HYDROTHERMAL SYNTHESIS OF K2CE(PO4)2 · ХH2O AND ANALYSIS OF ITS PHOTOPROTECTIVE PROPERTIES
- Autores: Kozlova T.O.1, Vasilyeva D.N.1,2, Savintseva I.V.3, Popov A.L.3, Simonenko N.P.1, Kozlov D.A.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University Higher School of Economics
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
- Edição: Volume 70, Nº 8 (2025)
- Páginas: 1004-1013
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/308588
- DOI: https://doi.org/10.31857/S0044457X25080038
- EDN: https://elibrary.ru/jiyigb
- ID: 308588
Citar
Resumo
A new method for obtaining K2Ce(PO4)2 ∙ xH2O (s. g. I41/amd, a = b = 6.8300(2), c = 17.8488(4) Å, V = 832.63(4) Å3, Z = 4) under hydrothermal conditions has been developed. It has been established that the thermolysis of this compound proceeds through three stages of mass loss with the formation of CePO4 и K4P2O7 as intermediate products, which upon further heating form a mixture of CePO4 and K3Ce(PO4)2. The calculated values of the sun protection factor and UVA protection factor for K2Ce(PO4)2 ∙ xH2O were 2.1 and 2.0, respectively. In relation to the human keratinocyte cell line (HaCaT), a photoprotective effect of K2Ce(PO4)2 ∙ xH2O was recorded. For the first time, the photoactive properties of KCe2(PO4)3 and K2Ce(PO4)2 ∙ хH2O in the decomposition reaction of methylene blue were evaluated. A significant slowdown in the decomposition reaction of an organic dye was demonstrated when using K2Ce(PO4)2 ∙ хH2O.
Palavras-chave
Sobre autores
T. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia
D. Vasilyeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University Higher School of Economics
Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia; Myasnitskaya ul. 20, Moscow 101000 Russia
I. Savintseva
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Institutskaja str., 3, Moscow region, Pushchino, 142290 Russia
A. Popov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Institutskaja str., 3, Moscow region, Pushchino, 142290 Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia
D. Kozlov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: taisiya@igic.ras.ru
Leninskii pr. 31, Moscow, 119991 Russia
Bibliografia
- Serpone N. // Photochem. Photobiol. Sci. 2021. V. 20. № 2. P. 189. https://doi.org/10.1007/s43630-021-00013-1
- Pols J.C., Williams G.M., Pandeya N. et al. // Cancer Epidemiol. Biomarkers Prev. 2006. V. 15. № 12. P. 2546. https://doi.org/10.1158/1055-9965.EPI-06-0352
- D’Orazio J., Jarrett S., Amaro-Ortiz A. et al. // Int. J. Mol. Sci. 2013. V. 14. № 6. P. 12222. https://doi.org/10.3390/ijms140612222
- Egambaram O.P., Kesavan Pillai S., Ray S.S. // Photochem. Photobiol. 2020. V. 96. № 4. P. 779. https://doi.org/10.1111/php.13208
- Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
- Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
- Nery É.M., Martinez R.M., Velasco M.V.R. et al. // J. Cosmet. Dermatol. 2021. V. 20. № 4. P. 1061. https://doi.org/10.1111/jocd.13694
- Smijs T.G., Pavel S. // Nanotechnol. Sci. Appl. 2011. V. 4. P. 95. https://doi.org/10.2147/NSA.S19419
- Lewicka Z.A., Yu W.W., Oliva B.L. et al. // J. Photochem. Photobiol., A: Chem. 2013. V. 263. P. 24. https://doi.org/10.1016/j.jphotochem.2013.04.019
- Onoda H., Tanaka R. // J. Mater. Res. Technol. 2019. V. 8. № 6. P. 5524. https://doi.org/10.1016/j.jmrt.2019.09.020
- Hiromoto S., Inoue M., Taguchi T. et al. // Acta Biomater. 2015. V. 11. P. 520. https://doi.org/10.1016/j.actbio.2014.09.026
- Carella F., Degli Esposti L., Adamiano A. et al. // Materials (Basel). 2021. V. 14. № 21. P. 6398. https://doi.org/10.3390/ma14216398
- Onoda H., Yamaoka K., Charoonsuk T. et al. // J. Aust. Ceram. Soc. 2025. https://doi.org/10.1007/s41779-025-01190-3
- De Lima J.F., Serra O.A. // Dye Pigment. 2013. V. 97. № 2. P. 291. https://doi.org/10.1016/j.dyepig.2012.12.020
- Kurajica S., Brleković F., Keser S. et al. // Molecules. 2025. V. 30. № 2. P. 405. https://doi.org/10.3390/molecules30020405
- Seixas V.C., Serra O.A. // Molecules. 2014. V. 19. № 7. P. 9907. https://doi.org/10.3390/molecules19079907
- Sato T., Yin S. // Phosphorus Res. Bull. 2010. V. 24. P. 43. https://doi.org/10.3363/prb.24.43
- Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Molecules. 2024. V. 29. № 9. P. 2157. https://doi.org/10.3390/molecules29092157
- Sato T., Sato C., Yin S. // Phosphorus Res. Bull. 2008. V. 22. P. 17. https://doi.org/10.3363/prb.22.17
- Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
- Kozlova T.O., Sheichenko E.D., Vasilyeva D.N. et al. // Nanosyst. Physics, Chem. Math. 2024. V. 15. № 2. P. 215. https://doi.org/10.17586/2220-8054-2024-15-2-215-223
- Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
- Xu Y., Feng S., Pang W. // Mater. Lett. 1996. V. 28. № 4–6. P. 499. https://doi.org/10.1016/0167-577X(96)00112-7
- Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Phys. Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
- Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // ChemistrySelect. 2024. V. 9. № 17. e202401010. https://doi.org/10.1002/slct.202401010
- Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
- Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
- Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
- Torres-Díaz I., Hendley R.S., Mishra A. et al. // Soft Matter. 2022. V. 18. № 6. P. 1319. https://doi.org/10.1039/D1SM01523K
- Kurazhkovskaya V.S., Bykov D.M., Orlova A.I. // J. Struct. Chem. 2004. V. 45. № 6. P. 966. https://doi.org/10.1007/s10947-005-0087-5
- Clavier N., Mesbah A., Szenknect S. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2018. V. 205. P. 85. https://doi.org/10.1016/j.saa.2018.07.016
- Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031(01)00100-X
- Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
- Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
- Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
- Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
- Szczygiel I. // Thermochim. Acta. 2004. V. 417. № 1. P. 75. https://doi.org/10.1016/j.tca.2004.01.020
- Tronev I. V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
- ISO 24443:2012. Determination of sunscreen UVA photoprotection in vitro.
- Rodrigues N.D.N., Stavros V.G. // Sci. Prog. 2018. V. 101. № 1. P. 8. https://doi.org/10.3184/003685018X15166183479666
- Laquerriere P., Grandjean-Laquerriere A., Jallot E. et al. // Biomaterials. 2003. V. 24. № 16. P. 2739. https://doi.org/10.1016/S0142-9612(03)00089-9
- Sahu D., Kannan G.M., Tailang M. et al. // J. Nanosci. 2016. V. 2016. P. 1. https://doi.org/10.1155/2016/4023852
- Horie M., Nishio K., Fujita K. et al. // Chem. Res. Toxicol. 2009. V. 22. № 3. P. 543. https://doi.org/10.1021/tx800289z
- Kozlova T.O., Popov A.L., Romanov M.V. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 2. P. 223. https://doi.org/10.17586/2220-8054-2023-14-2-223-230
Arquivos suplementares
