(6')-4'}$ 1.3), 7.08 т. т (1H, H^{4'}, $^{3}J_{4'-3'(5')}$ 7.1, $^{4}J_{4'-2'(6')}$ 1.3), 7.23 д. д (2H, H^{3'(5')}, ³ $J_{3'(5')-2'(6')}$ 8.7, ³ $J_{3'(5')-4'}$ 7.1), 8.07 с (1H, H¹⁰). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 25.2 (C^{12}) , 27.6 (C^5) , 34.7 (C^1) , 50.7 (C^6) , 51.4 (C^2) , 52.6 (C^4) , 97.9 (C^{11}) , 111.9 (C^9) , 124.3 $(C^{4'})$, 124.8 $(C^{2'(6')})$, $128.0 (C^{3'(5')}), 140.7 (C^{1'}), 143.2 (C^{10}), 145.9 (C^{11a}),$ 157.8 (С⁸), 182.3 (С=S). Спектр ¹⁵N ЯМР (ДМСО- d_6), δ_N, м. д.: 126.7 (NH). Найдено, %: С 44.73; Н 3.57; Br 33.09; N 8.72; S 6.60. C₁₈H₁₇Br₂N₃OS. Вычислено, %: С 44.74; H 3.55; Br 33.07; N 8.70; S 6.63.

(1S,5R)-N-Аллил-11-хлор-8-оксо-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-a][1,5]диазоцин-3(4H)-карботиоамид (18) получали аналогично из

11-хлороцитизина 7 (0.2 г, 0.78 ммоль) и аллилизотиоцианата (0.05 г, 0.78 ммоль). Продукт 18 выделен методом колоночной хроматографии на SiO₂ (EtOAc). Выход 75% (0.21 г), $\lceil \alpha \rceil_D^{20} - 142.0$ (ДМСО, c = 0.29), аморфное вещество, $R_{\rm f}$ 0.57 (ацетон). ИК спектр (пленка), v, cm^{-1} : 3316, 1650, 1569, 1544, 1524, 1461, 1401, 1377, 1340, 1325, 1308, 1262, 1244, 1186, 1167, 1149, 1114, 1085, 1030, 990, 968, 922, 827, 722, 692, 640, 557. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ , м. д. (*J*, Γ ц): 1.92 д. т. т (1H, H_{cuh}^{12} , 2J 13.2, $^3J_{12cuh-1}$ 3.4, $^3J_{12cuh-5}$ $3.4, {}^4J_{12cun-4эндo}$ $1.7, {}^4J_{12cun-4эндo}$ 1.7), <math>2.07 д. т. д (1H, H_{ahmu}^{12} , 2J 13.2, ${}^3J_{12ahmu-1}$ 3.1, ${}^3J_{12ahmu-5}$ 3.1, ${}^4J_{12ahmu-6эндо}$ 1.0), 2.55 м (1H, H⁵), 3.18 д. д. д (1H, H $_{_{9K30}}^{4}$, ^{2}J 13.2, $^3J_{4_{9\kappa30-5}}$ 2.1, $^4J_{4_{9\kappa30-69\kappa30}}$ 1.2), 3.20 д. д (1H, $\mathrm{H}^2_{9\kappa30}$, 2J 13.0, $^3J_{23\kappa30-1}$ 2.5), 3.49 м (1H, H¹), 3.77 д. д. д. (1H, H $_{2\kappa30}^6$) $^2 J$ 15.7, $^3 J_{69\kappa30-5}$ 6.5, $^4 J_{69\kappa30-49\kappa30}$ 1.2), 3.95 д. т. т (1H, ${\rm H_{A}^{1'}}, {}^2J\,16.0, {}^3J_{1'{\rm A}-2'}\,5.5, {}^4J_{1'{\rm A}-3'uuc}\,1.6, {}^4J_{1'{\rm A}-3mpanc}\,1.6), \\ 4.08 \ {\rm д.}\ {\rm д.}\ {\rm T}\,(1{\rm H,\,H_{B}^{1'}}, {}^2J\,16.0, {}^3J_{1'{\rm B}-2'}\,5.5, {}^4J_{1'{\rm B}-3'uuc}\,1.6,$ $^4J_{1'\text{B-}3'mpahc}$ 1.6), 4.13 д. т (1H, $H_{\tiny 9h\partial O}^6$, 2J 15.7, $^3J_{\tiny 69h\partial O}$ -5 $1.0, {}^{4}J_{6$ эндо-12анти $1.0), 4.78 д. д. т (1H, <math>H^{4}$ эндо, ${}^{2}J$ 13.2, $^3J_{4$ эндо-5 2.7, $^4J_{4$ эндо-2эндо 1.7, $^4J_{4$ эндо-12cин 1.7), 4.83 д. к (1H, $H_{mpahc}^{3'}$, ${}^{2}J$ 1.6, ${}^{3}J_{3'mpahc-2'}$ 17.1, ${}^{4}J_{3'mpahc-1'A}$ 1.6, $^{4}J_{3'mpahc-1'B}$ 1.6), 4.94 д. к (1H, $H_{uuc}^{3'}$, ^{2}J 1.6, $^{3}J_{3'uuc-2'}$ $10.6, {}^{4}J_{3'uuc-1'A}$ 1.6, ${}^{4}J_{3'uuc-1'B}$ 1.6), 5.05 д. д. т (1H, $\mathrm{H}^{2}_{\mathfrak{H}\partial\mathcal{O}}$, ^{2}J 13.0, $^{3}J_{2\ni h\partial o^{-1}}$ 2.7, $^{4}J_{2\ni h\partial o^{-4}\ni h\partial o}$ 1.7, $^{4}J_{2\ni h\partial o^{-1}2cuh}$ 1.7), 5.66 д. д. т (1H, H², ${}^3J_{2'\text{-3'mpanc}}$ 17.1, ${}^3J_{2'\text{-3'yuc}}$ 10.6, ${}^3J_{2'\text{-1'A}}$ $5.5, {}^{3}J_{2'-1'B}$ 5.5), 7.89 с (1H, H¹⁰). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 24.9 (С¹²), 27.0 (С⁵), 31.9 (С¹), $47.1 (C^{1})$, $50.4 (C^{6})$, $50.8 (C^{2})$, $51.6 (C^{4})$, $108.7 (C^{11})$, $114.6 (C^{3'}), 121.1 (C^{9}), 134.9 (C^{2'}), 137.6 (C^{10}), 144.6$ (C^{11a}), 157.3 (C⁸), 182.0 (C=S). Найдено, %: С 55.64; H 5.59; Cl 10.98; N 12.97; S 9.92. C₁₅H₁₈ClN₃OS. Вычислено %: С 55.63; Н 5.60; С1 10.95; N 12.98; S 9.90.

(1*R*)-11-Хлор-8-оксо-N-фенил-1,5,6,8-тетрагидро-2*H*-1,5-метанопиридо[1,2-*a*][1,5]диазоцин-3(4*H*)-карботиоамид (19) получали аналогично из 11-хлорцитизина 7 (0.2 г, 0.78 ммоль) и фенилизотиоцианата (0.1 г, 0.78 ммоль). Продукт 19 выделен методом колоночной хроматографии на SiO_2 (ЕtOAc). Выход 82% (0.26 г), $[\alpha]_D^{20}$ –178.0 (ДМСО, c=0.92), аморфное вещество, R_f 0.6 (ацетон). ИК спектр (пленка), v, см⁻¹: 3209, 3029, 1636, 1596, 1573, 1524, 1496, 1456, 1412, 1363, 1326, 1243, 1229, 1201, 1171, 1150, 1111, 1096, 1066, 1028, 1004, 947, 892, 863, 795, 770, 721, 605, 543, 440, 419. Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д. (*J*, Γ п): 1.97 д. т. т (1H, H_{cuh}^{12} , 2J 12.7, ${}^3J_{12cuh-1}$ 3.4, ${}^3J_{12cuh-5}$ 3.4, ${}^4J_{12cuh-4эндо}$ 1.7, ${}^4J_{12cuh-2эндо}$ 1.7), 2.14 д. т. д (1H, H_{12muu}^{12} , 2J 12.7, ${}^3J_{12ahmul-1}$

 $3.3, {}^{3}J_{12анти-5}$ $3.3, {}^{4}J_{12анти-6эндо}$ 1.3), 2.57 м (1H, H⁵), 3.34 д. д. д (1H, $H_{\text{экзо}}^4$, 2J 13.3, $^3J_{4\text{экзо-5}}$ 2.1, $^4J_{4\text{экзо-6экзо}}$ 1.2), 3.36 д. д (1H, $\mathrm{H}^2_{\mathfrak{H}30}$, 2J 13.5, $^3J_{2\mathfrak{H}30-1}$ 2.5), 2.57 м (1H, H⁵), 3.76 д. д. д (1H, H⁶_{экзо}, ²J 15.7, ³J_{6экзо-5} 6.5, $^4J_{6$ экзо-4экзо 1.2), 4.34 д. т (1H, $\mathrm{H}^6_{\mathrm{эн}\partial o}$, 2J 15.7, $^3J_{6$ эн ∂o -5 1.0, $^4J_{6$ эндо-12анти 1.0), 4.95 д. д. т (1H, $H_{_{2}$ Hдо, 2 J 13.3, $^3J_{_{4}$ 3Hдо-5} 3.3, ${}^4J_{4эндо-2эндо}$ 1.7, ${}^4J_{4эндо-12син}$ 1.7), 5.04 д. д. т (1H, $H^2_{9ндо}$, 2J 13.5, ${}^3J_{2эндо-1}$ 3.1, ${}^4J_{2эндо-4эндо}$ 1.7, ${}^4J_{2эндо-12син}$ 1.7), 6.93 д (2H, H²', ${}^{3}J_{2'-3'}$ 8.2), 7.08 т (1H, H⁴', ${}^{3}J_{4'-3'}$ 7.3), 7.23 д. д (2H, $H^{3'}$, ${}^{3}J_{3'-2'}$ 8.2, ${}^{3}J_{3'-4'}$ 7.5). Спектр ЯМР ¹³С (ДМСО- d_6), δ_C , м. д.: 25.0 (С¹²), 27.5 (С⁵), $32.2 (C^{1}), 50.3 (C^{6}), 51.4 (C^{2}), 52.6 (C^{4}), 108.9 (C^{11}),$ 121.3 (C^9), 124.3 ($C^{4'}$), 124.9 ($C^{2'(6')}$), 128.0 ($C^{3'(5')}$), $137.5 (C^{10}), 140.7 (C^{1'}), 144.3 (C^{11a}), 157.4 (C^{8}), 182.3$ (C=S). Спектр ¹⁵N ЯМР (ДМСО- d_6), δ_N , м. д.: 126.3 (NH). Найдено, %: С 60.10; Н 5.05; С1 9.84; N 11.71; S 8.90. С₁₈H₁₈ClN₃OS. Вычислено, %: С 60.08; Н 5.04; Cl 9.85; N 11.68; S 8.91.

Вирусы и клетки. Использовали вирус парагриппа человека 3-го типа (HPIV3, штамм HA1) из коллекции вирусов НИИ эпидемиологии и микробиологии имени Пастера, Санкт-Петербург, Россия. Вирус культивировали в эмбриональных клетках почки макаки резус MA-104 при 36°C в 5% CO₂. Клетки MA-104 в среде МЕМ для тестирования *in vitro* высевали на 96-луночные планшеты и инкубировали при 36°C в 5% CO₂ до образования однородного монослоя.

Анализ цитотоксичности *in vitro*. Цитотоксичность соединений изучали в микротетразолиевом тесте (МТТ). Была приготовлена серия трехкратных разведений каждого соединения в среде МЕМ. Клетки МА-104 инкубировали в течение 96 ч при соответствующих условиях, затем дважды промывали физиологическим раствором с фосфатным буфером (PBS) и добавляли раствор 3-(4,5-диметилтиазолил-2)-2,5-дифенилтетразолия бромида (0.5 мг/мл) в МЕМ. После 1 ч инкубации лунки промывали PBS, остаток формазана растворяли в 0.1 мл ДМСО на каждую лунку. Оптическую плотность клеток измеряли с помощью планшетного анализатора Multiskan FC (Thermo Scientific) при длине волны 540 нм и строили график зависимости концентрации соединений. Каждую концентрацию производных 8-19 тестировали в трех параллелях. На основании полученных результатов рассчитывали 50%-ную цитотоксическую концентрацию (СС₅₀) (т. е. концентрацию соединения, которая вызывает гибель 50% клеток в культуре, уменьшала оптическую плотность в два раза по сравнению с контрольными лунками) для каждого анализируемого соединения с использованием программного обеспечения GraphPad Prism 6.01.

Противовирусная активность in vitro. Чувствительность HPIV3 к тестируемым соединениям определяли по эффекту цитопротекции, измеряя снижение вирус-индуцированного СРЕ под их действием. После добавления соединений и 1 ч инкубации клетки заражали HPIV3 (m.o.i. 0.01). После 96 ч инкубации наблюдали за клеточными монослоями в каждой лунке и проводили МТТ-тест. Оптическую плотность среды в каждой лунке определяли при длине волны 540 нм на анализаторе пластин Multiscan FC (Thermo Scientific). На основании полученных результатов рассчитывали 50%-ную ингибирующую концентрацию (IC_{50}), т. е. концентрацию соединения, которая защищала 50% клеток по сравнению с плацебо-контролем. Каждая концентрация соединений тестировалась в трех параллелях. После этого для каждого соединения рассчитывали индекс селективности (SI, отношение CC_{50} к IC_{50}).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Ковальская Алёна Витальевна, ORCID: https://orcid.org/0000-0001-7772-2894

Лобов Александр Николаевич, ORCID: https://orcid.org/0000-0002-9223-508X

Цыпышева Инна Петровна, ORCID: https://orcid.org/0000-0002-5025-8742

Зарубаев Владимир Викторович, ORCID: https://orcid.org/0000-0002-6837-5242

БЛАГОДАРНОСТЬ

Все аналитические эксперименты проведены с использованием оборудования Центров коллективного пользования «Химия» и «Агидель» Уфимского федерального исследовательского центра РАН.

ФИНАНСОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках государственного задания Уфимского института химии Уфимского федерального исследовательского центра Российской академии наук (№ 122031400260-7).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Abed Y., Boivin G. //* Antivir. Res. 2006. Vol. 70. P. 1. doi 10.1016/j.antiviral.2006.01.006
- Henrickson K.J. // Clin. Microbiol. Rev. 2003. Vol. 16.
 P. 242. doi 10.1128/CMR.16.2.242-264.2003
- 3. Weinberg G.A., Hall C.B., Iwane M.K., Poehling K.A., Edwards K.M., Griffin M.R., Staat M.A., Curns A.T., Erdman D.D., Szilagyi P.G. // J. Pediatr. 2009. Vol. 154. P. 694. doi 10.1016/j.jpeds.2008.11.034
- Denny F.W., Clyde W.A., Jr. // J. Pediatr. 1986. Vol. 108.
 P. 635. doi 10.1016/s0022-3476(86)81034-4
- Greengard O., Poltoratskaia N., Leikina E., Zimmerberg J., Moscona A. // J. Virol. 2000. Vol. 74. P. 1108. doi 10.1128/jvi.74.23.11108-11114.2000
- Ahgren C., Backro K., Bell F.W., Cantrell A.S., Clemens M., Colacino J.M., Deeter J.B., Engelhardt J.A., Hogberg M., Jaskunas S.R. // Antimicrob. Agents Chemother. 1995. Vol. 39. P. 1329. doi 10.1128/AAC.39.6.1329
- 7. Ren J., Diprose J., Warren J., Esnouf R.M., Bird L.E., Ikemizu S., Slater M., Milton J., Balzarini J., Stuart D.I., Stammers D.K. // J. Biol. Chem. 2000. Vol. 275. P. 5633. doi 10.1074/jbc.275.8.5633
- 8. Weitman M., Lerman K., Nudelman A., Major D.T., Hizi A., Herschhorn A. // Eur. J. Med. Chem. 2011. Vol. 46. P. 447. doi 10.1016/j.ejmech.2010.11.003
- 9. Bielenica A., Sanna G., Madeddu S., Struga M., Jóź-wiak M., Kozioł A.E., Sawczenko A., Materek I.B., Serra A., Giliberti G. // Chem. Biol. Drug. Des. 2017. Vol. 90. P. 883. doi 10.1111/cbdd.13009
- Kang I.J., Wang L.W., Lee C.C., Lee Y.C., Chao Y.S., Hsu T.A., Chern J.H. // Bioorg. Med. Chem. Lett. 2009. Vol. 19. P. 1950. doi 10.1016/j.bmcl.2009.02.048
- Bloom J.D., Di Grandi M.J., Dushin R.G., Curran K.J., Ross A.A., Norton E.B., Terefenko E., Jones T.R., Feld B., Lang S.A. // Bioorg. Med. Chem. Lett. 2003. Vol. 13. P. 2929. doi 10.1016/s0960-894x(03)00586-9
- 12. Bloom J.D., Dushin R.G., Curran K.J., Donahue F., Norton E.B., Terefenko E., Jones T.R., Ross A.A., Feld B., Lang S.A., Di Grandi M.J. // Bioorg. Med. Chem. Lett. 2004. Vol. 14. P. 340. doi 10.1016/j.bmcl.2004.04.093
- 13. Galabov A., Shindarov L., Vassilev G., Vassileva R. // Arch. Gesamte. Virusforsch. 1972. Vol. 38. P. 159. doi 10.1007/BF01249666
- Galabov A.S., Galabov B.S., Neykova N.A. // J. Med. Chem. 1980. Vol. 23. P. 1048. doi 10.1021/jm00183a016
- 15. Feeny R.M., Le D.N., Parks J.W., Epstein M.G., Pagano J.V., Abbene A.C., Graham E.B., Farrell J.R.,

- *McGuire J.R., Zoellner R.W., Valente E.J., Barklis E., Wood W.J.L.* // Synlett. 2012. P. 301. doi 10.1055/s-0031-1290124
- Mishra P., Kumar A., Mamidi P., Kumar S., Basantray I., Saswat T., Das I., Nayak T.K., Chattopadhyay S., Subudhi B.B., Chattopadhyay S. // Sci. Rep. 2016. Vol. 6. P. 20122. doi 10.1038/srep20122
- 17. Sorodoc Y., Danielescu G., Burducea O., Cajal N., Niclescu-Duvăz I., Baracu I. // Virologie. 1977. Vol. 28. P. 55.
- Burgeson J.R., Moore A.L., Boutilier J.K., Cerruti N.R., Gharaibeh D.N., Lovejoy C.E., Amberg S.M., Hruby D.E., Tyavanagimatt S.R., Allen R.D. 3rd, Dai D. // Bioorg. Med. Chem. Lett. 2012. Vol. 22. P. 4263. doi 10.1016/ j.bmcl.2012.05.035
- Kreutzberger A., Schröders H.H. // Tetrahedron Lett. 1970.
 Vol. 56. P. 4921. doi 10.1016/s0040-4039(00)99744-2
- Sun J., Cai S., Mei H., Li J., Yan N., Wang Q., Lin Z., Huo D. // Chem. Biol. Drug. Des. 2010. Vol. 76. P. 245. doi 10.1111/j.1747-0285.2010.01006.x
- Цыпышева И.П., Ковальская А.В., Лобов А.Н., Зарубаев В.В., Карпинская Л.А., Петренко И.А., Николаева Е.А., Юнусов М.С. // ХПС. 2012. № 6. С. 920; Tsypysheva I.P., Koval'skaya A.V., Lobov A.N., Zarubaev V.V., Karpinskaya L.A., Petrenko I.A., Nikolaeva E.A., Yunusov M.S. // Chem. Nat. Compd. 2013. Vol. 48. P. 1042. doi 10.1007/s10600-013-0460-0
- Fedorova V.A., Kadyrova R.A., Slita A.V., Muryleva A.A., Petrova P.R., Kovalskaya A.V., Lobov A.N., Tsypyshev D.O., Borisevich S.S., Tsypysheva I.P., Zileeva Z.R., Vakhitova J.V., Zarubaev V.V. // Nat. Prod. Res. 2021. Vol. 35. P. 4256. doi 10.1080/14786419.2019.1696791
- Tsypysheva I.P., Lai H.-Ch., Kiu Y.-T., Koval skaya A.V., Tsypyshev D.O., Huang S.-H., Lin Ch.-W. // Bioorg. Med. Chem. Lett. 2021. Vol. 54. P. 128437. doi 10.1016/ j.bmc 1.2021.128437

- Lin C.-S., Lu C.-H., Lin T.-H., Kiu Y.-T., Kan J.-Y., Chang Y.-J., Hung P.-Y., Koval'skaya A.V., Tsypyshev D.O., Tsypysheva I.P., Lin Ch.-W. // Bioorg. Med. Chem. Lett. 2024. Vol. 99. P. 129623. doi 10.1016/j.bmcl.2024.129623
- 25. Buckingham J., Baggaley K.H., Roberts A.D., Szlabo L.F. Dictionary of Alkaloids, CRC Press, 2010. 2289 p.
- 26. *Canu Boido C., Sparatore F.* // Il Farmaco. 1999. Vol. 54. P. 438. doi 10.1016/s0014-827x(99)00049-x
- 27. *Boido C.C., Tasso B., Boido V., Sparatore F.* // Il Farmaco. 2003. Vol. 58. P. 265. doi 10.1016/s0014-827x(03)00017-x
- 28. Цыпышева И.П., Ковальская А.В., Халилова И.У., Бахтина Ю.Ю., Хисамутдинова Р.Ю., Габдрахманова С.Ф., Лобов А.Н., Зарудий Ф.С., Юнусов М.С. // ХПС. 2014. № 2. С. 291; Tsypysheva I.P., Koval'skaya A.V., Khalilova I.U., Bakhtina Yu. Yu., Khisamutdinova R.Yu., Gabdrakhmanova S.F., Lobov A.N., Zarudii F.S., Yunusov M.S. // Chem. Nat. Compd. 2014. Vol. 50. P. 333. doi 10.1007/s10600-014-0945-5
- Цыпышева И.П., Ковальская А.В., Макара Н.С., Лобов А.Н., Петренко И.А., Галкин Е.Г., Сапожникова Т.А., Зарудий Ф.С., Юнусов М.С. // ХПС. 2012. № 4. С. 565; Tsypysheva I.P., Koval'skaya A.V., Makara N.S., Lobov A.N., Petrenko I.A., Galkin E.G., Sapozhnikova T.A., Zarudii F.S., Yunusov M.S. // Chem. Nat. Compd. 2012. Vol. 48. P. 629. doi 10.1007/s10600-012-0329-7
- Luputiu G., Gilau L. // Arch. Pharm. 1969. Vol. 302.
 P. 943. doi 10.1002/ardp.19693021210.
- 31. Нуркенов О.А., Газалиев А.М., Айнабаев А.А., Кулаков И.В. // ЖОХ. 2006. № 7. С. 1229; Nurkenov O.A., Gazaliev A.M., Ainabaev A.A., Kulakov I.V. // Russ. J. Gen. Chem. 2006. Vol. 76. P. 1181. doi 10.1134/ S1070363206070346
- 32. Leyssen P., de Clercq E., Neyts J. // Mol. Pharmacol. 2006. Vol. 69. P. 1461. doi 10.1124/mol.105.020057

Derivatives of (–)-Cytisine with Thiourea Fragment. Synthesis and Antiviral Activity

A. V. Kovalskaya¹, A. N. Lobov¹, V. V. Zarubaev², and I. P. Tsypysheva^{1,*}

¹ Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, 450054 Russia

² St. Petersburg Pasteur Institute, St. Petersburg, 197101 Russia

*e-mail: tsvpvsheva.ip@gmail.com

Received August 28, 2024; revised September 2, 2024; accepted September 4, 2024

New derivatives of the quinolizidine alkaloid, (–)-cytisine, with a substituted 2-pyridone ring and a thiourea moiety in the bispidin fragment of the molecule were synthesized. The ability of the synthesized cytisine-containing thioureas to inhibit the reproduction of human parainfluenza virus type 3 was assessed. It was found that the derivatives obtained by the reaction of benzoyl or phenyl isothiocyanate with (–)-cytisine, as well as its 9-bromo or 9,11-derivative, effectively suppress the reproduction of human parainfluenza virus type 3 (their selectivity indices are 56, 58 and 95, respectively), which confirms the promise of the chosen approach to synthetic modifications of the alkaloid (–)-cytisine in order to obtain effective antiviral agents on its basis.

Keywords: (-)-cytisine, thiourea, cytotoxicity, antiviral activity, human parainfluenza virus type 3 (HPIV3)