Spin properties of silicon-germanium nanotubes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dependence of the electronic structure on the chirality of single-walled SiGe nanotubes has been studied using the quantum chemistry methods. It has been shown that all nanotubes have a semiconductor type of band structure with a band gap Eg of about 0.35 eV, which distinguishes them from silicon analogues, which, depending on chirality, have semiconductor, semimetallic or metallic properties. This difference is due to the polarity of the Si-Ge chemical bond and, as a consequence, the influence of the antisymmetric component of the electronic potential on the band structure of the compounds. The valence band with a width of about 12 eV includes an inner band of predominantly s electrons of atoms with a width of 2 eV and a band of p electrons located above with a width of 8 eV. The energies of the spin-orbit gaps of the edges of the valence band and the conduction band differ significantly: for non-chiral nanotubes, they are equal to several tenths, and for chiral nanotubes, they are several meV. Using mechanical action, for example, by twisting a nanotube around its axis, it is possible to control the energies of spin-orbit gaps, which can find application in spintronics.

作者简介

Е. D’yachkov

Kurnakov Institute of General and Inorganic Chemistry

Email: p_dyachkov@rambler.ru
俄罗斯联邦, Moscow

V. Merinov

Kurnakov Institute of General and Inorganic Chemistry; National Research Nuclear University “MEPhI”

Email: p_dyachkov@rambler.ru
俄罗斯联邦, Moscow; Moscow

P. D’yachkov

Kurnakov Institute of General and Inorganic Chemistry

编辑信件的主要联系方式.
Email: p_dyachkov@rambler.ru
俄罗斯联邦, Moscow

参考

  1. Lin N., Wang L., Zhou J. et al. // J. Mater. Chem. A. 2015. V. 3. P. 11199. https://doi.org/10.1039/C5TA02216A
  2. Yu Y., Yue C., Sun S. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 5884. https://doi.org/10.1021/am500782b
  3. Kennedy T., Bezuidenhout M., Palaniappan K. et al. // ACS Nano. 2015. V. 9. P. 7456. https://doi.org/10.1021/acsnano.5b02528
  4. Xiao W., Zhou J., Yu L. et al. // Angew. Chem. Int. Ed. 2016. V. 55. P. 7427. https://doi.org/10.1002/anie.201602653
  5. Seifert G., Kohler T., Hajnal Z. et al. // Solid State Commun. 2001. V. 119. P. 653. https://doi.org/10.1016/S0038-1098(01)00309-X
  6. Fagan S.B., Baierle R.J., Mota R. et al. // Phys. Rev. B. 2000. V. 61. P. 9994. https://doi.org/10.1103/PhysRevB.61.9994
  7. Herrera-Carbajal A., Rodrıguez-Lugo V., Hernandez-Avila J. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 13075. https://doi.org/10.1039/D1CP00519G
  8. Rathi S.J., Ray A.K. // Chem. Phys. Lett. 2008. V. 466. P. 79. https://doi.org/10.1016/j.cplett.2008.10.031
  9. Liu X., Cheng D., Cao D. // Nanotechnology. 2009. V. 20. P. 315705. https://doi.org/10.1088/0957-4484/20/31/315705
  10. Pan L., Liu H., Wen Y. et al. // J. Comput. Theor. Nanosci. 2010. V. 7. P. 1935. https://doi.org/10.1166/jctn.2010.1563
  11. Wei J., Liu H.J., Tan X.J. et al. // RSC Adv. 2014. V. 4. P. 53037. https://doi.org/10.1039/C4RA07320G
  12. Dadrasi A., Albooyeh A., Mashhadzadeh A.H. // Appl. Surf. Sci. 2019. V. 498. P. 143867. https://doi.org/10.1016/j.apsusc.2019.143867
  13. Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502. https://doi.org/10.1063/1.5144921
  14. Yang S.H., Naaman R., Paltiel Y. et al. // Nature Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  15. Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  16. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214121554
  17. Manchon H., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
  18. Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117
  19. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  20. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
  21. D’yachkov P.N., Lomakin N.A. // Russ. J. Inorg. Chem. 2023. V. 68. № 4. P. 492. https://doi.org/10.1134/S0036023622602823
  22. D’yachkov E.P., Lomakin N.A., D’yachkov P.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 7. P. 855. https://doi.org/10.1134/S0036023623600867
  23. D’yachkov P.N., D’yachkov E.P. // Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1446. https://doi.org/10.1134/S0036023623601897
  24. Slater J.C. // Phys. Rev. 1937. V. 10. P. 846. https://doi.org/10.1103/PhysRev.51.846
  25. Andersen O.K. // Phys. Rev. B. 1975. V. 12. P. 864. https://doi.org/10.1103/PhysRevB.12.3060
  26. Koelling D.D., Arbman G.O. // J. Phys. F: Metal Physics. 1975. V. 5. P. 2041. https://doi.org/10.1088/0305-4608/5/11/016
  27. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
  28. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  29. D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical Waves. London: CRC Press, 2019. 212 p.
  30. Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: Лаборатория знаний, 2020. 491 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».