Углеродные наноматериалы. Электронный парамагнитный резонанс

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Электронный парамагнитный резонанс (ЭПР) — широко используемый в химии, физике, биологии и материаловедении инструментальный метод исследования, который может быть с успехом применен для харакетризации электронной структуры углеродных наноматериалов. В данной работе представлен краткий обзор исследований различных типов углеродных наноструктур (УНС) методом ЭПР, включая методики измерений, принципы обработки и интерпретации спектральных данных, экспериментальные ркезультаты. Проведен анализ связи свойств УНС с ближайшим окружением парамагнитных центров, окислением и деградацией материалов со временем.

Об авторах

А. Н. Ульянов

Московский государственный университет имени М. В. Ломоносова, Химический факультет

119991, Москва, Россия

Н. Н. Кузнецов

Московский государственный университет имени М. В. Ломоносова, Химический факультет

119991, Москва, Россия

С. В. Савилов

Московский государственный университет имени М. В. Ломоносова, Химический факультет

Email: savilov@mail.ru
119991, Москва, Россия

Список литературы

  1. B. Wang W., Likodimos V., Fielding A.J. et al. // Carbon N.Y. 2020. V. 160. P. 236.
  2. Kempiński M. // Mater. Lett. 2018. V. 230. P. 180.
  3. Sun Y., Wang X., Tang B. et al. // Mater. Lett. 2017. V. 189. P. 54.
  4. Fei Y., Fang S., Hu Y.H. // Chem. Eng. J. 2020. V. 397. P. 125408.
  5. Tiwari S., Purabgola A., Kandasubramanian B. // J. Alloys Compd. 2020. V. 825. P. 153954.
  6. Xia H., Wang Y., Lin J. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 33.
  7. Chen X., Wang L., Li W. et al. // Nano Res. 2013. V. 6. P. 619.
  8. Lebepe T.C., Parani S., Vuyelwa N. et al. // Mater. Lett. 2020. V. 279. P. 128470.
  9. Wang W., Yokoyama A., Liao S. et al. // Mater. Sci. Eng. C. 2008. V. 28. P. 1082.
  10. Vidhya M.S., Ravi G., Yuvakkumar R. et al. // Mater. Lett. 2020. V. 276. P. 128193.
  11. Wang C., Fu Q., Wen D. // Zeitschrift Fur Phys. Chemie. 2018. V. 232. P. 1647.
  12. Moreno-Castilla C., Maldonado-Hódar F.J. // Carbon N.Y. 2005. V. 43. P. 455.
  13. Lee K.S., Phiri I., Park C.W. et al. // Mater. Lett. 2020. V. 275. P. 128133.
  14. Kumar M., Chauhan H., Satpati B. et al. // Zeitschrift Fur Phys. Chemie. 2019. V. 233. P. 85.
  15. Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213.
  16. Yu Q., Dong T., Qiu R. et al. // Mater. Res. Bull. 2021. V. 138. P. 111211.
  17. Ershadi M., Javanbakht M., Mozaffari S.A. et al. // J. Alloys Compd. 2020. V. 818. P. 152912.
  18. Ampadu E.K., Kim J., Oh E. et al. // Mater. Lett. 2020. V. 277. P. 128323.
  19. Li J.L., Bai G.Z., Feng J.W. et al. // Carbon N.Y. 2005. V. 43. P. 2649.
  20. Soo L.T., Loh K.S., Mohamad A.B. et al. // J. Alloys Compd. 2016. V. 677. P. 112.
  21. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Appl. Surf. Sci. 2019. V. 488. P. 51.
  22. Kapteijn F., Moulijn J.A., Matzner S. et al. // Carbon N.Y. 1999. V. 37. P. 1143.
  23. Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465.
  24. Sun M., Zhang G., Liu H. et al. // Sci. China Mater. 2015. V. 58. P. 683.
  25. Li Y., Ai C., Deng S. et al. // Mater. Res. Bull. 2021. V. 134. P. 111094.
  26. Duraisamy V., Krishnan R., Kumar S.M.S. // Mater. Res. Bull. 12022. V. 49. P. 111729.
  27. Diamantopoulou Α., Glenis S., Zolnierkiwicz G. et al. // J. Appl. Phys. 2017. V. 121. P. 043906.
  28. Augustyniak-Jabłokow M.A., Strzelczyk R., Feda- ruk R. // Carbon N.Y. 2020. V. 168. P. 665.
  29. Tadyszak K., Chybczyńska K., Ławniczak P. et al. // J. Magn. Magn. Mater. 2019. V. 492. P. 165656.
  30. Ćirić L., Sienkiewicz A., Djokić D.M. et al. // Phys. Status Solidi Basic Res. 2010. V. 247. P. 2958.
  31. Cirić L., Sienkiewicz A., Gaál R. et al. // Phys. Rev. B. 2012. V. 86. P. 195138.
  32. Kempiński M., Los S., Florczak P. et al. // Appl. Phys. Lett. 2018. V. 113. P. 084102.
  33. Ulyanov A., Stolbov D., Savilov S. // Zeitschrift Für Phys. Chemie. 2022. V. 236. P. 79.
  34. Ulyanov A.N., Maslakov K.I., Savilov S.V. et al. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. V. 287. P. 116119.
  35. Savilov S.V., Ulyanov A.N., Desyatov A.V. et al. // Solid State Sci. 2022. V. 132. P. 106996.
  36. Savilov S., Suslova E., Epishev V. et al. // Nanomaterials. 2021. V. 11. P. 352.
  37. Cao M., Du C., Guo H. et al. // Compos. Part A Appl. Sci. Manuf. 2018. V. 115. P. 331.
  38. Ulyanov A.N., Suslova E.V., Savilov S.V. // Mendeleev Commun. 2023. V. 33. P. 127.
  39. Kempiński M., Śliwińska-Bartkowiak M., Kempiński W. // Rev. Adv. Mater. Sci. 2007. V. 14. P. 163.
  40. Szirmai P., Márkus B.G., Dóra B. et al. // Phys. Rev. B. 2017. V. 96. P. 075133.
  41. Joly V.L.J., Takahara K., Takai K. et al. // Ibid. B. 2010. V. 81. P. 115408.
  42. Ramakrishna Matte H.S.S., Subrahmanyam K.S., Rao C.N.R. // Phys. Chem. C. 2009. V. 113. P. 9982.
  43. Yazyev O.V., Helm L. // Phys. Rev. B. 2007. V. 75. P. 125408.
  44. Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M. et al. // Phys. Status Solidi — Rapid Res. Lett. 2011. V. 5. P. 271.
  45. Пул Ч., Техника ЭПР-спектроскопии. М. Мир, 1970. 549 с.
  46. Ulyanov A.N., Quang H.D., Pismenova N.E. et al. // Solid State Commun. 2012. V. 152. P. 1556.
  47. Ulyanov A.N., Suslova E.V., Maslakov K.I. et al. // Funct. Mater. Lett. 2022. V. 15. P. 2251040.
  48. Singh C., Nikhil S., Jana A. et al. // Chem. Commun. 2016. V. 52. P. 12661.
  49. Lin T.T., Lai W.H., Lü Q.F. et al. // Electrochim. Acta. 2015. V. 178. P. 517.
  50. Huang Y.H., Liao C.S., Wang Z.M. et al. // Phys. Rev. B. 2002. V. 65. P. 184423.
  51. Wang B., Fielding A.J., Dryfe R.A.W. et al. // J. Phys. Chem. C. 2019. V. 123. P. 22556.
  52. Ulyanov A.N., Yang D.S., Mazur A.S. et al. J. Appl. Phys. 2011. V. 109. P. 123928.
  53. Ghosh A., Pinto J.W.M., Frota H.O. // J. Magn. Reson. 2013. V. 227. P. 87.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).