INFLUENCE OF SYNTHESIS PARAMETERS ON ELECTROCHEMICAL PROPERTIES OF Ge-Co-In NANOSTRUCTURES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work presents the results of investigation of the influence of synthesis parameters of Ge-Co-In nanostructures on their electrochemical properties. It was found that the optimal ratio of aqueous complex solutions of Ge (IV) and Co (II) is GeCo (3:2), at which the obtained sample has the highest Coulombic efficiency at the first cycle equal to 80% and reversible capacity with respect to lithium introduction about 1190 mAh/g. In turn, increasing the solution temperature to 40°C allows to obtain a sample which has a Coulombic efficiency at the first cycle of about 92% without the use of special organic additives in the electrolyte.

作者简介

I. Gavrilin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: gavrilin.ilya@gmail.com
Moscow, Russia

I. Marinkin

Moscow, Russia

National Research University “MIET”

Е. Kovtushenko

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

L. Volkova

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences INME RAS

Moscow, Russia

T. Kulova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: tkulova@mail.ru
Moscow, Russia

А. Skundin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Moscow, Russia

参考

  1. Luo H., Wang Y., Feng Y.-H., et al. // Materials. 2022. V. 15. № 22. P. 1. https://doi.org/10.3390/ma15228166
  2. Dong X., Wang Y., Xia Y. // Acc. Chem. Res. 2021. V. 54. № 20. P. 3883. https://doi.org/10.1021/acs.accounts.1c00420
  3. Feng Y., Zhou L., Ma H., et al. // Energy Environ. Sci. 2022. V. 15. № 5. P. 1711. https://doi.org/10.1039/D1EE03292E
  4. Belgibayeva A., Rakhmetova A., Rakhatkyyy M., et al. // J. Power Sources. 2023. V. 557. P. 1. https://doi.org/10.1016/j.jpowsour.2022.232550
  5. Li C., Huang Q., Mao J. // J. Mater. Sci.: Mater. Electron. 2020. V. 31. P. 1. https://doi.org/10.1007/s10854-020-04658-z
  6. Pu Z., Li H., Yang Z., et al. // Mater. Today Chem. 2022. V. 26. P. 1. https://doi.org/10.1016/j.mtchem.2022.101145
  7. Hu B., Zhou X., Xu J., et al. // Chem Electro Chem. 2020. V. 7. P. 716. https://doi.org/10.1002/celc.201901914
  8. Wang G., Chen J., Zhang F., et al. // Energy Storage. 2023. V. 74. P. 1. https://doi.org/10.1016/j.cst.2023.109415
  9. Collins G., McNamara K., Kilian S., et al. // ACS Appl. Energy Mater. 2021. Vol. 4. № 2. P. 1793. https://doi.org/10.1021/acsaem.0c02928
  10. Choi S., Cho Y., Kim J., et al.// Small. 2017. V. 13. № 13. P. 1. https://doi.org/10.1002/smll.201603045
  11. Fugattini S., Guizar U., Andreoli A., et al. // Electrochim. Acta. 2022. V. 411. P. 1. https://doi.org/10.1016/j.electacta.2022.139832
  12. Gavrilin I.M., Kudryashova Yu.O., Kuz’mina A.A., et al. // J. Electroanal. Chem. 2021. Vol. 888. P. 1. https://doi.org/10.1016/j.jelechem.2021.115209
  13. Kulova T.L., Gavrilin I.M., Kudryashova Y.O., et al. // Mendeleev Commun. 2020. Vol. 30. P. 775. https://doi.org/10.1016/j.mencom.2020.11.029
  14. Gavrilov S.A., Gavrilin I.M., Martynova I.K., et al. // Batteries. 2023. V. 9. № 9. P. 1. https://doi.org/10.3390/batteries9090445
  15. Gavrilin I.M., Emets V.V., Marinkin I.S., et al. // Electrochim. Acta. 2025. V. 512. P. 1. https://doi.org/10.1016/j.electacta.2024.145441

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).