SOLID SOLUTIONS AND PHASE EQUILIBRIA IN THE NiO-ZnO-SiO2 SYSTEM IN THE SUBSOLIDUS REGION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Substitution solid solutions Zn2-2xNi2xSiO4 (willemite structure), Ni2-2yZn2ySiO4 (olivine structure) and Ni1-zZnzO (rock salt structure) were synthesized by solid-phase synthesis in air, and their extents were determined. Phase equilibria in the NiO-ZnO-SiO2 system in the subsolidus region were revealed based on the phase composition of the binary systems NiO-ZnO, ZnO-SiO2, NiO-SiO2, control points and parameters of the unit cells of solid solutions. It has been established that the ternary system NiO-ZnO-SiO2 is divided by conodes into seven elementary fields. Phase equilibria in the NiO-ZnO-SiO2 system is determined by the quasi-binary equilibrium of the boundary compositions of the Zn2-2xNi2xSiO4 (x = 0.10) and Ni2-2yZn2ySiO4 (y = 0.25) solid solutions and the conodes connecting these compositions with the Ni1-zZnzO solid solution, as well as the conode connecting the boundary composition of the Ni1-zZnzO (z = 0.4) solid solution with Zn2SiO4.

Sobre autores

E. Dobrynenko

Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences

Email: natalzay@yandex.ru
Ekaterinburg, Russia

N. Zaitseva

Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences; Ural State Mining University

Ekaterinburg, Russia

R. Samigullina

Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences

Ekaterinburg, Russia

T. Krasnenko

Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences

Ekaterinburg, Russia

Bibliografia

  1. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1163. https://doi.org/10.31857/S0044457X24080095
  2. Бузанов Г.А., Нипан Г.Д. // Журн. неорган. химии. 2024. Т. 69. № 1. С. 58. https://doi.org/10.31857/S0044457X24010073
  3. Зайцева Н.А., Самигуллина Р.Ф., Иванова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1779. https://doi.org/10.31857/S0044457X23601347
  4. Samigullina R.F., Krasnenko T.I. // Mater. Res. Bull. 2020. V. 129. P. 110890. https://doi.org/10.1016/j.materresbull.2020.110890
  5. Phillips B., Hutta J., Warshaw L. // J. Am. Ceram. Soc. 1963. V. 46. № 12. P. 579. https://doi.org/10.1111/j.1151-2916.1963.tb14620.x
  6. Grutzeck M.W., Muan A. // J. Am. Ceram. Soc. 1988. V. 71. № 8. P. 638. https://doi.org/10.1111/j.1151-2916.1988.tb06381.x
  7. Abdeyazdan H., Shevchenko M., Jak E. // J. Eur. Ceram. Soc. 2024. V. 44. № 10. P. 6147. https://doi.org/10.1016/j.jeurceramsec.2024.03.028
  8. Beglaryan H., Isahkayan A., Terzyan A. et al. // Heliyon. 2024. V. 10. P. e40070. https://doi.org/10.1016/j.heliyon.2024.e40070
  9. Иванова И.В., Зайцева Н.А., Самигуллина Р.Ф. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1331 https://doi.org/10.31857/S0044457X20100104
  10. Shizawa M., Yoshida T., Ohtsuka A. // Yogyo Kyokai Shi. 1984. V. 92 P. 334. https://doi.org/10.2109/jcersj1950.92.1066_334
  11. Schmitz-DuMont O., Gössling H., Brookoff H. // Z. Anorg. Allg. Chem. 1959. V. 300. P. 159. https://doi.org/10.1002/zaac.19593000307
  12. Lee Ch.Y., Lee B.-H. // J. Korean Ceram. Soc. 2010. V. 47. P. 598. https://doi.org/10.4191/kcers.2010.47.6.598
  13. Масленникова Г.Н., Глебычева А.И., Фомина Н.П. // Стекло и керамика. 1974. Т. 31. № 8. С. 23.
  14. Wang Q., Wang Z., Qi M. et al. // ACS Sustainable Chem. Eng. 2024. V. 12. № 14. P. 5522. https://doi.org/10.1021/acssuschemeng.3c07982
  15. Bates C.H., White W.B., Roy R. // J. Inorg. Nucl. Chem. 1966. V. 28. № 2. P. 397. https://doi.org/10.1016/0022-1902(66)80318-4
  16. Navrotsky A., Muan A. // J. Inorg. Nucl. Chem. 1970. V. 32. № 11. P. 3471. https://doi.org/10.1016/0022-1902(70)80156-7
  17. Navrotsky A., Muan A. // J. Inorg. Nucl. Chem. 1971. V. 33. № 1. P. 35. https://doi.org/10.1016/0022-1902(71)80006-4
  18. Tsygankov V.N., Saphonov V.V., Manulik N.V. // Fine Chem. Technol. 2013. V. 8. № 4. P. 96.
  19. Singh S.D., Nandanwar V., Srivastava H. et al. // Dalton Trans. 2015. V. 44. P. 14793. https://doi.org/10.1039/C5DT02283E
  20. Gaskell K.J., Starace A., Langell M.A. // J. Phys. Chem. C. 2007. V. 111. № 37. P. 13912. https://doi.org/10.1021/jp073590x
  21. Sinn D.S. // Solid State Ionics. 1996. V. 83. № 3-4. P. 333. https://doi.org/10.1016/0167-2738(96)00010-0
  22. Kedesdy H., Drukalsky A. // J. Am. Chem. Soc. 1954. V. 76. № 23. P. 5941. 10.1021/ja01652a013' target='_blank'>https://doi.org/doi: 10.1021/ja01652a013
  23. Паньков В.В., Баширов Л.А., Саксонов Ю.Г. и др. // Изв. АН СССР. Неорган. материалы. 1978. Т. 14. № 5. C. 922.
  24. Chumanov V.N., Sokolov V.I., Pustovarov V.A. et al. // Low Temp. Phys. 2019. V. 45. № 2. P. 224. https://doi.org/10.1063/1.5086417
  25. Al Boukhari J., Zeidan L., Khalaf A. et al. // Chem. Phys. 2019. V. 516. P. 116. https://doi.org/10.1016/j.chemphys.2018.07.046.
  26. Rogozea E.A., Olteanu N.L., Petcu A.R. et al. // Opt. Mater. 2016. V. 56. P. 45. https://doi.org/10.1016/j.optmat.2015.12.020
  27. Baghramyan V.V., Sargsyan A.A., Knyzyan N.B. et al. // Ceram. Int. 2020. V. 46. № 4. P. 4992. https://doi.org/10.1016/j.ceramint.2019.10.239
  28. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  29. Singh S.D., Poswal A.K., Kamal C. et al. // Solid State Commun. 2017. V. 259. P. 40. https://doi.org/10.1016/j.ssc.2017.05.002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).