CRYSTALLOCHEMICAL ROLE OF NAPHTHALENE AND ANTHRACENE CARBOXYLATE IONS IN THE STRUCTURES OF COORDINATION COMPOUNDS OF 3d-METALS
- Autores: Karasev M.O1, Pushkin D.V1
-
Afiliações:
- Korolev Samara National Research University
- Edição: Volume 70, Nº 11 (2025)
- Páginas: 1524-1534
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://ogarev-online.ru/0044-457X/article/view/378181
- DOI: https://doi.org/10.7868/S3034560X25110108
- ID: 378181
Citar
Resumo
Crystal chemical analysis of naphthalene-1-, naphthalene-2-, and anthracene-9-carboxylate-containing complexes of 3d metals was performed within the framework of a stereoatomic model of crystal structure using the characteristics of Voronoi-Dirichlet polyhedra. The types of coordination of naphthalene-1-, naphthalene-2-, and anthracene-9-carboxylate anions with respect to 3d metals are considered. The influence of the type of coordination on the characteristics of connections M–O in crystal structures is revealed. The 18-electron rule is used to quantify the electron-donating ability of naphthalene-1-, naphthalene-2-, and anthracene-9-carboxylate anions with respect to 3d metals, which decreases steadily from left to right. With respect to two-row 3d metal ions, correlations have been established between the electron-donating ability of oxygen atoms of naphthalene-1-, naphthalene-2- and anthracene-9-carboxylate ions and the group number in which the 3d metal is located.
Sobre autores
M. Karasev
Korolev Samara National Research University
Email: karasev.mo@ssau.ru
Samara, 443086 Russia
D. Pushkin
Korolev Samara National Research UniversitySamara, Russia
Bibliografia
- Помогайло А.Д., Джардималиева Г.И. Мономерные и полимерные карбоксилаты металлов / Под ред. Алдошина С.М. М.: Физматлит, 2009. 400 с.
- Liu G.C., Liu X., Li X.W. et al. // ACS Omega. 2019. V. 4. № 17. P. 17366. https://doi.org/10.1021/acsomega.9b02124
- Agarwal R.A., Gupta. N.K. // Coord. Chem. Rev. 2017. V. 332. P. 100. https://doi.org/10.1016/j.ccr.2016.11.002
- Jin K., Lee B., Park. J. // Coord. Chem. Rev. 2021. V. 427. P. 213473. https://doi.org/10.1016/j.ccr.2020.213473
- Darjee S.M., Modi K.M., Panchal U. et al. // J. Mol. Struct. 2017. V. 1133. P. 1. https://doi.org/10.1016/j.molstruc.2016.11.028
- Xuan F., Yu M., Liu G.X. // Inorg. Chem. Acta. 2020. V. 506. P. 119556. https://doi.org/10.1016/j.ica.2020.119556
- Manes T.A., Rose M.J. // Coord. Chem. Rev. 2017. V. 353. P. 295. https://doi.org/10.1016/j.ccr.2017.09.022
- Зеленина Л.Н., Чусова Т.П., Сапченко С.А. и др. // Журн. неорган. хим. 2023. Т. 68. № 2. С. 174. https://doi.org/10.31857/S0044457X22601274
- Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre, Cambridge, 2024).
- Блатов В.А., Шевченко А.П., Сережкин В.Н. // Коорд. химия. 1999. Т. 25. № 7. С. 483.
- Сережкин В.Н., Блатов В.А., Шевченко А.П. // Коорд. химия. 1995. Т. 21. № 3. С. 163.
- Сережкин В.Н., Буслаев Ю.А. // Журн. неорган. хим. 1997. Т. 42. № 7. С. 1180.
- Сережкин В.Н., Сережкина Л.Б. // Коорд. химия. 1999. Т. 25. № 3. С. 182
- Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr., Sect. B. 2009. V. 65. № 1. P. 45. https://doi.org/10.1107/S0108768108038846.
- Liu C.S., Chang Z., Wang J.J. // Acta Crystallogr., Sect. C. 2007. V. 63. P. m589. https://doi.org/10.1107/S0108270107054650
- Dai P.X., Zhao H., Yang E.C. et al. // Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry. 2016. V. 46. № 8. P. 1163. https://doi.org/10.1080/15533174.2015.1004429
- Goldberg A., Kiskin M., Shalygina O. et al. // Chem. An Asian Journal. 2016. V. 11. № 4. P. 604. https://doi.org/10.1002/asia.201501315
- Cortijo M., Herrero S., Jerez B. et al. // Chem. Plus. Chem. 2014. V. 79. № 7. P. 951. https://doi.org/10.1002/cplu.201402005
- Гольдберг А.Е., Кискин М.А., Козюхин С.А. и др. // Изв. АН. Сер. хим. 2011. № 5. С. 987.
- Гольдберг А.Е., Кискин М.А., Сидоров А.А. и др. // Изв. АН. Сер. хим. 2011. № 5. С. 829.
- Takasaki Y., Takamizava S. // Chem. Commun. 2015. V. 51. № 24. P. 5024. https://doi.org/10.1039/C4CC09948F
- Rodriguez-Cordoba W., Noria-Moreno R., Navarro P. et al. // J. Lumin. 2014. V. 145. P. 697. https://doi.org/10.1016/j.jlumin.2013.08.046
- Zou R.Q., Liu C.S., Shi X.S. et al. // Cryst. Eng. Comm. 2005. V. 5. № 118. P. 722. https://doi.org/10.1039/B513269J
- Liu C.S., Wang J.J., Yan L.F. et al. // Inorg. Chem. 2007. V. 46. № 16. P. 6299. https://doi.org/10.1021/ic070086y
- Wang J.J., Liu C.S., Hu T.L. et al. // Cryst. Eng. Comm. 2008. V. 10. № 6. P. 681. https://doi.org/10.1039/B710209G
- Wang J.J., Liu C.S., Hu T.L. et al. // Cryst. Eng. Comm. 2008. V. 10. № 6. P. 681. https://doi.org/10.1039/B710209G
- Liu C.S., Sanudo E.C., Yan L.F. et al. // Trans. Met. Chem. 2009. V. 34. № 1. P. 51. https://doi.org/10.1007/s11243-008-9158-8
- Сережкина Л.Б., Сережкин В.Н. // Журн. неорган. химии. 1996. Т. 41. № 3. С. 438.
Arquivos suplementares
