КАТАЛИЗАТОРЫ ПЕРОКСИДНОЙ И АЭРОБНОЙ ДЕСУЛЬФУРИЗАЦИИ НА ОСНОВЕ ГИБРИДНЫХ ПЛАЗМЕННО ЭЛЕКТРОЛИТИЧЕСКИ ОКСИДИРОВАННЫХ СЛОЕВ С ОКСИДАМИ ФОСФОРА, ВОЛЬФРАМА И ЖЕЛЕЗА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Каталитически активные покрытия на титане были синтезированы методом плазменного электролитического оксидирования (ПЭО) в водных электролитах, содержащих фосфат и вольфрамат натрия, а также хелатные комплексы железа с ЭДТА. Анализ данных энергодисперсионного рентгеноспектрального анализа (ЭДА), рентгенофазового анализа (РФА) и рентгеновской фотоэлектронной спектроскопии (РФЭС) позволил сделать заключение, что ПЭО-покрытия содержат диоксид титана и аморфные вольфраматы и/или фосфаты железа. Аморфизации способствовали высокие концентрации фосфора (до 6 ат. %). Испытания ПЭО-катализаторов показали их активность в окислительной десульфурации тиофена и дибензотиофена пероксидом водорода и кислородом.

Об авторах

И. Г. Тарханова

Московский государственный университет им. М. В. Ломоносова

Email: itar_msu@mail.ru
Химический факультет Москва, Россия

И. В. Лукиянчук

Институт химии Дальневосточного отделения РАН

Владивосток, Россия

Е. А. Есева

Московский государственный университет им. М. В. Ломоносова

Химический факультет Москва, Россия

М. С. Васильева

Институт химии Дальневосточного отделения РАН; Дальневосточный федеральный университет

Владивосток, Россия; Владивосток, Россия

М. О. Лукашов

Московский государственный университет им. М. В. Ломоносова

Химический факультет Москва, Россия

В. В. Короченцев

Институт химии Дальневосточного отделения РАН

Владивосток, Россия

В. В. Ткачев

MSU-BIT University

Faculty of Material Science Шэньчжэнь, Китай

Список литературы

  1. Reşitoğlu İ.A., Altinişik K., Keskin A. // Clean. Techn. Environ. Policy. 2015. V. 17. Р. 15. https://doi.org/10.1007/s10098-014-0793-9
  2. Said S., Mikhail S., Riad M. // Cleaner Chemical Engineering. 2025. V. 11. P. 100140. https://doi.org/10.1016/j.clce.2024.100140.
  3. Marafi A., Albazzaz H., Rana M.S. //Catal. Today. 2019. V. 329. P. 125. https://doi.org/10.1016/j.cattod.2018.10.067
  4. Tochtermann J., Tietze F., Huber M., et al. // Energ. Fuel. 2025. V. 39. № 1. P. 781. https://doi.org/10.1021/acs.energyfuels.4c04387
  5. Ma C., Chen D., Liu F., et al. // RSC Adv. 2015. V. 5. № 117. P. 96945. doi: 10.1039/C5RA16277G
  6. Awad E.M., Wadood T.M., Saba A.G. // Cleaner Materials. 2024. V. 13. P. 100262 https://doi.org/10.1016/j.clema.2024.100262
  7. Li Z., Hong G.H., Park J.S., et al. // Sci. Adv. Mater. 2017. V. 9. № 7. P. 1236. https://doi.org/10.1166/sam.2017.2889
  8. Saeed M., Munir M., Intisar A., Waseem A. // ACS Omega 2022. V. 7. № 18. P. 15809. https://doi.org/10.1021/acsomega.2e00886
  9. Jiang Y.-N., Liu B., Yang W., et al. // CrystEngComm. 2016. V.18. № 10. P. 1832. doi: 10.1039/C5CE02445E
  10. Qin H., Chen L., Yu X., Wu M., Yan Z. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 2060. doi: 10.1007/s10854-017-8119-4
  11. Zehra T., Patil S.A. Shresth N.K., et al. // J. Alloys Compd. 2022. V. 916. P. 165445. https://doi.org/10.1016/j.jallcom.2022.165445
  12. Fincur N.L., Grujic-Brojein M., Scepanovic M.J., et al. // React. Kinet. Mech. Catal. 2021. V. 132. № 2. P. 1193. https://doi.org/10.1007/s11144-021-01936-7
  13. Simchen F., Sieber M., Kopp A., Lampke T. // Coatings. 2020. V.10. № 7. P. 628. https://doi.org/10.3390/coatings10070628.
  14. Sikdar, S., Menezes P.V., Maccione R., et al. // Nanomaterials. 2021. V. 11. № 6. P. 1375. https://doi.org/10.3390/nano11061375.
  15. Samadi P., Witonska I.A. // Catal. Commun. 2023. V. 181. P. 106722. https://doi.org/10.1016/j.catcom.2023.106722.
  16. Lukiyanchuk I.V., Rudnev V.S., Tyrina L.M., Chernykh I.V. // Appl. Surf. Sci. 2014. V. 315. P. 481. http://dx.doi.org/10.1016/j.apsusc.2014.03.040.
  17. Karakurkchi A., Sakhnenko M., Ved M., Gorokhyvsky A. // Mater. Today Proc. 2022. V. 50. P. 502. https://doi.org/10.1016/j.matpr.2021.11.302.
  18. Patcas F., Krysmann W. // Appl. Catal. A: Gen. 2007. V. 316. № 2. P. 240. https://doi.org/10.1016/j.apcata.2006.09.028.
  19. Rudnev, V.S., Lukiyanchuk I.V., Vasilyeva M.S., et al. // Appl. Surf. Sci. 2017. V. 422. P. 1007. https://doi.org/10.1016/j.apsusc.2017.06.071.
  20. Bryzhin A.A., Tarkhanova I.G., Gantman M.G., et al. // Surf. Coat. Technol. 2020. V. 393. P. 125746. https://doi.org/10.1016/j.surfcoat.2020.125746.
  21. Lukiyanchuk I.V., Vasilyeva M.S., Ustinov A. Yu., et al. // Surf. Coat. Technol. 2022. V. 434. P. 128200. https://doi.org/10.1016/j.surfcoat.2022.128200
  22. Васильева М.С., Лукиянчук И.В., Сергеев А.А., и др. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 3. С. 304. doi: 10.31857/S0044185621030244.
  23. удникова Ю.Б., Васильева М.С., Лукиянчук И.В. // Изв. вузов. Химия и хим. технология. 2025. Т. 68. № 2. С. 79. doi: 10.6060/ivkkt.20256802.7072.
  24. Budnikova Y.B., Vasilyeva M.S., Lukiyanchuk I.V. et al. // J. Mater. Sci.: Mater. Electron. 2023. V. 34. P. 1973. https://doi.org/10.1007/s10854-023-11408-4
  25. Vasilyeva M.S., Lukiyanchuk I.V., Sergeev A.A., et al. // Surf. Coat. Technol. 2021. V. 424. P. 127640. https://doi.org/10.1016/j.surfcoat.2021.127640
  26. Хрисанфова О.А., Волкова Л.М., Гнеденков С.В., и др. // Журн. неорган. химии. 1995. Т. 40. № 4. C. 558.
  27. Zhang X., Cai G., Lv Y., Wu Y., Dong Z. // Surf. Coat. Technol. 2020. V. 400. P. 126202. https://doi.org/10.1016/j.surfcoat.2020.126202
  28. Першина С.В. // Журн. прикл. химии. 2019. Т. 92. № 4. С. 442.
  29. Moore L., Dutta I., Wheaton B., et al // J. Am. Ceram. Soc. 2020. V. 103. P. 3552. https://doi.org/10.1111/jace.17023
  30. Тарханова И.Г., Али-Заде А.Г., Буряк А.К., Зеликман В.М. // Катализ в промышленности. 2022. Т. 22. № 4. C. 43.
  31. Акопян А.В., Гришин Н.Н., Кардашев С.В., и др. // Хим. технология. 2023. Т. 24. № 11. С. 415. doi: 10.31044/1684-5811-2023-24-11-415-422.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).