Structural transitions during thermal destruction in the family of zinc fluoridozirconate crystal hydrates
- Authors: Saiankina K.A.1, Didenko N.A.1, Savchenko N.N.1, Gerasimenko A.V.1
-
Affiliations:
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia
- Issue: Vol 70, No 7 (2025)
- Pages: 916-926
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://ogarev-online.ru/0044-457X/article/view/306861
- DOI: https://doi.org/10.31857/S0044457X25070083
- EDN: https://elibrary.ru/joipvi
- ID: 306861
Cite item
Abstract
The structure of ZnZrF6 · 6H2O and ZnZrF6 · 5H2O (high- and low-temperature forms) crystal hydrates and their products of thermal destruction: ZnZrF6 · 4H2O, ZnZrF6 · 2H2O, ZnZrF6 and ZnZr2F10 · 2H2O have been studied. With the exception of ZnZr2F10 · 2H2O, the compounds of ZnZrF6 · nH2O (n = 6, 5, 4, 2, 0) are isostructural to their formula analogues: NiZrF6 · 6H2O, α- and β-MgZrF6 · 5H2O, CuZrF6 · 4H2O, MgZrF6 · 2H2O, MgZrF6, respectively. The structure of ZnZr2F10 · 2H2O is built from unique infinite network anionic layers [Zr2F10]2–, in which ZrF8 square antiprisms are formed tetranuclear cycles and are shared six of their vertices with four neighboring Zr-polyhedra according to the law “…–edge–edge–vertex–vertex–…”; ZnF4(H2O)2-octahedra link Zr-layers to each other into a framework.
About the authors
K. A. Saiankina
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia
Email: kseniyag@ich.dvo.ru
Vladivostok, 690022 Russia
N. A. Didenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia
Email: kseniyag@ich.dvo.ru
Vladivostok, 690022 Russia
N. N. Savchenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia
Email: kseniyag@ich.dvo.ru
Vladivostok, 690022 Russia
A. V. Gerasimenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022 Russia
Author for correspondence.
Email: kseniyag@ich.dvo.ru
Vladivostok, 690022 Russia
References
- Ferraris G., Franchini-Angela M. // Acta Crystallogr., Sect. B: Struct. Sci. 1972. V. 28. №12. P. 3572. https://doi.org/10.1107/s0567740872008362
- Chiari G., Ferraris G. // Acta Crystallogr., Sect. B: Struct. Sci. 1982. V. 38. № 9. P. 2331. https://doi.org/10.1107/s0567740882008747
- Gillon A.L., Feeder N., Davey R. J., Storey R. // Cryst. Growth Des. 2003. V. 3. № 5. P. 663. https://doi.org/10.1021/cg034088e
- Банару А.М., Словохотов Ю.Л. // ЖСХ. 2015. Т. 56. № 5. С. 1024.
- Desiraju G.R. // J. Chem. Soc., Chem. Commun. 1991. V. 6. P. 426. https://doi.org/10.1039/C39910000426
- Tian F., Qu H., Zimmermann A., Munk T., Jørgensen A.C., Rantanen J. // J. Pharm. Pharmacol. 2010. V. 62. № 11. P. 1534. https://doi.org/10.1111/j.2042-7158.2010.01186.x
- Vyazovkin S. // Int. Rev. Phys. Chem. 2020. V. 39. № 1. P. 35. https://doi.org/10.1080/0144235x.2019
- Preturlan G.D., Vieille L., Quiligotti S., Favergeon L. // J. Phys. Chem. C. 2020. V. 124. № 48. P. 26352. https://doi.org/10.1021/acs.jpcc.0c09041
- Clarke H.D., Arora K.K., Bass H., Kavuru P., Ong T.T., Pujari T., Wojtas L., Zaworotko M. // Cryst. Growth Des. 2010. V.10. № 5. P. 2152. https://doi.org/10.1021/cg901345u
- Bajpai A., Scott H.S., Pham T., Chen K.-J., Space B., Lusi M., Perry M.L., Zaworotko M.J. // IUCrJ. 2016. V. 3. № 6. P. 430. https://doi.org/10.1107/S2052252516015633
- Sogütoglu L.C., Donkers P.A.J., Fischer H.R., Huinink H.P., Adan O.C.G. // Appl. Energy. 2018. V. 215. P. 159. https://doi.org/10.1016/j.apenergy.2018.01.083
- Kant K., Shukla A., Smeulders D.M.J., Rindt C.C.M. // J. Energy Storage. 2021. V. 38. P.102563. https://doi.org/10.1016/j.est.2021.102563
- Mazur N., Huinink H., Borm B., Sansota S., Fischer H., Adan O. // Thermochim. Acta. 2022. V. 715. P.179286. https://doi.org/10.1016/j.tca.2022.179286
- Войт Е.И., Диденко Н.А., Гайворонская К.А., Герасименко А.В. // Оптика и спектроскопия. 2016. Т. 121. № 2. С. 248. https://doi.org/10.1134/S0030400X16080233
- Диденко Н.А., Войт Е.И., Саянкина К.А. // Вестник ДВО РАН. 2020. № 6. С. 61. http://vestnikdvo.ru/index.php/vestnikdvo/article/view/675
- Годнева М.М., Мотов Д.Л., Кузнецов В.Я., Рыськина М.П. // Журн. неорган. хим. 2004. Т. 49. № 7. С. 1198.
- Halasyamani P., Willis M.J., Stern C.L., Poeppelmeier K.R. // Inorg. Chim. Acta. 1995. V. 240. № 1–2. P. 109. https://doi.org/10.1016/0020-1693(95)04650-XGet rights and content
- Gerasimenko A.V., Gaivoronskaya K.A., Slobodyuk A.B., Didenko N.A. // Z. Anorg. Allg. Chem. 2017. V. 643. № 22. P. 1785. https://doi.org/10.1002/zaac.201700166
- Диденко Н.А., Гайворонская К.А., Войт Е.И., Герасименко А.В., Кавун В.Я. // Журн. неорган. хим. 2010. Т. 55. № 9. С. 1420.
- Fischer J., Weiss R. // Acta Crystallogr., Sect. B: Struct. Sci. 1973. V. 29. P. 1955. https://doi.org/10.1107/S0567740873005820
- Köhl P., Reinen D., Decher G. Weiss B. // Zeitschrift für Krist. 1980. V. 153. № 3–4. P. 211. https://doi.org/10.1524/zkri.1980.153.3-4.211
- Rodriguez V., Couzi M., Tressaud A., Grannec J., Chaminade J.P., Soubeyroux J.L. // J. Phys. Condens. Matter. 1990. V. 2. № 36. P. 7373. http://iopscience.iop.org/0953-8984/2/36/001
- Voit E.I., Didenko N.A., Gerasimenko A.V., Slobodyuk A.B. // J. Fluorine Chem. 2020. V.232. P. 109475. https://doi.org/10.1016/j.jfluchem.2020.109475
- Nakhal S., Bredow T., Lerch M. // Z. anorg. allg. Chem. 2015. V. 641. № 6. P. 1036. https://doi.org/10.1002/chin.201531003
- Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. С: Structural Chemistry. 2015. V. 71. P. 3. https:// doi.org/10.1107/S2053229614024218
- STOE (2008). WinXpow, STOE & CIE GmbH, Hilpertstraße 10, D-64295 Darmstadt.
- Bruker (2008). DIFRAC+. Bruker AXS Inc., Madison, Wisconsin, USA.
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Simonov V.I., Bukvetsky B.V. // Acta Crystallogr., Sect. B: Struct. Sci. 1978. V.34. P. 355. https://doi.org/10.1107/S0567740878003131
- Fischer J., Keib G., Weiss R. // Acta Crystallogr., Sect. B: Struct. Sci. 1967. V. 22. № 3. P. 338. https://doi.org/10.1107/S0365110X67000659
- Clark M.J.R., Fleming J.E., Lynton H. // Can. J. Chem. 1969. V. 47. P. 3859. https://doi.org/10.1139/v69-642
- Fischer J., Cian A., Weiss R. // Bull. Soc. Chim. Fr. 1966. V. 8. P. 2646.
- Heier K.R., Poeppelmeier K.R. // J. Solid State Chem. 1997. V. 133. № 2. P. 576. https://doi.org/10.1006/jssc.1997.7529
- Laptash N.M., Udovenko A.A., Vasiliev A.D., Merkulov E.B. // J. Solid State Chem. 2023. V. 318. P. 123781. https://doi.org/10.1016/j.jssc.2022.123781
- Burns J.H. // Acta Crystallogr., Sect. B: Struct. Sci. 1962. V. 15. P. 1098. https://doi.org/10.1107/S0365110X62002935
- Mayer H.W., Reinen D. // J. Solid State Chem. 1983. V. 50. № 2. P. 213. https://doi.org/10.1016/0022-4596(83)90190-1
- Teufer G. // Acta Crystallogr., Sect. B: Struct. Sci. 1956. V. 9. P. 539. https://doi.org/10.1107/S0365110X56001509
- Hester B.R., Hancock J.C., Lapidus S.H., Wilkinson A.P. // Chem. Mater. 2017. V. 29. № 2. P 823. https://doi.org/10.1021/acs.chemmater.6b04809
- Gao Y., Guery J., Le Bail A., Jacoboni C. // J. Solid State Chem. 1992. V. 98. № 1. P. 11. https://doi.org/10.1016/0022-4596(92)90065-4
Supplementary files
