Spin properties of chiral BN nanotubes (7, N2)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the nonempirical relativistic augmented cylindrical wave method, the dependences of the electronic structure of single-layer (n1, n2) BN nanotubes with n1 = 7 and 6 ≥ n2 ≥ 1 on chirality and spin are calculated. All nanotubes are wide-bandgap semiconductors with optical gaps equal to 3.6–4.6 eV and spin-orbit splittings of the top of the valence band and the minimum of the conduction band of 0.15–0.004 meV. The energies of spin splittings in right- and left-handed nanotubes coincide, and the spin directions are opposite. The (7, 1) nanotube is most suitable for selective spin transport of electrons, which can find application in spintronics elements.

About the authors

P. N. D’yachkov

Institute of General and Inorganic Chemistry named after. N.S. Kurnakov RAS

Email: p_dyachkov@rambler.ru
Leninsky Prospekt, 31, Moscow, 119991 Russia

E. P. D’yachkov

Institute of General and Inorganic Chemistry named after. N.S. Kurnakov RAS

Author for correspondence.
Email: p_dyachkov@rambler.ru
Leninsky Prospekt, 31, Moscow, 119991 Russia

References

  1. Rikken G.L., Avarvari N.J. // Phys. Chem. Lett. 2023. V. 14. P. 9727. https://doi.org/10.1021/acs.jpclett.3c02546
  2. Atzori M., Santanni F., Breslavetz I. // J. Am. Chem. Soc. 2020. V. 142. P. 13908. https://doi.org/10.1021/jacs.0c06166
  3. Tokura Y., Nagaosa N. // Nature Commun. 2018. V. 9. P. 3740. https://doi.org/10.1038/s41467-018-05759-4
  4. Chang G., Wiede B.J., Schindler F. // Nat. Mater. 2018. V. 17. P. 978. https://doi.org/10.1038/s41563-018-0169-3
  5. Adhikari Y., Liu T., Wang H. // Nat. Commun. 2023. V. 14. P. 5163. https://doi.org/10.1038/s41467-023-40884-9
  6. Yang S.H. // Appl. Phys. Lett. 2020. 116. P. 120502. https://doi.org/10.1063/1.5144921
  7. Yang S.H., Naaman R., Stuart P.Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  8. Michael K., Kantor-Urie N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
  9. Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
  10. Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
  11. Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
  12. Wang X., Changjiang Y., Felser C. // Adv. Mater. 2023. V. 36. P. 2308746. https://doi.org/10.1002/adma.202308746
  13. Manchon A., Koo H.C., Nitta J. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
  14. Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
  15. Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
  16. Yan B. // Annu. Rev. Mater. Res. 2024. V. 54. P. 97. https://doi.org/10.1146/annurev-matsci-080222-033548
  17. Cohen M.L., Zettl A. // Phys. Today. 2010. V. 11. P. 34. https://doi.org/10.1063/1.3518210
  18. Golberg D., Bando Y., Tang A. et al. // Adv. Mater. 2007. V. 19. P. 2413. https://doi.org/10.1002/adma.200700179
  19. Chopra N.G., Luyken R.J., Cherrey K. et al. // Science. 1995. V. 269. P. 966. https://doi.org/10.1126/science.269.5226.966
  20. Maselugbo A.O., Harrison H.B., Alston J.R. // J. Mater. Res. 2022. V. 37. P. 4438. https://doi.org/10.1557/s43578-022-00672
  21. Zhang D., Zhang S., Yapici B. et al. // ACS Omega. 2021. V. 6. P. 20722. https://doi.org/10.1021/acsomega.1c02586
  22. Kim J.H., Pham T.V., Hwang J.H. et al. // Nano Convergence. 2018. V. 5. P. 17. https://doi.org/10.1186/s40580-018-0149-y
  23. Lee C.H., Wang J., Kayatsha S. et al. // Nanotechnology. 2008. V. 19. P. 455605. https://doi.org/10.1088/0957-4484/19/45/455605
  24. Xu T., Zhou Y., Tan X. // Adv. Funct. Mater. 2016. V. 27. P. 19. https://doi.org/10.1002/adfm.201603897
  25. Smith M.W., Jordan K.C., Park C. et al. // Nanotechnology. 2009. V. 20. P. 505604. https://doi.org/10.1088/0957-4484/20/50/505604
  26. Wang W.X., Bando M.S.Y., Golberg D. // Adv. Mater. 2010. V. 22. P. 4895. https://doi.org/10.1002/adma.201001829
  27. Ghassemi H.M., Lee C.H., Yap Y.K. // JOM. 2010. V. 62. P. 69. https://doi.org/10.1007/s11837-010-0063-1
  28. Blasé X., Rubio A., Louie S.G. et al. // EPL. 1994. V. 28. P. 335. https://doi.org/10.1209/0295-5075/28/5/007
  29. Ma R., Bando Y., Zhu H. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7672. https://doi.org/10.1021/ja026030e
  30. Lee C.H., Qin S., Savaikar M.A. et al. // Adv. Mater. 2013. V. 25. P. 4544. https://doi.org/10.1002/adma.201301339
  31. Qin J.-K., Liao P.-Y., Si M. et al. // Nat. Electron. 2020. V. 3. P. 141. https://doi.org/10.1038/s41928-020-0365-4
  32. Otsuka K., Sugihara T., Inoue T. et al. // Nano Res. 2023. V. 16. P. 12840. https://doi.org/10.1007/s12274-023-6241-6
  33. Shakerzadeh E. // Micro Nano Technol. 2016. P. 59. https://doi.org/10.1016/B978-0-323-38945-7.00004-3
  34. Rubio A., Corkill J., Cohen M.L. // Phys. Rev. B. 1994. V. 49. P. 5081. https://doi.org/10.1103/PhysRevB.49.5081
  35. Xiang H.J., Yang J.J., Hou G. et al. // Phys. Rev. B. 2003. V. 68. P. 035427. https://doi.org/10.1103/PhysRevB.68.035427
  36. Zhi C., Ueda S., Zeng H. et al. // J. Appl. Phys. 2013. V. 14. P. 054306. http://dx.doi.org/10.1063/1.4817430
  37. Guo G.Y., Lin J.C. // Phys. Rev. B. 2005. V. 71. P. 165402. https://doi.org/ 10.1103/PhysRevB.71.165402
  38. Ivanovskaya V.V., Enyashin A.N., Ivanovskii A.L. // Russ. J. Phys. Chem. 2006. V. 80. P. 372. https://doi.org/10.1134/S0036024406030125
  39. Jonuarti R., Yusfi M., Dewi T. et al. // J. Phys.: Conference Series. 2020. V. 1428. P. 012005. https://doi.org/10.1088/1742-6596/1428/1/012005
  40. Zhukovskii Y.F., Bellucci S., Piskunov S. et al. // Eur. Phys. J. B. 2009. V. 67. P. 519. https://doi.org/10.1140/epjb/e2009-00038-2
  41. Cho Y.J., Kim C.H., Kim H.S. et al. // Chem. Mater. 2009. V. 21. P. 136. https://doi.org/10.1021/cm802559m
  42. Wu R. Q., Liu L., Peng G.W. et al. // Appl. Phys. Lett. 2005. V. 86. P. 122510. http://dx.doi.org/10.1063/1.1890477
  43. D’yachkov P.N., Makaev D.V. // J. Phys. Chem. Solids. 2008. V. 70. P. 180. https://doi.org/10.1016/j.jpcs.2008.10.002
  44. Enyashin A., Seifert G., Ivanovskii A. // JETP Lett. 2004. V. 80. P. 608. https://doi.org/10.1134/1.1851644
  45. Kamal B.D., Pati R. // Sensors. 2014. V. 14. P. 17655. https://doi.org/10.3390/s140917655
  46. Hou S., Shen Z., Zhang J. et al. // Chem. Phys. Lett. 2004. V. 393. P. 179. https://doi.org/10.1016/j.cplett.2004.06.014
  47. Mpourmpakis G., Froudakis G.E. // Catal. Today. 2007. V. 120. P. 341. https://doi.org/10.1016/j.cattod.2006.09.023
  48. Baei M.T., Soltani A.R., Moradi A.V. et al. // Comput. Theor. Chem. 2011. V. 970. P. 30. https://doi.org/10.1016/j.comptc.2011.05.021
  49. Abbasi A.J. // Water Environ. Nanotechnol. 2019. V. 4. P. 147. https://doi.org/10.22090/jwent.2019.02.006
  50. Farhami N.A. // J. Appl. Organomet. Chem. 2022. V. 2. P. 163. https://doi.org/10.22034/jaoc.2022.154821
  51. Nemati-Kande E., Pourasadi A., Aghababaei F. et al. // Sci. Reports. 2022. V. 12. P. 19972. https://www.nature.com/articles/s41598-022-24200-x
  52. Ray K., Ananthavel S.P., Waldeck D.H. // Science. 1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.814
  53. Göhler B., Hamelbeck V., Markus T.Z. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
  54. Yeganeh S., Ratner M.A., Medina E. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
  55. Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
  56. Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404(R). https://doi.org/10.1103/PhysRevB.85.081404
  57. Gutierrez R., Díaz E., Gaul C. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
  58. Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
  59. Michaeli K., Naaman R. // J. Phys. Chem. C. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
  60. Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
  61. Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
  62. Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925
  63. Dalum. S., Hedegård P. // Nano Lett. 2019. V. 19. P. 5253. https://doi.org/10.1021/acs.nanolett.9b01707.
  64. D’yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves; CRC. Press London: Taylor and Francis, 2019. 212 p.
  65. D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
  66. D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  67. D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
  68. D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. C. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
  69. D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
  70. D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 102. https://doi.org/10.1109/5.771073
  71. Дьячков П.Н., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 9. С. 1319.
  72. Дьячков Е.П., Меринов В.Б., Дьячков П.Н. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 757.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».