ДОПИРОВАННЫЕ ТИТАНАТЫ ЛИТИЯ И ИХ КОМПОЗИТЫ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ КАК АНОДЫ ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Титанаты лития Li4+xTi5–xMxO12 (M = Sc, Ga, Al, Cr; x=0, 0.05, 0.1, 0.15) и их композиты с углеродными нанотрубками синтезированы золь-гель методом и охарактеризованы с помощью рентгенофазового анализа, сканирующей электронной микроскопии, импедансной и 7Li MAS-ЯМР-спектроскопии; проведено их электрохимическое тестирование. Показано, что допирование трехвалентными катионами приводит к уменьшению подвижности ионов лития в Li4+xTi5–xMxO12, чтоуказывает на доминирование переноса лития по вакансиям в этих материалах. Наилучшие электрохимические характеристики демонстрируют композиты Li4+xTi5–xMxO12 с углеродными нанотрубками.

Об авторах

И. А. Стенина

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: stenina@igic.ras.ru
Москва, Россия

Т. Л. Кулова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Москва, Россия

А. Б. Ярославцев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Список литературы

  1. Dunn B., Kamath H., Tarascon J.-M. // Science. 2011. V. 334. P. 928. https://doi.org/10.1126/science.1212741
  2. Varzi A., Thanner K., Scipioni R. et al. // J. Power Sources. 2020. V. 480. P. 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
  3. Chen Y., Kang Y., Zhao Y. et al. // J. Energy Chem. 2021. V. 59. P. 83. doi.org/10.1016/j.jechem.2020.10.017
  4. Sashmitha K., Rani M.U. // Polym. Bull. 2023. V. 80. P. 89. https://doi.org/10.1007/s00289-021-04008-x
  5. Li Y., Li Y., Zhang L. et al. // J. Energy Chem. 2023. V. 77. P. 123. https://doi.org/10.1016/j.jechem.2022.10.026
  6. Hossain Md.H., Chowdhury M.A., Hossain N. et al. // Chem. Eng. J. Adv. 2023. V. 16. P. 100569. https://doi.org/10.1016/j.ceja.2023.100569
  7. Siller V., Gonzalez-Rosillo J.C., Nunez Eroles M. et al. // Mater. Today Energy. 2022. V. 25. P.100979. https://doi.org/10.1016/j.mtener.2022.100979
  8. Liu R., Ma G., Li H. // Ferroelectrics. 2021. V. 580. P. 172. https://doi.org/10.1080/00150193. 2021.1905737
  9. Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
  10. Yan H., Zhang D., Qilu et al. // Ceramics Int. 2021. V. 47. P. 5870. https://doi.org/10.1016/j.ceramint.2020.10.241
  11. Pal S., Roy S., Jalagam P. et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 969. https://doi.org/10.1021/acsaem.0c02929
  12. Han C., He Y.-B., Liu M. et al. // J. Mater. Chem. A. 2017. V. 5. P. 6368. https://doi.org/10.1039/C7TA00303J
  13. Xu X., Carr C., Chen X. et al. // Adv. Energy Mater. 2021. V. 11. P. 2003309. https://doi.org/10.1002/aenm.202003309
  14. Zhu C., Fuchs T.,Weber S.A.L. et al. // Nat.Commun. 2023. V. 14. P. 1300. https://doi.org/10.1038/s41467-023-36792-7
  15. Bai X., Li T., Bai Y.-J. // Dalton Trans. 2020. V. 49. P. 10003. https://doi.org/10.1039/D0DT01719A
  16. Stenina I.A., Kulova T.L., Skundin A.M. et al. // Mater. Res. Bull. 2016. V. 75. P. 178. https://doi.org/10.1016/j.materresbull.2015.11.050
  17. Yi T.-F., Wei T.-T., Li Y. et al. // Energy Storage Mater. 2020. V. 26 P. 165. https://doi.org/10.1016/j.ensm.2019.12.042
  18. Zhang E., Zhang H. // Ceram. Int. 2019. V. 45. P. 7419. https://doi.org/10.1016/j.ceramint.2019.01.030
  19. Stenina I.A., Shaydullin R.R., Desyatov A.V. et al. // Electrochim. Acta. 2020. V. 364. P. 137330. https://doi.org/10.1016/j.electacta.2020.137330
  20. Li J., Zhang T., Han C. et al. // J. Mater. Chem. A. 2019. V. 7. P. 455. https://doi.org/10.1039/C8TA10680K
  21. Meng Q., Hao Q., Chen F. et al. // Mater. Charact. 2023. V. 203. P. 113089. https://doi.org/10.1016/j.matchar.2023.113089
  22. Deng X., Li W., Zhu M. et al. // Solid State Ionics. 2021. V. 364. P. 115614. https://doi.org/10.1016/j.ssi.2021.115614
  23. Hu Y.,Wang L., Zhu C. et al. // Appl. Surf. Sci. 2024. V. 656. P. 159619. https://doi.org/10.1016/j.apsusc.2024.159619
  24. Yin Y., Luo X., Xu B. // J. Alloys Compd. 2022. V. 904. P. 164026. https://doi.org/10.1016/j.jallcom.2022.164026
  25. Wang H., Wang L., Lin J. et al. // Electrochim. Acta. 2021. V. 368. P. 137470. https://doi.org/10.1016/j.electacta.2020.137470
  26. Yaroslavtsev A.B., Stenina I.A. // Surf. Innov. 2021. V. 9. P. 92. https://doi.org/10.1680/jsuin.20.00044
  27. Ding S., Jiang Z., Gu J. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 148. https://doi.org/10.1007/s11705-020-2022-x
  28. Li X., Huang X., Chen Y. et al. // Electrochim. Acta. 2021. V. 390. P. 138874. https://doi.org/10.1016/j.electacta.2021.138874
  29. Ma G., Deng L., Liu R. et al. // J. Solid State Electrochem. 2022. V. 26. P. 2893. https://doi.org/10.1007/s10008-022-05296-7
  30. Ke J., Zhang Y., Wen Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 4428. https://doi.org/10.1039/D2TA09502E
  31. Jang I.-S., Kang S.H., Kang Y.C. et al. // Appl. Surf. Sci. 2022. V. 605. P. 154710. https://doi.org/10.1016/j.apsusc.2022.154710
  32. Stenina I., Shaydullin R., Kulova T. et al. // Energies. 2020. V. 13. P. 3941. https://doi.org/10.3390/en13153941
  33. Iniguez F.B., Jeong H., Mohamed A.Y. et al. // J. Ind. Eng. Chem. 2022. V. 112. P. 125. https://doi.org/10.1016/j.jiec.2022.05.005
  34. Liu K., Wang J., Man J. et al. // Int. J. Energy Res. 2021. V. 45. P. 4345. https://doi.org/10.1002/er.6100
  35. Nezamzadeh Ezhyeh Z., Khodaei M., Torabi F. // Ceram. Int. 2023. V. 49. P. 7105. https://doi.org/10.1016/j.ceramint.2022.04.340
  36. Hou L., Qin X., Gao X. et al. // J. Alloys Compd. 2019. V. 774. P. 38. https://doi.org/10.1016/j.jallcom.2018.09.364
  37. Ncube N.M., Mhlongo W.T., McCrindle R.I. et al. // Mater. Today: Proceed. 2018. V. 5. P. 10592. https://doi.org/10.1016/j.matpr.2017.12.392
  38. Meng Q., Chen F., Hao Q. et al. // J. Alloys Compd. 2021. V. 885. P. 160842. https://doi.org/10.1016/j.jallcom.2021.160842
  39. Kulova T.L., Kreshchenova Y.M., Kuz’mina A.A. et al. // Mendeleev Commun. 2016. V. 26. P. 238. https://doi.org/10.1016/j.mencom.2016.05.005
  40. Zou S., Wang G., Zhang Y. et al. // J. Alloys Compd. 2020. V. 816. P. 152609. https://doi.org/10.1016/j.jallcom.2019.152609
  41. Stenina I.A., Sobolev A.N., Yaroslavtsev S.A. et al. // Electrochim. Acta. 2016. V. 219. P. 524. https://doi.org/10.1016/j.electacta.2016.10.034
  42. Стенина И.А., Соболев А. Н., Кулова Т. Л. и др. // Журн. неорган. химии. 2022. Т. 67.№6. С. 829.
  43. Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925. https://doi.org/10.1107/S0567740869003220

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».