Получение полиметаллических порошковых систем Fe–Ni–Co–Al в водных растворах и их физические характеристики

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Показана возможность получения полиметаллической дисперсной системы Fe–Ni–Co–Al в водных растворах посредством редокс-процесса, протекающего между ионами железа(III), никеля(II), кобальта(II) и микрочастицами алюминия в водных растворах. При этом в водном растворе формируется структура, представляющая собой с позиции фазового состава, механическую смесь элементных металлов. Установлено, что синтезируемая система Fe–Ni–Co–Al состоит из частиц металлического алюминия, покрытых элементными металлами (железо, никель, кобальт) с минимумом содержания оксидной фазы. Дополнительная ВЧ-модификация исследуемого образца полиметаллической системы в плазме индукционного разряда пониженного давления приводит к образованию ряда интерметаллических соединений, преимущественно CoFe (~60%) и FeNi (~15%), а также обеспечивает сфероидизацию частиц. Полученная интерметаллическая порошковая композиция потенциально пригодна для использования в технологиях аддитивного производства.

Об авторах

А. Ф. Дресвянников

Казанский национальный исследовательский технологический университет

Email: alfedr@kstu.ru
Россия, Казань

М. Е. Колпаков

Казанский национальный исследовательский технологический университет

Email: alfedr@kstu.ru
Россия, Казань

Е. А. Ермолаева

Казанский национальный исследовательский технологический университет

Автор, ответственный за переписку.
Email: alfedr@kstu.ru
Россия, Казань

Список литературы

  1. Lasalmonie A. // Intermetallics. 2006. V. 14. № 10–11. P. 1123. https://doi.org/10.1016/j.intermet.2006.01.064
  2. Liu W., Dupont J.N. // Metall. Mater. Trans. A. 2003. V. 34. P. 2633.https://doi.org/10.1007/s11661-003-0022-3
  3. Chaudhary V., Nartu M.S.K.K.Y., Mantri S.A. et al. // J. Alloys Compd. 2020. V. 823. 153817. https://doi.org/10.1016/j.jallcom.2020.153817
  4. Paganotti A., Bessa C.V.X., Silva C.C.S. et al. // Mater. Chem. Phys. 2021. V. 261. 124215. https://doi.org/10.1016/j.matchemphys.2020.124215
  5. Tanaka Y., Kainuma R., Omori T., Ishida K. // Mater. Today: Proc. 2015. V. 2. P. S485. https://doi.org/10.1016/j.matpr.2015.07.333
  6. Tan X., Tang Y., Tan Y. et al. // Intermetallics. 2020. V. 126. 106898. https://doi.org/10.1016/j.intermet.2020.106898
  7. LiP., WangA., Liu C.T. // Ibid. 2017. V. 87. P. 21. https://doi.org/10.1016/j.intermet.2017.04.007
  8. Agustianingrum M.P., Yoshida S., Tsuji N., Park N. // J. Alloys Compd. 2019. V. 781. P. 866. https://doi.org/10.1016/j.jallcom.2018.12.065
  9. Zuo T.T., Li R.B., Ren X.J., Zhang Y. // J. Magn. Magn Mater. 2014. V. 371. P. 60. https://doi.org/10.1016/j.jmmm.2014.07.023
  10. Betancourt-Cantera L.G., Sánchez-De Jesús F., Bolarín-Miró A.M. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 14969. https://doi.org/10.1016/j.jmrt.2020.10.068
  11. Shafi K., Gedanken A., Prozorov R. et al. // J. Mater. Res. 2000. V. 15. № 2. P. 332. https://doi.org/10.1557/JMR.2000.0052
  12. Solanki V., Lebedev O.I., Seikh M.M. et al. // J. Magn. Magn. Mater. 2016. V. 420. P. 39. https://doi.org/10.1016/j.jmmm.2016.06.087
  13. Csik A., Vad K., Tóth-Kádár E., László P. // Electrochem. Commun. 2009. V. 11. P. 1289. https://doi.org/10.1016/j.elecom.2009.04.027
  14. Zhang Y., Ma R., Feng S. et al. // J. Magn. Magn. Mater. 2020. V. 497. 165982. https://doi.org/10.1016/j.jmmm.2019.165982
  15. Gayathri A., Kiruthika S., Selvarani V. et al. // Fuel. 2022. V. 321. 124059. https://doi.org/10.1016/j.fuel.2022.124059
  16. Wang Z., Cheng L., Zhang R. et al. // J. Alloys Compd. 2021. V. 857. 158249. https://doi.org/10.1016/j.jallcom.2020.158249
  17. Коч К., Овидько И.А., Сил С., Вепрек С. Конструкционные нанокристаллические материалы. Научные основы и приложения / Пер. с англ. под ред. М.Ю. Гуткина. М.: Физматлит, 2012. 447 с. [Koch C., Ovid’ko I.A., Seal S., Veprek S. Structural Nanocrystalline Materials. Fundamentals and Applications. Cambridge University Press. 2007. 364 p.]
  18. Дресвянников А.Ф., Колпаков М.Е. // Журн. физ. химии. 2006. Т. 80. № 2. С. 321. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Phys. Chem. A. 2006. V. 80. № 2. P. 254. https://doi.org/10.1134/S0036024406020245]
  19. Дресвянников А.Ф., Колпаков М.Е., Ермолаева Е.А. // Там же. 2020. Т. 94. № 6. С. 823. [Dresvyannikov A.F., Kolpakov M.E., Ermolaeva E.A. // Ibid. A. 2020. V. 94. № 6. P. 1098. https://doi.org/10.1134/S0036024420060084]
  20. Дресвянников А.Ф., Колпаков М.Е. // Журн. общ. химии. 2005. Т. 75. № 2. С. 177. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Gen. Chem. 2005. V. 75. № 2. P. 155. https://link.springer.com/article/10.1007/s11176-005-0190-5]
  21. Tseng Y.-T., Wu G.-X., Lin J.-C. et al. // J. Alloys Compd. 2021. V. 885. 160873. https://doi.org/10.1016/j.jallcom.2021.160873
  22. Torabinejad V., Aliofkhazraei M., Assareh S. et al. // Ibid. 2016. V. 691. P. 841. https://doi.org/10.1016/j.jallcom.2016.08.329
  23. Hessami S., Tobias C.W. // J. Electrochem. Soc. 1989. V. 136. P. 3611.https://doi.org/10.1149/1.2096519
  24. Bertazzoli R., Pletcher D. // Electrochim. Acta. 1993. V. 38. № 5. P. 671. https://doi.org/10.1016/0013-4686(93)80237-T
  25. Martinez-Blanco D., Gorria P., Blanco J.A. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 335213. https://doi.org/10.1088/0953-8984/20/33/335213
  26. Дресвянников А.Ф., Колпаков М.Е., Миронов М.М. // Физика и химия обраб. матер. 2010. № 3. С.58. [Dresvyannikov A.F., Kolpakov M.E., Mironov M.M. // Inorg. Mater.: Appl. Res. 2012. V. 3. № 3. P. 193. https://doi.org/10.1134/S2075113311030075]

Дополнительные файлы


© А.Ф. Дресвянников, М.Е. Колпаков, Е.А. Ермолаева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».